Relativistic Fermions
in Condensed Matter Physics

“The career of a young theoretical physicist consists of treating the harmonic
oscillator in ever-increasing levels of abstraction.”

— Sydney Coleman.

Quantum field theory is a (perhaps, the most powerful) theoretical framework
to describe microscopic physical phenomena. As Sydney remarked, quantum
field theory actually consists of an infinite number of harmonic oscillators at
every spacetime points: for the description of microscopic physics, two kinds
of quantum variables are used, i.e.,

(i) bosonic variables a;, a:f satisfying

[aj,a/] = [af,a]1 =0, [a;,a]] =0,
(i) fermionic variables ¢;, ¢! satisfying

feicjl =1cl, e} =0, {ei,cf) = 6.

The basis for the Hilbert space can be identified with
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{|”1,”2,"'> = H(Cj)ni|0>; n; = 0,1-} -

Here |0) satisfying 4;|0) = 0 (or ¢;|0) = 0) for all i is the (naive) vacuum state.

In terms of these building blocks, various filed theory systems can be con-
structed. For a bosonic example, 1-D lattice vibration can be described by
a field theory whose Lagrangian has the form (massless Klein-Gordon type
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A fermionic example is the Dirac QFT:

L=—y (ymu%ay + m)gb .

(Here y* (mu =0,1,--- ,d) (d = D — 1 is the number of spatial dimensions) are
appropriate matrices satisfying {)*,)"} = —2¢"" (g, is the spacetime metric).)
The corresponding Hamiltonian is given by

H= fddxlp 07% )lp.

Massless (="gapless excitations”) Dirac fermion appears in condensed matter
physics

— from the fermion chain/spin system « discussed below ,
— from the Schrodinger type QFT (Luttinger model) < not discussed here .

The Hamiltonian defined on a 1-D (tight-binding) chain (periodic boundary
condition is assumed)

H= SZ c:ci + TZ(CZTHQ + c}LciH) (@)
i i
have the energy spectrum
E =5+2Tcos(2§z) (=01, N=1),

with corresponding energy eigenstates (Bloch states)

N

100y = Z i (n-1) ctoy.

n=1

Actually, it is possible to fmd the map (Jordan-Wigner transformation) con-
necting our system to the spin-1 (isotropic) XY model defined by the Hamilto-
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Furthermore, the model (1) with & = 0and T = J/2 in continuum limit

T

= % Z(CLlCi + Cjci+1) = f %U Ccos k)c+(k)c(k)
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in its ground state, i.e., at the Fermi points, is gapless since, for modes near the
Fermi points cos k ~ +k where k is measured from the respective Fermi points.
These modes are associated with the (1 + 1)-D massless Dirac field excitations.



Defining by = i
ny=i'c,

Hjy becomes
Hy = % Z ibt (m)[b(n + 1) — b(n — )],
and if one introduces the ‘spinor’ operators ¢(s)
¢1(s) =b(n=2s), po(n=2s+1) (s=0,1,---,N/2)
whose anti-commutation relations are given by
{Pa(s), Ps(s)} = (PR (5), Dp()} = 0, {PA(S), Pp(s)} = OsOap s

Hj can be rearranged as follows:

Hy = %i (Y 616)2() = pals = D1+ Y pIG)pn(s + 1) = pr(5)]} -

The continuum limit of this with ¢,(x = 2as) = (s) (@ ~ L/N is the lattice
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spacing) is the desired massless Dirac Hamiltonian:

Ao dii= [axstondaser, a=-n=( 7).

and

(Wa), Yp()} = (o (x), P} = 0, {a(x), Pp(x')} = Sapd(x = x') .

Therefore, the physics of some fermion chain and spin systems can be studied
by examining the massless Dirac (relativistic) field theory.



