
Relativistic Fermions
in Condensed Matter Physics

“The career of a young theoretical physicist consists of treating the harmonic
oscillator in ever-increasing levels of abstraction.”

— Sydney Coleman.

Quantum field theory is a (perhaps, the most powerful) theoretical framework
to describe microscopic physical phenomena. As Sydney remarked, quantum
field theory actually consists of an infinite number of harmonic oscillators at
every spacetime points: for the description of microscopic physics, two kinds
of quantum variables are used, i.e.,

(i) bosonic variables ai, a†i satisfying

[a j, a j] = [a†i , a
†
j ] = 0 , [ai, a†j ] = δi j ,

(ii) fermionic variables ci, c†i satisfying

{ci, c j} = {c†i , c†j } = 0 , {ci, c†j } = δi j .

The basis for the Hilbert space can be identified with
|n1,n2, · · ·〉 ≡

∏

i

1√
ni!

(a†i )ni |0〉 ; ni = 0, 1, 2, · · ·


or |n1,n2, · · ·〉 ≡
∏

i

(c†i )ni |0〉 ; ni = 0, 1.

 .

Here |0〉 satisfying ai|0〉 = 0 (or ci|0〉 = 0) for all i is the (naive) vacuum state.
In terms of these building blocks, various filed theory systems can be con-

structed. For a bosonic example, 1-D lattice vibration can be described by
a field theory whose Lagrangian has the form (massless Klein-Gordon type
Lagrangian)

L =

∫
dx


µ

2

(
∂φ

∂t

)2

− T
2

(
∂φ

∂x

)2
 .
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A fermionic example is the Dirac QFT:

L = −ψ̄
(
γmu

1
i
∂µ + m

)
ψ .

(Here γµ (mu = 0, 1, · · · , d) (d = D − 1 is the number of spatial dimensions) are
appropriate matrices satisfying {γµ, γν} = −2gµν (gµν is the spacetime metric).)
The corresponding Hamiltonian is given by

H =

∫
ddx ψ†

(
~α · 1

i
~∇ + mγ0

)
ψ .

Massless (=“gapless excitations”) Dirac fermion appears in condensed matter
physics

– from the fermion chain/spin system⇐ discussed below ,

– from the Schrödinger type QFT (Luttinger model)⇐ not discussed here .

The Hamiltonian defined on a 1-D (tight-binding) chain (periodic boundary
condition is assumed)

H = E
∑

i

c†i ci + T
∑

i

(c†i+1ci + c†i ci+1) (1)

have the energy spectrum

El = E + 2T cos
(2π

N
l
)
, (l = 0, 1, · · · ,N − 1) ,

with corresponding energy eigenstates (Bloch states)

|Φ(l)〉 =
1√
N

N∑

n=1

ei 2πl
N (n−1)c†n|0〉 .

Actually, it is possible to find the map (Jordan-Wigner transformation) con-
necting our system to the spin- 1

2 (isotropic) XY model defined by the Hamilto-
nian

H = J =
∑

i

(Sx
i Sx

i+1 + Sy
i Sy

i+1) − 2h
∑

i

Sz
i .

Furthermore, the model (1) with E = 0 and T = J/2 in continuum limit

H0 =
J
2

∑

i

(c†i+1ci + c†i ci+1) =

∫ π

−π

dk
2π

(J cos k)c†(k)c(k)

in its ground state, i.e., at the Fermi points, is gapless since, for modes near the
Fermi points cos k ≈ ±k where k is measured from the respective Fermi points.
These modes are associated with the (1 + 1)-D massless Dirac field excitations.
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Defining
b(n) ≡ i−ncn ,

H0 becomes

H0 =
J
2

∑

n

ib†(n)[b(n + 1) − b(n − 1)] ,

and if one introduces the ‘spinor’ operators φα(s)

φ1(s) = b(n = 2s) , φ2(n = 2s + 1) (s = 0, 1, · · · ,N/2)

whose anti-commutation relations are given by

{φα(s), φβ(s′)} = {φ†α(s), φ†β(s
′)} = 0 , {φ†α(s), φβ(s′)} = δss′δαβ ,

H0 can be rearranged as follows:

H0 =
J
2

i
{∑

φ†1(s)[φ2(s) − φ2(s − 1)] +
∑

φ†2(s)[φ1(s + 1) − φ1(s)]
}
.

The continuum limit of this with ψα(x = 2as) = 1√
2a
φα(s) (a ∼ L/N is the lattice

spacing) is the desired massless Dirac Hamiltonian:

H̃0 =
1
Ja

H0 =

∫
dx ψ†(x)α

1
i
∂xψ(x) , α = −σ1 =

(
0 −1
−1 0

)
,

and

{ψα(x), ψβ(x′)} = {ψ†α(x), ψ†β(x
′)} = 0 , {ψ†α(x), ψβ(x′)} = δαβδ(x − x′) .

Therefore, the physics of some fermion chain and spin systems can be studied
by examining the massless Dirac (relativistic) field theory.
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