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Lectures on matrix element/parton shower matching

1 Introduction to soft/collinear QCD and parton showers
Tutorial 1: Study parton showers from Pythia and effects of jet definitions

2 Matrix element/Parton shower matching in e+e− collisions
Tutorial 2: First studies of matching using MG-Pythia or Sherpa

3 Matrix element/Parton shower matching in hadronic collisions
Tutorial 3: More studies of matching in different processes
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e+e− at NLO: Soft gluon emission
Consider the real gluon emission
corrections to the process e+e− → qq̄.
The full calculation is a little bit tedious
[EXERCISE], but here we are only
interested in the issues arising in the
infra-red, so let’s go immediately to
that approximation.

A = ū(p) 6ε(−igs)
−i

6p+ 6k
Γµv(p̄)ta + ū(p)Γµ i

6 p̄+ 6k
(−igs) 6εv(p̄)ta

= −gs

»
ū(p) 6ε( 6p+ 6k)Γµv(p̄)

2p · k
−

ū(p)Γµ( 6 p̄+ 6k) 6εv(p̄)

2p̄ · k

–
ta

The denominators 2p · k = p0k0(1− cos θ) give singularities for collinear
(cos θ → 1) and soft (k0 → 0) emissions.

Let’s neglect k in the numerators and use the Dirac equation to get:

Asoft = −gs t
a

„
p · ε
p · k

−
p̄ · ε
p̄ · k

«
ABorn, ABorn = ū(p)Γµv(p̄)

Factorization: Independence of long-wavelength (soft) emission from the hard
(short-distance) process; Soft emission is universal!
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By squaring the amplitude we obtain

σqq̄g = CF g2
s σBorn

qq̄

Z
d3k

2k0(2π)2
2

p · p̄
(p · k)(p̄ · k)

= CF
αs

2π
σBorn

qq̄

Z
d cos θ

dk0

k0

4

(1− cos θ)(1 + cos θ)

Two collinear divergencies and a soft divergence.

Usually expressed in x1 = 2Eq/
√

s and x2 = 2Eq̄/
√

s, the fraction of energies of
the quark and anti-quark:

x1 = 1− x2x3(1− cos θ23)/2

x2 = 1− x1x3(1− cos θ13)/2

x1 + x2 + x3 = 2

0 ≤ x1, x2 ≤ 1 and x1 + x2 ≤ 1

where x3 = 2Eg/
√

s

Note that the divergent part of the cross-section is canceled by the divergent
part of the virtual contribution to the NLO calculation.
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Soft-gluon emission Feynman rules

Soft emission is universal, i.e. does not depend on the hard process

Soft emission is spin independent

Only external legs give rise to soft divergencies
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What do we learn from soft-gluon emissions?

Infrared divergencies =⇒ soft gluons “all over the place”

Exclusive observables (like single quarks) impossible to calculate

Danger: Definition of observables that change by insertion of soft particles

Must ensure that physical observables are infra-red safe

Infra-red safe observables

Quantities insensitive to soft or collinear branchings

Determined by hard, short-distance physics

Definition: Sn+1(p
µ
1 , ..., (1− λ)pµ

n , λpµ
n ) = Sn+1(p

µ
1 , ..., pµ

n ) for λ → 0 or
0 < λ < 1

Total cross-section

Shape parameters (thrust, planarity,...)

Careful jet definitions
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Jet Definitions
Precise definition of procedure to cut multi-jet events
Crucial when comparing experiment with theory
Must be infrared-safe (not always the case!)
In hadronic colliders: Must be boost-insensitive in z direction

Cone algorithms

Jet: A sufficient amount of hadronic energy found
within a cone of a specified radius in R =

p
η2 + φ2

Uses calorimeter information

Need initial cone direction (“seed”), then iterate to final
direction

Difficulties when jets are found in overlapping cones

Cluster algorithms

Cluster particles, starting with softest and most collinear particles to get
mother-particles up to some distance

Perform clustering using some particle distance definition (see next slide)

Uses tracker information

Jet boundaries more complicated than cones

More compatible with QCD splitting structure (as will be seen...)
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Clustering jet algorithms

Recipe:

1 Choose a jet distance measure dij (usually ∼ kT ,ij )

2 Find the two particles closest in the distance measure

3 Combine them into one pseudo-particle

4 Repeat steps 2-3 until distance ≥ specified distance dcut

e+e− colliders

JADE algorithm: d2
ij = 2EiEj (1− cos θij ) (IR unsafe!)

Durham algorithm: d2
ij = 2min

“
E2

i , E2
j

”
(1− cos θij ) ' k2

T

Various others (LUCLUS, GENEVA, CAMBRIDGE, DICLUS,...)
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Hadronic colliders

The kT clustering algorithm:(
diB = p2

T ,i between particle and beam

dij = min(p2
T ,i , p

2
T ,i )R

2
ij between two particles

where

R2
ij = f (ηi − ηj , φi − φj ) → (ηi − ηj )

2 + (φi − φj )
2 as |ηi − ηj |, |φi − φj | → 0

Common choices for R2
ij :

R2
ij = (ηi − ηj )

2 + (φi − φj )
2

R2
ij = 2

ˆ
cosh(ηi − ηj )− cos(φi − φj )

˜
The latter theoretically attractive due to form of eikonal multiparton QCD
matrix elements.
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Parton branchings

The leading soft and collinear enhanced terms in QCD matrix elements can be
identified and resummed to all orders, enabling a description of parton emissions
which is exact at small branching angles.

Consider a splitting of an outgoing parton a into b and c:

Assume p2
b , p2

c � p2
a ≡ t. Opening angle is θ = θa + θb, energy fraction is

z = Eb/Ea = 1− Ec/Ea

For small angles,

t = 2EbEc (1− cos θ) = z(1− z)E2
a θ2,

θ =
1

Ea

s
t

z(1− z)
=

θb

1− z
=

θc

z
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Let’s first consider g → gg branching:

Amplitude has triple-gluon vertex factor

gf ABC εα
a εβ

b εγ
c

ˆ
gαβ(pa − pb)γ + gβγ(pb − pc )α + gγα(pc − pa)β

˜
where εµ

i is the polarization vector for gluon i and all momenta are defined
as outgoing, so pa = −pb − pc . Use this and εi · pi = 0 to get

−2gf ABC [(εa · εb)(εc · pb)− (εb · εc )(εa · pb)− (εc · εa)(εb · pc )]

Resolve the polarization vectors into εin
i in the plane of branching and εout

i
normal to the plane, so that

εin
i · ε

in
j = εout

i · εout
j = −1

εin
i · ε

out
j = εout

i · pj = 0

For small θ (neglecting terms of order θ2) we get

εin
a · pb = −Ebθb = −z(1− z)Eaθ

εin
b · pc = +Ecθ = (1− z)Eaθ

εin
c · pb = −Ebθ = −zEaθ
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Collinear singularity 1/θ from vertex factor ∝ θ× propagator factor
∝ 1/t ∝ 1/θ2

(n + 1)-parton matrix element-squared given (in small-angle region) from
n-parton matrix element:

|Mn+1|2 ∼
4g2

t
CAF (z; εa, εb, εc )|Mn|2

where CA = 3 (color factor from FABCFABC and the functions F are given
by:

εa εb εc F (z; εa, εb, εc )
in in in (1− z)/z + z/(1− z) + z(1− z)
in out out z(1− z)
out in out (1− z)/z
out out in z/(1− z)

Sum/avarage over polarizations gives

CA 〈F 〉 ≡ bPgg (z) = CA

»
1− z

z
+

z

1− z
+ z(1− z)

–
This is the (unregularized) gluon splitting function.

Soft divergencies for z → 0 and z → 1 due to soft gluon polarized in plane
of branching.
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Now look at g → qq̄ branching:

The vertex factor is
−ig ūbγµεµ

a v c

where ub and v c are the quark and antiquark spinors.

The spin-averaged splitting function is

TR 〈F 〉 ≡ bPqg (z) = TR

ˆ
z2 + (1− z)2

˜
No soft singularities (only for gluon emission)

Finally, q → qg branching:

The spin-averaged splitting function is

CF 〈F 〉 ≡ bPqq(z) = CF
1 + z2

1− z

Helicity conservation ensures that the quark doesn’t change helicity in
branching.
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Summary of splitting functions

bPqq(z) = CF

»
1 + z2

1− z

–
,

bPgq(z) = CF

»
1 + (1− z)2

z

–
,

bPqg (z) = TR

ˆ
z2 + (1− z)2

˜
,

bPgg (z) = CA

»
1− z

z
+

z

1− z
+ z(1− z)

–
where CF = 4

3
, CA = 3, TR = 1

2
.

Note that these are unregulated splitting probabilities, since they contain
singularities at z = 1 and z = 0.

The cross-sections before and after splitting are related by

dσn+1 = dσn
dt

t
dz

αs

2π
bPba(z)

after integration over the azimuthal angle φ.
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Evolution equations and parton densities

In the relation between the cross-section before and after a splitting is a factor
dt/t =⇒logarithmic divergence after integration

These divergences can be resummed through evolution equations.

Consider successive small-angle gluon emission in deep inelastic scattering
(hadron-virtual photon collisions):

Assume that the quark is found in the hadron with a initial probability f0 at a
virtuality scale t0 = −p2

0 > 0. After one gluon emission, the probability to find
the quark at a virtuality t > t0 will be:

f (x , t) = f0(x) +

Z t

t0

dt′

t′
αs

2π

Z 1

x

dz

z
P̂(z) f0

“ x

z

”

At every gluon emission, the incoming quark moves to higher virtual mass t and
lower momentum fraction x .
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To see what happens at multiple gluon emissions, let’s introduce a pictorial
representation of evolution in t and x :

Represent a sequence of branchings by path in (t, x)-space. Each
branching corresponds to a step downwards in x at a given value of
t = −p2 for initial-state showers

At t = t0, paths have a distribution of starting points f0(x) characteristic
of the target hadron and quark type (at that scale)

The change in the parton distribution f (x , t) when t is increased to t + δt
is the number of paths arriving in element (δt, δx)− number of paths
leaving the element, divided by δx
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The number of paths arriving is the branching probability times the parton
density integrated over all higher momenta x ′ = x/z:

δfin(x , t) =
δt

t

Z 1

x
dx ′dz

αs

2π
bP(z)f (x ′, t)δ(x − zx ′)

=
δt

t

Z 1

0

dz

z

αs

2π
bP(z)f (x/z, t)

For the number of paths leaving the element we must integrate over lower
momenta x ′ = zx :

δfout(x , t) =
δt

t
f (x , t)

Z 1

x
dx ′dz

αs

2π
bP(z)δ(x ′ − zx)

=
δt

t
f (x , t)

Z 1

0

dz

z

αs

2π
bP(z)

So the change of population of the element is

δf (x , t) = δfin(x , t)− δfout(x , t)

=
δt

t

Z 1

0

dz

z

αs

2π
bP(z)

»
1

z
f (x/z, t)− f (x , t)

–
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Let’s introduce the plus-prescription with definitionZ 1

0
dzf (z)g(z)+ =

Z 1

0
dz[f (z)− f (1)]g(z)

We can then define the regularized splitting function

P(z) = bP(z)+

to obtain the DGLAP (Dokshitzer-Gribov-Lipaton-Altarelli-Parisi) evolution
equation

t
∂

∂t
f (x , t) =

Z 1

x

dz

z

αs

2π
P(z)f (x/z, t)

(Note that
R 1
x dzf (z)g(z)+ =

R 1
0 dzΘ(z − x)f (z)g(z)+ =R 1

x dz[f (z)− f (1)]g(z)− f (1)
R x
0 dzg(z))

We have now been looking at space-like emissions (initial-state radiation),
where f (x , t) represents the momentum fraction distribution of a quark in a
hadron, probed at a certain scale t > t0. For time-like emissions (final-state
radiation), f (x , t) instead represents the momentum fraction distibution of an
outgoing parton found at a t < t0, where t0 is the virtuality of the parton
leaving the hard interaction.
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For several different types of partons, we must take into account the different
processes by which partons of type i can enter or leave the element (δt, δx).
We therefore get coupled DGLAP equations of the form

t
∂

∂t
fi (x , t) =

Z 1

x

dz

z

αs

2π
Pij (z)fj (x/z, t)

where i , j = q, q̄, g .

After some algebra, considering all possible ways the partons can enter or exit
the space element and the definition of the plus prescription, we get:

Regulated splitting functions

Pqq(z) = CF

»
1 + z2

(1− z)+
+

3

2
δ(1− z)

–
,

Pgq(z) = Pgq̄(z) = CF

»
1 + (1− z)2

z

–
,

Pqg (z) = Pq̄g (z) = TR

ˆ
z2 + (1− z)2

˜
,

Pgg (z) = 2CA

»
1− z

z
+

z

(1− z)+
+ z(1− z)

–
+

1

6
(11CA − 4Nf TR)δ(1− z)

The role of the plus prescription is here to ensure conservation of probability.
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Logarithmic resummation

The DGLAP evolution equation is said to resum large collinear logarithms. So
where are these logarithsm, and where is the resummation?

Let’s perform the integration of the DGLAP equation and expand the result:

f (x , t) = f0(x) +

Z t

t0

dt′

t′
αs(t′)

2π

Z 1

x

dz

z
P(z) q

“ x

z
, t′

”
= f0(x) +

Z t

t0

dt′

t′
αs

2π

Z 1

x

dz

z
P(z)

(
f0

“ x

z

”
+

+

Z t′

t0

dt′′

t′′
αs

2π

Z 1

x/z

dz ′

z ′
P(z ′)

h
f0

“ x

zz ′

”
+ ...

i)

= f0(x) +
αs

2π
ln

„
t

t0

« Z 1

x

dz

z
P(z) f0

“ x

z

”
+

+
1

2!

»
αs

2π
ln

„
t

t0

«–2 Z 1

x

dz

z
P(z)

Z 1

x/z

dz ′

z ′
P(z ′) f0

“ x

zz ′

”
+ ...

As suggested by the last step, it is indeed a resummation of all terms

proportional to
h

αs
2π

ln
“

t
t0

”in
.

26 / 38



Lecture 1: QCD

Plan of the lectures

Introduction: The
big picture

Infrared Behaviour
of QCD

Jet Definitions

Parton Showers

Parton branchings

Evolution
equations and
parton densities

Logarithmic
resummation

Sudakov form
factors

Angular ordering

NLL Sudakovs

Parton showers in
Monte Carlos

Sudakov form factors
While the DGLAP equation is convenient to describe the evolution of parton
distributions, a slightly different form is useful to study emissions from
final-state particles.

Consider the probability for a quark to emit a gluon at a virtuality t:

Pbranching(t) =
δt

t

Z 1−ε(t)

ε(t)
dz

αs(t)

2π
bP(z)

The probability for not emitting a gluon within a virtuality element δt is then

Pno-branching(t) = 1− Pbranching(t)

This reminds us of the probability for nuclear decay at a time t, and just like in
that case, the probability exponentiates. Assuming that the quark was
generated at a virtuality t1, the probability that there has been no emission
between t1 and t2 < t1 is given by the (infinitesimal) product of Pno-branching(t)
for all virtuality elements between t1 and t2, giving

Pno-branching(t1, t2) ≡ ∆(t1, t2) = exp

"
−

Z t1

t2

dt′

t′

Z 1−ε(t)

ε(t)
dz

αs(t)

2π
bP(z)

#

This quantity is called the Sudakov form factor.
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The Sudakov is sometimes written as ∆(t) ≡ ∆(t, tcut) for a given cut-off
scale tcut.

To leading log (LL) accuracy, ∆(t1, t2) = ∆(t1, t3)/∆(t2, t3), i.e. the
probability factorizes. However, this is no longer true at next-to-leading log
(NLL) accuracy, due to angular ordering of subsequent gluon emissions

Studies have suggested that the best choice for the scale of αs is the
relative k2

T ' z(1− z)t

Note that here it is the unregularized splitting function which is used. That
is why we need to introduce the explicit infrared cutoff ε(t) > 0.
Branchings below this cutoff is considered as unresolvable: The emitted
parton is too soft to detect

The infrared cutoff ε(t) depends on what we classify as a resolvable
emission. For timelike branchings, a natural resolution limit is given by
demanding that the virtual mass-squared t of the products are above a
given tcut. When the parton energies are much larger than their virtualities,
the transverse momentum in a → bc is:

p2
T = z(1− z)p2

a − (1− z)p2
b − zp2

c > 0

Hence for p2
a = t and p2

b , p2
c > tcut we require z(1− z) > tcut/t, giving

z, 1− z > ε(t) =
1

2
−

1

2

p
1− 4tcut/t ' tcut/t
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Angular ordering

Let’s return momentarily to soft gluon radiation, to examine an important
phenomenon: Angular ordering

Soft gluon emission enhances the
cross-section due to a logarithmic
divergence. Since there is interference
between emission from two parton legs,
the total enhancement factor includes a
sum over all pairs of external lines (i , j):

dσn+1 = dσn
dω

ω

dΩ

2π
αs2π

X
i,j

CijWij

where ω is the emitted gluon energy, dΩ its solid angle element, Cij is a color
factor and Wij the radiation function given by

Wij =
ω2pi · pj

pi · qpj · q
=

1− vivj cos θij

(1− vi cos θiq)(1− vj cos θjq)
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The radiation function can be separated into two parts, containing the collinear
singularities along the lines i and j . For simplicity let’s consider massless

particles with vi,j = 1. Then Wij = W i
ij + W j

ij where

W i
ij =

1

2

„
Wij +

1

1− cos θiq
−

1

1− cos θjq

«

If we write the angular integration in polar coordinates w.r.t. the direction of i ,
dΩ = d cos θiqdφiq and perform the azimuthal integration, we getZ 2π

0

dφiq

2π
W i

ij =
1

1− cos θiq
if θiq < θij , otherwise 0

This is the remarkable property of angular ordering.

So, after azimuthal averaging, radiation from the leg i
is confined to cone with opening angle to direction j ,
and vice versa.
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This coherence effect is identical to the Chudakov effect in QED, suppressing
soft bremsstrahlung from boosted e+e− pairs. A photon at larger angles cannot
resolve the electron and positron charges separately but sees only the total
(neutral) charge of the pair.

More generally, if i and j come from the branching of a parton k with (color)
charge Qk = Qi + Qj then radiation outside angular-ordered cones is emitted
coherently by i and j and can be treated as coming directly from the (color)
charge of k.
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NLL Sudakovs
At NLL, next-to-leading logarithmic order (where we take into account also the
coherence effects giving a strict ordering of emission angles) the Sudakov form
factors for quarks and gluons in the final state can be written as

∆q(Q, Qcut) = exp

„
−

Z Q

Qcut

dq Γq(q, Q)

«
∆g (Q, Qcut) = exp

„
−

Z Q

Qcut

dq [Γg (q, Q) + Γf (q)]

«
with Qcut =

√
tcut, Q =

√
t and the NLL branching probabilities Γq,g,f for

q → qg , g → gg and g → qq̄ respectively, are given by

Γq(q, Q) =
2CF

π

αs(q)

q

„
ln

Q

q
−

3

4

«
Γg (q, Q) =

2CA

π

αs(q)

q

„
ln

Q

q
−

11

12

«
Γf (q) =

Nf

3π

αs(q)

q

The probability for a parton i to evolve from a scale Q to Q1 > Qcut without
any emission resolvable at the scale Qcut is

∆i (Q, Qcut)/∆i (Q1, Qcut)
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Parton showers in Monte Carlos

The Sudakov formalism is very convenient for the implementation of parton
showers in Monte Carlo event generators.

Final-state (time-like) showers are constructed as follows:

1 Start the evolution at the virtual mass scale t0 and momentum fraction
x0 = 1

2 Given a virtual mass scale and momentum fraction (t1, x1) at some stage in
the evolution, generate the scale of the next emission t2 according to the
Sudakov probability ∆(t1, t2) by solving

∆(t1, t2) = R

where R is a random number (uniform on [0, 1]).

3 If t2 < tcut it means that the shower has finished.

4 Otherwise, generate z = x2/x1 with a distribution proportional to
(αs/2π)P(z), where P(z) is the appropriate splitting function.

5 For each emitted particle, iterate steps 2-4 until branching stops.
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Due to these successive branchings, the parton cascade or parton shower
develops. Each outgoing line is a source of a new cascade, until all outgoing
lines have stopped branching. At this stage, which depends on the cutoff scale,
outgoing partons have to be converted into hadrons via a hadronization model.
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Backward evolution

For initial-state parton showers, Monte Carlo generators use backward evolution:
Starting from the x0 and t0 of the parton going in to the hard interaction, the
parton shower is evolved backwards, towards smaller t and larger x .

The initial x0 and t0 determine the parton density weight f (x0, t0) at the point
of the hard interaction. In the backwards evolution, the Sudakov factor must be
weighted at each step by the parton density at that point (t, x), in order to
correct for the availability of that type of parton at that point. Therefore the
probability for evolving backwards from (t1, x) to (t2, x) with no branching reads

Π(t1, t2; x) =
fb(x , t2)

fb(x , t1)

∆b(t1)

∆b(t2)

In the backwards evolution of initial-state showers this is the probability
distribution from which one must choose t2.

The z = x/x2 value of the branching a → bc is then generated from a
probability distribution proportional to

αs

2π

P(z)

z

fa(x/z, t2)

fb(x , t2)

where P(z) is the appropriate splitting function.
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Different approaches to ordering variables in Parton Showers
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That’s all for today, folks!

Tutorial 1

Before the first tutorial, you will need on your laptops:

Root 5

“MadGraph V4.0” downloaded from
http://madgraph.roma2.infn.it/Downloads/downloads.html,
(Note! The Roma server! Not the same as you already have!)
Untar MG ME V4.0.tar.gz,

The Pythia package, downloadable from
http://madgraph.roma2.infn.it/Downloads/downloads.html,
“Pythia and PGS package”. Untar the package in the directory
MG ME V4.0/. Run “make” in the MG ME V4.0/ directory.

The Pythia manual, downloadable from
http://www.thep.lu.se/∼torbjorn/Pythia.html

Please read the README files in MG ME V4.0/, Template/ and pythia-pgs/
During the tutorial, I will ask you familiarize yourselves with Pythia and the jet
clustering algorithms. Look at properties of the Pythia parton showers by
studying e.g. jet distributions. Make comparisons with the results of matrix
element calculations by MadEvent, and look at the impact of different jet
definitions and different jet parameters.
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