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Abstract. Growing networks are ubiquitous in the real world, ranging
from co-authorship socio-networks to protein interaction bio-networks. It is
conventionally known that the giant cluster in such growing networks emerges
continuously with infinite-order critical behavior. In this study, we show
that when the growth of large clusters is suppressed with global information,
the continuous percolation transition changes to a discontinuous transition
with an abrupt jump of the order parameter at a delayed transition point
pe. Moreover, a second-order-type critical behavior appears in a wide region
of the link occupation probability before the system explodes, in which while
the largest cluster has not grown to the extensive size of the system yet, the
mean cluster size diverges. Far below p., the property of the infinite-order
transition still remains. Accordingly, the features of infinite-order, second-
order, and first-order transitions all occur in a single framework when the
infinite-order transition is suppressed. We present a simple argument to explain
the underlying mechanism of these abnormal transition behaviors. Finally, we
show that this result is universal by examining percolation transitions of a
protein-interacting-network model.
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1. Introduction

Growing networks are ubiquitous in the real world. Co-authorship networks [1, 2], the
World Wide Web (WWW) [3], and protein interaction networks [4-6] are good exam-
ples. In growing networks, system size, i.e. the number of nodes, grows as time goes,
such as a co-authorship network [1, 2] grows as a new graduate student writes the first
paper with other colleagues, the WWW grows as a new website opens, and the protein
interaction network grows by a gene mutation. Callaway et al [7] introduced a growing
random network (GRN) model, where a node, representing a person, a web page, or
a protein, is present in the system at the beginning. At each time step, a new node is
added, then a pair of unconnected nodes, which is chosen randomly among all existing
nodes, forms a link with probability p. The connected clusters represent social com-
munities, groups of hyperlinked websites, or protein complexes binding together. As p
increases, a percolation transition (PT) occurs at a certain transition point p., beyond
which a macroscopic-scale large cluster emerges. The PT of the GRN model follows an
infinite-order Berezinskii—Kosterlitz—Thouless (BKT) transition [7-14].

Berezinskii, Kosterlitz and Thouless discovered an infinite-order topological phase
transition in the early 1970s. Since then, its notion has been widely used for understand-
ing diverse phenomena ranging from the superfluid-normal phase transition [13] and
quantum phase transitions [14] in physical systems to PTs of growing networks [7, 15]
in interdisciplinary areas. Following the basic idea of Paul Ehrenfest’s in 1933 [16],
phase transitions are normally classified by the lowest derivative of the free energy that
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is discontinuous at a transition point. First-order phase transitions exhibit a disconti-
nuity in the order parameter and finite fluctuations, and second-order phase transitions
are continuous in the first derivative of the free energy, but diverges in the second
derivative such as the susceptibility at a transition point. The latter transition also has
features that the correlation length diverges and the correlation function decays in a
power-law manner at the transition point. Under this classification scheme, there could
in principle be higher-order phase transitions.

In the GRNs, the order parameter, i.e. the relative giant cluster size, G(p) is zero
for p < p. and increases continuously for p > p. in the essentially singular form

G(p) ~ exp(—a/v/p —pe), (1)

where a is a positive constant. Thus, the PT is infinite-order. In this case, the cluster
size distribution ny(p) follows a power law n, ~ s~7 without any exponential cutoff in
the entire region of p < p. [6, 7, 15, 17]. Thus, the region p < p. is often referred to as
the critical region. The exponent 7 decreases with increasing p and approaches 7 = 3
as p — p. from below [6, 15]. Thus, the mean cluster size, (s) =Y, s’n,, is finite for
p < pe. Moreover, for p > p., ny(p) of finite clusters decays exponentially. Thus, (s)
is finite. These properties of a PT of growing networks are different from those of a
second-order PT of static networks [7, 17-21].

The type of a phase transition can change by long-range interactions. For instance,
a PT in one dimension is changed to an infinite-order transition by 1/ long-range
connections [22]. Similarly, a PT can be changed by global suppression effects [23]. A
second-order PT in two dimensions can be changed to a first-order one when formation
of a spanning cluster is suppressed [24]. We remark that such PT-type changes due to
long-range connections or global suppression effects have been investigated only in the
static networks, where the system size is fixed; however, it has rarely investigated in
growing networks.

Suppression dynamics may arise in growing networks. For instance, the co-author-
ship network [2] grows as a new graduate student joins a group and writes a paper
together with group members. As a research group becomes larger, the group can
become less efficient functionally in some aspects; thus, new students are less likely
to join such a group and thus the growth of large groups can be suppressed. As new
students join small or medium groups, those groups grow in size. Those large clusters
can merge as postgraduates transfer to another large group, leading to an abrupt
size increase of the largest cluster as we observed in the real-world data [2]. The evo-
lution of such a co-authorship network does not proceed by purely random connections,
but there exists some suppression mechanism against the growth of large clusters.
Moreover, the suppression effect can also arise in the WWW by the reasons of inacces-
sibility and invisibility.

Here, we investigate how the infinite-order PT of growing networks is changed by
the suppression effect. In fact, the current authors considered such a problem recently
and showed that indeed the transition type changes from infinite-order to discontinu-
ous transition. The critical behavior in the subcritical region p < p,, i.e. the power-law
decay behavior of the cluster size distribution has different feature: infinite-order-type
and second-order-type properties [25]. However, properties of the phase transition were
considered in some specific cases and derivations were not reported in detail. Here, we
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investigate the cluster size distribution and critical behaviors as a parameter of sup-
pression strength is varied. Moreover, we consider if such properties emerge in another
growing model, finding that such properties appear as universal features.

To implement this, we modify the GRN model by including the suppression mech-
anism as follows: At each time step, a node is added to the system. To add a link, we
select two nodes—a node from a portion of the smallest clusters and the other node from
among all the nodes. They are connected with probability p. Because a node belonging
to small clusters has twice the chance to be linked, while a node in large clusters has a
single chance, the growth of large clusters is practically suppressed. The dynamic rule
becomes global in the process of sorting out the portion of the smallest clusters among
all cluster sizes. This model is called the restricted growing random network (r~GRN)
model [25] following the restricted Erd6s—Rényi (-ER) model [26-29], which is static.

This paper is organized as follows: in section 2, we introduce a dynamic rule of
the ~GRN model. In section 3, the cluster size distribution is derived explicitly, and
its implication is discussed. In section 4, the two critical points are determined using
the generating function technique. In section 5, the exponent 7(p) of the cluster size
distribution is determined explicitly as a function of p in a limited case. We also
obtain the total number of clusters per node. In section 6, we find a similar result in
a different restricted growing network model based on the protein interaction network
(PIN) model and argue that the obtained results are universal. In section 7, we discuss
the implications of our results. In section 8, we summarize the results of this paper. In
the appendix, we recall the rate equation of the cluster size distribution as a function
of link density p and time ¢, previously obtained.

2. Model: -GRN model

The ~GRN model starts with a single node. At each time step, a new node is added to
the system. Thus, the total number of nodes at time step ¢ becomes N(t) =t + 1. As
time goes on, clusters of connected nodes form. At each time step, we classify clusters
into two sets, set R and its complement set R¢, according to their sizes. Set R contains
[gN(t)] nodes belonging to the smallest clusters, whereas set R® contains the nodes
belonging to the rest large clusters. g € [0, 1] is a parameter that controls the size of R.

Let ¢; denote the ith cluster in ascending order of cluster size. Suppose that the (k — 1)

th cluster satisfies the condition 3 ¥ !s(c;) < [¢N] < Y2, s(ci), where s(c;) denotes

the size of the cluster with index ¢; Then, set R(¢) contains all the nodes belonging
to the k — 1 smallest clusters and [¢N] — 327! s(¢;) nodes randomly selected from the
kth smallest cluster. The complement set R® contains the remaining (largest) clusters.
Next, one node is randomly selected from set R(¢) and another is selected from among
all the nodes. A node in the set of smaller clusters has twice the chance of being linked,
while a node in the set of larger clusters has one chance. Then, a link is added between
the two selected nodes with link occupation probability p. The selection rule becomes
global in the process of sorting out the portion of the smallest clusters among all clus-
ters. Moreover, it suppresses the growth of large clusters by allowing less chance to be
linked. This link connection process is visualized in figure 1 for the restricted fraction
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Figure 1. Schematic illustration of the ~GRN model with g=0.4. Nodes are
represented by the circles. R(t) is represented by the light gray region and R°(t)
is done by the dark grey region. The solid line between two nodes represents a
link. In (a), the system starts at five clusters with sizes (1,1,2,2,4), respectively,
and the total number of nodes N(t) = 10 with Sp=2 and [gN] =4 at time t=19.
After one time step, a new node (red open circle) is added to the system. Then the
total number of nodes N(t) becomes 11 with Sp =2 and [¢N] =5 at t=10. Two
isolated nodes (filled light grey) are selected from R and are merged and become
one cluster of size two. But Sp remains two. (b) At the next step, a new node is
added to the system, and so N(t) =12, Sp=2, and [¢N]| =5 at t=11. In this
case, just one node of the largest cluster of size two in set R moves to set R°.
The newly added node is merged with the cluster of size two in R, generating a
cluster of size three. This cluster moves to set R° and the cluster of size two on the
boundary between R and R® moves to R. Set R contains three clusters and five
nodes and Sy = 2. Set R® contains two clusters and seven nodes. (c) At the next
step, a new node is added to the system with N(t) =13, Sp=2, and [gN] =6 at
t = 12. Two nodes are selected, but they are not connected with probability 1 — p.
(d) At the next step, a new node is added with N(¢t) =14, Sp=2, and [gN] =6
at t=13. And just one node of the largest cluster of size two in set R moves to
set R® again as in (b). A cluster of size two in R and the cluster of size three in
RC are merged and generate a cluster of size five, and then this cluster belongs to
Re. The cluster of size four in R lies on the boundary between R and R°. At the
same time, the cluster of size two on the boundary moves to R. S; becomes four.
Some nodes of the cluster of size S; on the boundary are regarded as the elements
of set R.
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g= 0.4 as an example. This restriction rule is initially introduced in [27] and modified
in [28, 29].

We define the size of the largest cluster in set R as Sgr(p,t) for a given p at time ¢,
which determines the size of the boundary cluster(s) between the two sets. It depends
on the fraction g [28]. Thus, when g =1, which means that Sy is equal to the size of
the giant cluster, denoted as GN (t), this model reduces to the original GRN model [7].
It has been found previously that the GRN model exhibits a continuous infinite-order
phase transition at p. = 1/8 [7]. However, when g — 0, Sp = 1, and an isolated node in
R, is merged with a node in R® with link occupation probability p.

3. Cluster size distribution ny(p)

Let us define the cluster number density ny(p,t) for a given p at time step ¢ as the
number of clusters of size s divided by the current number of nodes N(¢) at ¢. In our
previous studies [25], we derived the rate equations according to the cluster size s com-
paring to Sy for the cluster size distribution N(#)n,. For convenient readability, those
rate equations are rewritten in the appendix.

Here we solve the rate equation of nyp) for a given g¢. First, when s= 1, the rate

equation becomes n; = —p(1 + %)nl + 1 for Sp>1and ny = —p(ny + 1)+ 1 for Sp=1.
Thus, n1(p) becomes

B {m Sr(p)>1 (p>p1),
ny = 9

- 2
iTi Sr(p)=1 (p<p). (2)

The two solutions become the same at p = (1 — ¢g)/(1 + g), as shown in figure 2(e). This
p is denoted as p;. For ¢=10.4, p; = 0.4285714.. ..

Next, when s = 2, the rate equations are as follows: ny = p[(nini/g) — 2ns(1 4 1/g)]
for Sp > 2; ny = pl(nini1/g) — 2ny — (1 — ny/g)] for Sk = 2; ny = p(ny — 2ny) for Sp= 1.
We obtain ns as follows:

2

p&
ngJré) Sr>2 (p>p2),
2
N2 = § p["L-—(1-"1)] 3)
i Sr=2 (p1 <p<p2),
s Sp=1 (p<p)-

Two kinks (crossovers) exist in ny(p), as shown in figure 2(f). The position p of the first
kink is just p;, and that of the second kink is determined by setting ny for Sg > 2 equal
to that for Sy = 2. This position is denoted as p;. For ¢ = 0.4, p, = 0.5653082.. ..

In general, when s > 1, the cluster size distribution ny(p) can be obtained from the
rate equations in the steady state as follows:
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Figure 2. Cluster size distribution n4p) as a function of s and p for given ¢: In
this case, g = 0.4 are taken. (a) Three-dimensional plot of ny(p) as a function of s
and p. A clear discontinuous pattern exists. Plots (b)—(d) are obtained with several
fixed p for nyp). (b) For p < p;, ndp) asymptotically follows the power law ~ s77
with 7 > 3. The slope of the dotted guide line is —3. Solid lines are obtained for
p = 0.472576 ~ p,, 0.4, 0.3, 0.2, and 0.1 from right to left. (¢) For p, < p < p., in
the small-cluster-size region, nyp) decays exponentially up to Sg and then exhibits
power-law decay behavior with 2 < 7 < 3. Solid, dashed, and dashed-dotted lines
represent for pg, with Sp=2, 10 and 25, respectively. Dotted line is a guide
line with slope of —2. (d) For p > p., nyp) for finite clusters shows exponentially
decay distributions. Solid curves represent nyp) for p = 0.6596, 0.7, 0.8, 0.9, and
1.0 from right to left. The dotted curve is an exponentially decaying guide curve.
Plots (e)—(h) are obtained with several values of s for nyp). (e¢) The plot of ni(p)
versus p. A crossover exists at pi. (f) The plot of ny(p) versus p. Two crossover
behaviors occur at p; and po, where p; < po. (g) and (h) Plots of nz(p) and ny(p)
versus p, respectively. Symbols represent simulation results, and solid lines are
analytical results. Dotted vertical lines represent pg, for Sp=1, 2, 3 and 4 at
DPsp=1 = 0.428 5714, pg,—2 = 0.565 3082, pg,—3 = 0.6120164, and pg,—4 = 0.6327279,
which are close to the simulation results.
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There exist s kinks on the curve ng at pi,--- , ps in ascending order of p. The posi-

tion of the last kink p; is determined by setting n, for S > s equal to n, for Sp = s. For
convenience, we use the index as Sy to avoid confusion with the index of cluster size s.
The positions pg, as a function Sg are listed in table 1. As shown in figures 2(e)—(h),
the interval between two successive crossover points becomes narrower with increasing
Sk. The position pg, seems to converge to a certain value, p, in a power-law form of
Doo — Psy as a function of Sp asymptotically as shown in figure 3. Here p., is estimated
to be 0.65948(1). Figures 2(b)—(d) show the distributions n, versus s for a given fixed
p, which corresponds to the (logng, log s) plane of the three-dimensional plot of ny(p) in
figure 2(a).

4. Two transition points, p, and p,.

From the cluster size distribution ny(p) for given p, we find that there exist two trans-
ition points, say p; and p., which characterize the following three distinct intervals on
the line of p: (i) For p < p;, ny(p) follows the power law ng(p) ~ s~ 7 for s> Sp with
exponent 7 > 3, whereas it decays exponentially as a function of s for s < Sy. (ii) For
Py < p < pe, ngy(p) also follows a power law with exponent 7 for s > Sy. Particularly, the
exponent 7 decreases continuously from 7 = 3 to 2 as p is increased from p; to p.. For
s < Sk, nyp) decays exponentially as a function of s. (iii) For p > p., a giant cluster is
generated and the distribution of the remaining finite clusters decays exponentially as
a function of s.

The power-law behavior of nyp) with 7 > 3 in the region (i) is inherited from the
infinite-order transition of the GRN model [7]. Thus the region (i) is regarded as an
infinite-order-type critical region. Meanwhile, in the region (ii), because 2 < 7 < 3, the
mean cluster size diverges. Thus the region (ii) is regarded as a second-order-type criti-
cal region. It is worth noting that while the critical behavior occurs at a critical point
in a prototypical second-order transition, here it occurs in the entire region (ii). At p_,
7 = 2. This means that clusters are extremely heterogeneous and further suppression
of the largest cluster leads to a discontinuous transition. This feature will be discussed
later in section 7. Indeed, a discontinuous transition occurs at p.. Both transition points
for different g values are listed in table 2.

To determine p; and p,, here we introduce the generating function f(x) of the prob-
ability sn, that a randomly chosen node belongs to the cluster of size s, defined as
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Table 1. Values of pg, as a function of Si for g = 0.4.

Sk PSx
1 0.428 571 4285(1)
2 0.5653082407(1)
3 0.6120164684(1)
4 0.6327279058(1)
5 0.6433362667(1)
6 0.6492814220(1)
7 0.6528226406(1)
8 0.6550262003(1)
9 0.6564429142(1)
10 0.6573769871(1)
11 0.6580052394(1)
12 0.6584346536(1)
13 0.6587320681(1)
14 0.658 940 3439(1)
15 0.6590875632(1)
16 0.6591924579(1)
17 0.6592677124(1)
18 0.6593220275(1)
19 0.6593614370(1)
20 0.6593901656(1)
00 0.65948(1)
1072
[4)]
10'3 B 2 2] . ..~ i
UJQ: @ s .. .‘
TR Bhe, :
8 ‘ ®gia,
3 Hoee,.

10'5 L Do = 0.65946 [ ] n i
p..=0.65948 e u
p..=0.65950 a u

10-6 \

10 15 20 25

Figure 3. Plot of p, —ps, versus Sy for g=0.4. When p, = 0.65948(1), a

power-law decay appears.

flx) = f: snsx®,
s=1

)

where z is the fugacity in the interval 0 < z < 1. The giant cluster size G is obtained as
G=1-32, sns=1— f(1). Themeanclustersizeisobtainedas(s) = Y o | s’ns = f'(1),
where the prime represents the derivative with respect to z. To determine p; (p.), we

consider the case of Sk being finite (infinite).
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Table 2. Numerical estimates of the transition points p; and p. The critical
exponents 7 are calculated at p = p; and p. for g=0.1 — 0.9. We note that the
exponent 7 at p. becomes difficult to obtain as g approaches one.

g Db De AG 7(py) 7(pe)
0.1 1/2 0.905(1) 0.900(1) 3.00(1) 2.00(1)
0.2 1/2 0.817(1) 0.800(1) 3.00(1) 2.00(1)
0.3 1/2 0.736(1) 0.700(1) 3.00(1) 2.00(1)
1/3 1/2 0.710(1) 0.666(1) 3.00(1) 2.00(1)
0.4 0.473(1) 0.660(1) 0.600(1) 3.00(1) 2.00(1)
0.5 0.440(1) 0.587(1) 0.500(1) 3.00(1) 2.00(1)
0.6 0.405(1) 0.516(1) 0.400(1) 3.00(1) 2.00(1)
0.7 0.367(1) 0.447(1) 0.300(1) 3.00(1) 1.99(1)
0.8 0.323(1) 0.376(1) 0.200(1) 3.00(1) 1.99(1)
0.9 0.268(1) 0.297(1) 0.100(1) 3.00(1) 1.8(2)
1.0 1/8 1/8 0 3 —

4.1. For finite S;

When Sy is finite, we derive the recurrence relation for n, First, when Sz = 1, the rate
equations in the steady state are simply reduced as follows:

ni=—p(m+1)+1, (6)

ng = p[(s — Dng_q — sns] for s> 1. (7)
Then, one can obtain the generating function f(x) as
f(x) = —xpf'(x) — px + 2 + p2® f'(z) + prf(x). (8)

The giant cluster size Gis G=1— )7, sns =1 — f(1) = 0. The mean cluster size is
obtained as (s) = >27, s*ns = f'(1) = 1/(1 — 2p). So the mean cluster size diverges at
pp = 1/2. If this value is larger than p; for a given g, then we move to Sp=2. When
Sp=2, G=0and (s) = f'(1) = 1/[1 — 4p + (2pn1 /g)].

Generally, for finite Sp, we obtain the relation

Sp—1 Sp—1
f(a:)+xpf’(m):x—|—p[z sscs(—ésns) — Sp°F é Z ST
. =1 s=1
- Z Snsxs(a:f’(:v) + sf(z))
- | Sl
—l—:L‘SR(a:f/( )+ Srf(x g ans 9)

When z=1, equation (9) may be written as f(1)J(p)= J(p) for the range
Psp—1 < P < psp, where J(p)=1-— p[Zle s e Sr(1 - ij;l %)} Now, let us
denote p satisfying J(p) =0 as p*. We can calculate these values p* as Sp increases
using equation (4) in the steady state. But p* is always larger than pg, so J(p) cannot
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10 15 20 25
SR

Figure 4. Semi-log plot of p* — pg, versus Sg. p* — pg,, decays exponentially as Sg
increases but it is always larger than zero for finite Sy values. So p* is larger than
psy for any finite Sp.

be zero as shown in figure 4 for the case g = 0.4. Then we can obtain that f(1) =1 for
finite Sk and the relative giant cluster G =1 — f(1) = 0.

At z=1, plugging f(1) = 1 into the derivative of equation (9) with respect to z, we
obtain that

Sp—1

rm=[reap( 3 B )] ), (10)

s=1

To obtain p;, once we set Sy =1 and check whether a certain value of p less than pg,
exists, say p., such that (s)~! = 0. If the solution exists, p, is a critical point p, and Sg
is the size of the largest cluster in set R. Otherwise, we increase Sy by one, and try to
find a solution satisfying (s)~! = 0. We repeat these steps until the solution is found.
The obtained values p; for different g are listed in table 2. The existence of p;, below p.
implies that even though the order parameter G( p) is zero for p < p., the mean cluster
size (s) can diverge at p; before p..

4.2. For infinite Sy

We consider the limit Sg(p) = oo, which corresponds to the case p > p... In this case,
equation (A.4) is valid for all cluster sizes s. Equations (A.4)—-(A.6) reduce to the fol-
lowing two equations:
1
n=-———-——
I+ Dy (11)

: (12)
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where s is limited to finite clusters. The generating function associated with sng satisfies
the following relation:

1 2
flz) = —z(l+ g)pf'(ff) + Ep:rf(l“) f(@) +w, (13)
and in another form,
1-42
f'(x) = 3 : (14)

1+ 0= 27()p

g

Performing numerical integration, we obtain f(1) and f’(1), which correspond to
the order parameter G(p) and (s) for given p and ¢ in the region p > poo. At poo, this
order parameter value G(ps) is not zero but finite, indicating that the transition at
Poo 18 first-order. Moreover, G( ps ) represents the jump size of the order parameter AG
of the discontinuous transition. We obtain the cluster size distribution using the equa-
tion (4), which follows a power law with 7 ~ 2. Therefore, we think that p., = p.. The
results for G and 1/(s) in the entire region p are shown in figure 5 for ¢ = 0.2, 0.4, and
0.6. Numerical data of p;, p., AG, 7(py), and 7( p.) for different g are listed in table 2.
Indeed, the order parameters are discontinuous at p. for different g < 1. We draw a
phase diagram shown in figure 6 in the plane of (p, g).

5. 7(p) in the critical region and total number of clusters

When p < p,, the cluster size distribution exhibits a critical behavior, it decays in a
power law manner with exponent 7. This exponent 7 depends on the link occupation
probability p. This property is reminiscent of the feature of the BKT transition in ther-
mal systems. However, the origin of the BKT transition in growing networks differs
from that in thermal systems. To illustrate the origin of the critical behavior in growing
networks, we consider a limit case with ¢ — 0 and Sz = 1. In this case, cluster merg-
ing dynamics occur only between isolated nodes and another cluster of any size. From
equation (4), one can obtain the explicit form of ny(p) as follows:

(s = Dlp*'ni(p)
1+sp)(1+(s—1)p)---(1+2p)’

where ny(p) is (1 — p)/(1 + p), and Sk = 1. Using the Stirling formula, the gamma func-
tion I'(2) = (¢ — 1)! is rewritten as

) 1 1 139 o71
P(z) ~ 2 deVar (14 ~ -
(2) ~22e V2 (14 o + 085 ~ 5184059 24883207

) as |z| = oo,

SI(L
one can obtain the asymptotic behavior of equation (15) as n,(p) = %nl
where the critical exponent 7 =1+ %. Figure 7 shows 7 as a function of p. Because
the merging dynamics starts from Sp =1, 7 = 1+ 1/p appears in the envelope of 7(p).
Thus, the addition of a new node into the system at each time step is a key factor that
generates the critical region below the transition point p..

() ~ s~
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0 02 04 06 08 10 02 04 06 038 10 02 04 06 038 1
b p b

Figure 5. Plot of G and 1/(s) as a function of p. For g= 0.2 in (a) and (d), g = 0.4
in (b) and (e), and ¢=0.6 in (c) and (f), respectively. Symbols represent the
simulation results for N = 10* (0), 10° (A), 10° (O), and 107 (¢). Each data point
was averaged over 10° times. The solid (red) lines are calculated from f(1) and
f'(1) for G and (s), respectively. The two vertical dotted lines represent p; and p.

(Po < pe)-
(a) (b) =g
0.8 0.8
Supercritical Supercritical
0.6 0.6
o A o
Infinite-order A
04 ¢ .- 04 4
ype critical Infinite- 4
< order type )
0.2} Second- 0.2 I critical
| order
4 type critical
0 L L A yP L 0 L A L L
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Figure 6. (a) and (b) show the phase diagrams of the ~GRN model and the 7-
PIN model with 6 = 0.7, respectively. Symbols A and () represent p;, and p..
ny{p) decays following a power law with 7 > 3 in the infinite-order-type critical
region and 2 < 7 < 3 in the second-order-type critical region. Thus, the mean
cluster size is finite and diverges, respectively. As ¢ approaches one, the two
phase boundaries converge to the conventional transition point p.=1/8 of the
GRN model, represented by M, and p.= 0.11(1) in the PIN model with § = 0.7,
represented by 4.
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Figure 7. Plot of 7 versus p for different g. 7 becomes two as p approaches p.
for any g. The black dashed curve is a guide curve representing 1 + 1/p, which is
obtained from the limiting case Sp =1, i.e. ¢ — 0.

oL
0 02 04 06 0.8 1

Figure 8. Plot of the total number of clusters n. versus p for ¢ = 0.4. The red solid
line is obtained from the rate equation integrating the cluster size distribution.
The open circles represent the numerical simulation data for N = 10° averaged
over 10* configurations. The black vertical dotted line represents p. for g = 0.4.

The total number of clusters per site, ng(p) =Y oo, ns(p), can be calculated from
the rate equations by summing up ny(p) over all finite clusters in equation (4). Figure 8
shows nyp) for ¢g= 0.4. The circle symbols represent n4p) obtained from numerical
simulations. They are in agreement with theoretical results (solid line) for ¢ = 0.4 in
the entire p region.

6. Universal behavior

Protein interaction network (PIN) models are growing networks and also exhibit the
BKT transitions [6]. Nodes in this network represent proteins and links connect func-
tionally related proteins. Connected proteins form a proteome or protein complexes.
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Figure 9. Plots of the cluster size distribution n«p) of the 7PIN model as a
function of s in different p regions. We binned simulation data logarithmically
for N = 214 x 10* averaged over 10% configurations. g = 0.4 and § = 0.7 are taken.
Three cases of nyp) are distinguished: (a) For p < p;, nyp) asymptotically follows
the power law ~ s77 with 7 > 3. The slope of the dotted guide line is —3. Solid lines
are obtained for p = 0.29 =~ p,, 0.25, 0.20, 0.15, 0.10, and 0.05 from right to left.
(b) For p, < p < p., in the small-cluster-size region, ny(p) decays exponentially and
then exhibits power-law decay behavior with 2 < 7 < 3. Solid (black), dashed (red),
and dashed-dotted (blue) lines represent pg,, where Sg = 2(p = 0.29),3(p = 0.35),
and 17 (p = 0.423), respectively. Two dotted lines are guidelines with slopes of —2
and —3. (c) For p>p., ndp) for finite clusters shows exponentially decaying
distributions. Solid curves represent p = 0.43, 0.50, 0.60, 0.75, and 0.90 from right
to left. The dotted curve is an exponentially decaying guide curve.

The proteome network is a usually sparse graph with a small mean degree. Inspired
from the biological process, several minimal models for the evolution of PIN were intro-
duced [30]. Here we recall the PIN model proposed in [4, 6]. The model includes three
important features; (i) duplication, (ii) mutation, and (iii) divergence. (i) At each time
step, a node is newly introduced, which duplicates a randomly chosen nodes (called
replicated node) among pre-existing nodes. (ii) The node connects to each of the neigh-
bors of the replicated node with probability 1 — §. (iii) The new node also can link to all
pre-existing node with probability 5/N, where N is the current total number of nodes.
Thus cluster merging occurs.

In order to apply the global suppression effect of the ~GRN model to the PIN
model, we slightly modify the process (iii) of the PIN models as follows. Each new node
links only to the nodes belonging to set R with the smallest clusters, which is similarly
defined in the ~GRN model. The value 3 in the probability §/gN, where gN is the cur-
rent total number of nodes belonging to set R, corresponds to p in the ~GRN model.
Accordingly, the growth of large clusters is suppressed. From the numerical simulations
up to N=10® with 1000 ensemble averages, we also observe the abnormal transition
behaviors as shown in figure 9, where the previous BKT transition of the PIN model
breaks down but the features of infinite-, second-, and first-order type transitions all
occur similarly to the ~GRN model.

For 6 = 0.7, we numerically simulate for ¢ = 0.4 and g = 0.6. Figure 10 shows the
two transition points p, = 0.29(1) and p. = 0.43(1) in panels (a) and (c) for ¢ = 0.4, and
pp = 0.26(1) and p. = 0.35(1) in panels (b) and (d) for g = 0.6. The two transition points
obtained from the analytical results are consistent with numerical results. This result is
also close to that obtained in the ~GRN model. Thus, we argue that our main results
are universal independent of detailed model dynamic rules.
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Figure 10. Plot of G and 1/(s) for the ~PIN model as a function of p for g = 0.4
in (a) and (c), and for ¢=0.6 in (b) and (d), respectively. Symbols represent
numerical simulation data for N = 22 x 10* (green circle), 28 x 10* (red triangle),
and 24 x 10* (blue square). Each data point was averaged over 10? configurations.
The two vertical dotted lines represent p; and p. > ps.

7. Discussion

When the link occupation probability p is below p., most clusters are small and the
suppression is not effective. Hence the infinite-order critical behavior of ny(p) ~ s~7(P)
appears as the one in the Berezinskii—Kosterlitz—Thouless (BKT) transition. The expo-
nent 7(p) decreases as p is increased. In the BKT transition, 7 decreases down to three
as p is increased to p. however, in this restricted growing random network (~GRN)
model, the exponent 7( p) can decrease more down to two, because the transition point
is delayed by the suppression effect. On the other hand, if the cluster size distribution
follows a power law without any exponential cutoff, the largest cluster size scales with
the system size N(t¢) in the steady state as syax ~ N (=1 When 7 decreases down
to two, the largest cluster grows to the extent of the system size in the steady state.
Therefore a discontinuous transition occurs.

As 7 decreases below three, the mean cluster size, i.e. the susceptibility is no longer
finite. We divide the region p < p. into two subregions, p < p; and p, < p < p., such
that for p < py, 7 > 3, whereas for p, < p < p., 2 <7 < 3. Thus, the mean cluster size
is finite and diverges in the former and latter regions, respectively. Therefore, another
type of percolation transition (PT) occurs at p;. It is interesting to note that the mean
cluster size diverges even though the giant cluster does not form yet in the interval
Py < p < p.. That is because the cluster size distribution exhibits a critical behavior
without an exponential cutoff. Large clusters still remain in the sub-extensive size, and
they induce heavy fluctuations. We regard the region p < p; as an infinite-order-type
critical region, because it is inherited from the infinite-order transition. The region
Py < p < pe, in which the feature of the second-order transition appears, is regarded
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Figure 11. Schematic plots of the order parameter G and the inverse mean cluster
size 1/(s) for the (a) ER, (b) ~ER, (c) GRN, and (d) ~GRN models.

as the second-order-type critical region. At p,, a first-order PT occurs. For p > p,, the
size distribution of finite clusters does not follow a power law. The region p > p. is
regarded as a supercritical region. Therefore, when the infinite-order BK'T transition is
broken by the suppression effect, a first-order PT occurs; a second-order critical phase
appears; and an infinite-order critical phase still remains. We remark that to the best
of our knowledge, this is the first observation of the first-order PT in random growing
networks.

The ~GRN model was built based on the restricted Erdés—Rényi (~ER) model
recently introduced in [28, 29]. This ~ER model is a static network model, containing
N nodes all the time. The two-node selection rule for a link connection is the same as
that of the ~GRN model but once the two nodes are selected at time step ¢, they are
connected definitely. This model contains a global suppression dynamic. In this ~ER
model, a power-law behavior of ny(t.) without any exponential cutoff appears only
at the point ¢} just after the order parameter jumps. The exponent 7 is in the range
2 <7< 5/2 depending on the parameter g. Thus, the model exhibits not only a dis-
continuous transition but also a critical behavior. The critical behavior appears in the
region where the order parameter is finite [28]. In contrast to the transition behavior
of this ~ER static network model, the critical behavior in the ~GRN model appears
below the transition point p., so that the order parameter still remains at zero. These
behaviors are depicted schematically in figure 11.

For the ~GRN model, the power-law decay of ny(p) appears in a steady state over
all cluster sizes without forming any bump or exponential cutoff even for all p < p..
This reason is as follows: at each time step, a new node is added and remains as isolated
with the probability 1 — O(1/N), which is close to unity as N becomes large. Thus, sin-
gle-size nodes are accumulated in the system and they are more likely to merge finite-
size clusters, reducing the frequency of merging two large clusters. When dynamics
reaches a steady state, the cluster merging dynamics self-organizes and forms a power-
law behavior of nyp). We considered an extreme case that a new node is merged with
an existing cluster at each time step with probability p. In this case, nyp) is obtained
as ~ s~ (IT1/P) More generally, as p is increased, more links are added, and the largest
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cluster becomes larger, and thus the exponent 7(p) is continuously decreasing. Because
the transition point is delayed by the suppression effect, 7 can decrease down to two.
This eventually leads to a discontinuous PT, because the largest cluster size scales as
N(t)Y/=1 where N(t) denotes the system size at a certain time ¢ in steady state, and
it reaches up to the extensive size to the system size when 7 = 2 regardless of ¢ in the
steady state.

This tri-critical-like behavior at 7 = 2 can be seen in the classical polymer aggre-
gation model [31-35]. The cluster aggregation phenomena in a static system were
described via the rate equation,

dng(t) Win; Wing  WsTs w;n;
at _é OO ; (0 (16)

where ¢(t) = >, wsns(t). The first term on the R.H.S. represents the aggregation of
two clusters of sizes 7 and j with ¢+ j = s, and the second term is for a cluster of size s
merging with another cluster of any size. The rate equation reduces to the ER network
model when ¢(t) = 1, which occurs when w; =1i. A general case, w; = i*, was studied
[31-35] long ago. In this case, as w is smaller, the growth of large clusters is more
suppressed. When 1/2 < w < 1, a continuous transition occurs at t.; a giant cluster is
generated for t > t.. At t=t. the cluster size distribution follows a power law with
exponent 7 = w + (3/2). When 0 < w < 1/2, a discontinuous transition occurs, and the
exponent 7 = 1 4+ 2w. The case w = 1/2, for which 7 = 2, is marginal between a second-
order and a first-order transition. We remark that another model recent introduced
also generates either a continuous or a discontinuous PT by controlling the suppression
strength similar to the above case [36]. These two cases are all for static networks.
Even though the system type and the underlying mechanism of static and growing
networks are different, on the basis of the above result, we could confirm that the dis-
continuous transition at p. is induced by the increase of the cluster size heterogeneity
across the point with 7 = 2.

The BKT transition was found originally in the two-dimensional XY model in
thermal systems [8-12]. The origin of the BKT transition in thermal systems is
different from that of the percolation model, but some similarities or dissimilarity in
the transition behavior exist: in the XY model, the singular part of the free energy
behaves as f(t) ~ exp(—bt~'/?) with a positive constant b for the reduced temperature
t=(T—-1T.)/T. >0, similar to the order parameter G(p) for p > p. in equation (1).
The correlation function decays in a power-law manner as I'(r) ~ =T for ¢ < 0, where
n(T) ~ T is continuously varying depending on 7. This is often called the quasi-long-
range order. On the other hand, in a second-order transition I'(r) ~ r~7exp(—r/§) for
t < 0. In this regard, the pure power-law behavior of I'(r) in the infinite-order trans-
ition implies £ = oo for ¢t < 0. Indeed, £ = oo for ¢ < 0 in the XY model. The continuous
varying exponent 7(7") in the XY model corresponds to the exponent 7( p) of the cluster
size distribution n,(p) ~ s~7(P). In a second-order PT, n, ~ s~ exp(—s/s*) for p < p,,
where s* is a characteristic cluster size in the region p < p.. Again, the pure power-
law behavior of the infinite-order PT implies that s* = oo for p < p.. The susceptibil-
ity is obtained using the thermodynamic relation, x ~ [ d?rI'(r). One can find that x
diverges for 1 < 2, while it is finite for n > 2. Because 7 increases with temperature, x
diverges for ¢t < 0 and finite for ¢ > 0, where the critical temperature is determined by
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Table 3. Comparison of the BKT transitions between in thermal systems and in
percolations of the growing networks.

Thermal systems Percolation

ft) ~exp(=bt™'72), t = (T' = T.)/T. G(p) ~ exp(—a(p —pe)~'?)
x ~ [d*rD(r) ~ [ drrT(r) X = s?ns &~ [dssp(s)
T(r) ~ =T for t < 0 p(s) = sny ~ s'77 for p <p,
n(T) ~T <2 for x =00 T =1(p) <3for x =00
E=o0fort<0 s*(p) = oo for p < p,

7(p) > 3 for p < p. in the original growing percolation
7(p) > 2 for p < p. in the restricted growing percolation

n = 2. In percolation, the susceptibility x = Y, s*ns diverges for 7 < 3, while it is finite
for 7 > 3. For the GRN model, 7 > 3 for p < p.. Thus, the susceptibility is finite for
p < p.. For p > p., ng of finite clusters decays exponentially. Thus the susceptibilities
on both sides of a transition point are finite. Even though the order parameter behaves
as an infinite-order transition, the susceptibility behavior is different from that of the
XY model. On the other hand, for the ~GRN model, the susceptibility diverges in one
side and is finite in the other side, similar to those of the XY model. These properties
are all summarized in table 3.

The BKT transition can occur even in static networks. For instance, the percola-
tion model in one dimension with 1/7? long-range connections [22] and on hierarchical
networks with short-range and long-range connections [37] exhibit BKT infinite-order
PTs. As future works, it would be interesting to check whether the diverse phases and
phase transitions we obtained occur or not in those static network models when the
suppression rule is applied. Moreover, in our study, the suppression rule is applied to
large clusters, because the giant cluster size per node is the order parameter in percola-
tion problem. As an extension of our work to thermal systems, it would be interesting
to find an essential quantity of thermal BKT systems, for instance, the formation of
spin waves or vortices, and see if we can control the BKT transition by the suppression
effect. The pattern formation by topological defects in active liquid crystals recently
draws considerable attention [38, 39]. Various patterns generated in that system are
governed basically by the BKT theory. It would be interesting to note how those pat-
terns are changed when the system is applied by a certain suppression effect.

8. Summary

In summary, we investigated how a BKT PT of growing networks is changed in type
when the growth of large clusters in the system is suppressed. We introduced the -
GRN model, modified from the GRN model by including the suppression rule. In the
~GRN model, we found that two transition points exist, p; and p., and three phases.
(i) In the region p < p;, the order parameter is zero, and the cluster size distribution
decays according to a power law without any exponential cutoff and with exponent
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7(p) larger than three. Thus, the mean cluster size is finite. The exponent 7(p) con-
tinuously decreases as p is increased. Accordingly, the region p < p; is regarded as an
infinite-order type critical region. (ii) For the p, < p < p. region, we found that the
order parameter is zero, and the cluster size distribution follows a power law without
any exponential cutoff, where the exponent 7( p) ranges between two and three. Thus,
the mean cluster size diverges. This behavior is reminiscent of the critical behavior
occurring at the critical point of a second-order transition. Thus, region (ii) is regarded
as a second-order type critical region. The fact that the mean cluster size diverges,
even though the largest cluster has not grown to the extensive size yet, implies that
the fluctuations of sub-extensive-finite clusters diverge preceding to the emergence of
the giant cluster of extensive size. Similar behavior occurs in a hierarchical model [40].
(iii) At p., a discontinuous transition occurs. (iv) The region p > p. is regarded as a
noncritical region because the order parameter is finite, and the cluster size distribution
decays exponentially. Thus, our model contains the three regimes of the infinite-order,
second-order, and first-order transitions. We obtained various properties of the trans-
ition behaviors analytically and numerically. We also found that PIN models exhibit
the BKT transitions and obtain a similar pattern of PT to those in the ~GRN model.
Thus our main results are universal, independent of detailed dynamic rules.
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Appendix. Rate equations of the ~-GRN model

Here we recall the rate equations previously derived in [25]. The cluster number den-
sity ny(p,t) is defined as the number of clusters of size s divided by N(t) at time step ¢,
where p denotes the probability that a link is connected between two selected nodes.
We denote the size of the largest cluster in set R as Sp(p,t). Then the rate equations of
nyp,t) are as follows:

d(N (¢ \ oo . i .
%:p Zzn]ni(si_‘_j’s—sns_ﬁ}—}—515f01“ 5 < Skg, (A.1)
t i,j=1 9 9
d(N(t)ns) M= 1 j1; T kn
sy Z iJ ]6i+j,s — sn, — (1 _ Z _k>] + &y for s = Sg,
dt ig=1 I Y
(A.2)
d(N(t)ns) oo Sp—1 mljn] 0o . Srp—1 k:nk
— = p[z Z p Oivjs + 25SR+j7sjnj (1 — Z 7) — sns} for s> Sg. (A.3)
=1 i=1 j=1 k=1

On the R.H.S. of equation (A.1) for s < Sg, the first gain term » 7, mi;nj 8i1j,s Means

the probability that one node is randomly selected in set R and the other is randomly
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selected from the entire system, and they are merged and then generate a cluster of
size s. The second and third terms (1 + 1/g)sns means the probability that one node is
randomly selected from a cluster of size s in set R regardless of the other node selected
from all other nodes in the entire system and vice versa. The last term, d;, represents
the contribution by an incoming isolated node at each time step. In equation (A.2)
for s = Sg, the first, second, and the last terms are obtained in the same way as in

equation (A.1). The third term 1 — Zfﬁ;l k% means the probability that one node is

randomly selected from the largest cluster of size Sy in set R regardless of the other
node selected from all nodes in the entire system. In equation (A.3) for s > Sg, the first

term Z;L 0itj im0 ijl_l % means the probability that one node is randomly selected
from the nodes, which do not belong to the cluster of size Sp in set R and the other

node randomly selected in all nodes that generates a cluster of size s > Si. The second
term Z;; 08p+j,50M;5 (1 — ij{l %) means the probability that one node is randomly

selected from the cluster of size Sk in set R and the other node randomly selected from
all nodes in the entire system. The third loss term sn, is obtained in the same way as
in equation (A.1) and (A.2). p means the probability that two selected nodes are linked.

In the steady state ¢ — oo, Sp(p,t) and nyp,t) become independent of ¢, and they
are written as Sp(p) and nyp), respectively. Then the L.H.S. of equations (A.1)—(A.3)
become n4p) and the R.H.S. of equations (A.1)-(A.3) are rewritten as follows:

oo . .
I NN 1
Ng = p Z iJ Litjs — <1 + —> sns] + d1sfor s < Sg, (A.4)
-i,jzl g g
f—— in jn Sr_1 kn
i) k
ns:p_z P L0i1j.s — SNs — (1— 7)} + 1 .for s = Spg, (A.5)
1,j=1 k=1
oo Sp—1 i ) Sr—1 En
s = p[z Z ! J(S”j’s + Z 08 p-+j,s M (1 - _k) - Sns] for s> Sg.
=1 = j=1 i

(A.6)
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