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Abstract.  Growing networks are ubiquitous in the real world, ranging 
from co-authorship socio-networks to protein interaction bio-networks. It is 
conventionally known that the giant cluster in such growing networks emerges 
continuously with infinite-order critical behavior. In this study, we show 
that when the growth of large clusters is suppressed with global information, 
the continuous percolation transition changes to a discontinuous transition 
with an abrupt jump of the order parameter at a delayed transition point 
p c. Moreover, a second-order-type critical behavior appears in a wide region 
of the link occupation probability before the system explodes, in which while 
the largest cluster has not grown to the extensive size of the system yet, the 
mean cluster size diverges. Far below p c, the property of the infinite-order 
transition still remains. Accordingly, the features of infinite-order, second-
order, and first-order transitions all occur in a single framework when the 
infinite-order transition is suppressed. We present a simple argument to explain 
the underlying mechanism of these abnormal transition behaviors. Finally, we 
show that this result is universal by examining percolation transitions of a 
protein-interacting-network model.
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1.  Introduction

Growing networks are ubiquitous in the real world. Co-authorship networks [1, 2], the 
World Wide Web (WWW) [3], and protein interaction networks [4–6] are good exam-
ples. In growing networks, system size, i.e. the number of nodes, grows as time goes, 
such as a co-authorship network [1, 2] grows as a new graduate student writes the first 
paper with other colleagues, the WWW grows as a new website opens, and the protein 
interaction network grows by a gene mutation. Callaway et al [7] introduced a growing 
random network (GRN) model, where a node, representing a person, a web page, or 
a protein, is present in the system at the beginning. At each time step, a new node is 
added, then a pair of unconnected nodes, which is chosen randomly among all existing 
nodes, forms a link with probability p . The connected clusters represent social com-
munities, groups of hyperlinked websites, or protein complexes binding together. As p  
increases, a percolation transition (PT) occurs at a certain transition point p c, beyond 
which a macroscopic-scale large cluster emerges. The PT of the GRN model follows an 
infinite-order Berezinskii–Kosterlitz–Thouless (BKT) transition [7–14].

Berezinskii, Kosterlitz and Thouless discovered an infinite-order topological phase 
transition in the early 1970s. Since then, its notion has been widely used for understand-
ing diverse phenomena ranging from the superfluid-normal phase transition [13] and 
quantum phase transitions [14] in physical systems to PTs of growing networks [7, 15]  
in interdisciplinary areas. Following the basic idea of Paul Ehrenfest’s in 1933 [16], 
phase transitions are normally classified by the lowest derivative of the free energy that 
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is discontinuous at a transition point. First-order phase transitions exhibit a disconti-
nuity in the order parameter and finite fluctuations, and second-order phase transitions 
are continuous in the first derivative of the free energy, but diverges in the second 
derivative such as the susceptibility at a transition point. The latter transition also has 
features that the correlation length diverges and the correlation function decays in a 
power-law manner at the transition point. Under this classification scheme, there could 
in principle be higher-order phase transitions.

In the GRNs, the order parameter, i.e. the relative giant cluster size, G( p) is zero 
for p   <  p c and increases continuously for p   >  p c in the essentially singular form

G( p) ∼ exp(−a/
√
p− pc),� (1)

where a is a positive constant. Thus, the PT is infinite-order. In this case, the cluster 
size distribution ns(p ) follows a power law ns ∼ s−τ  without any exponential cuto in 
the entire region of p   <  p c [6, 7, 15, 17]. Thus, the region p   <  p c is often referred to as 
the critical region. The exponent τ  decreases with increasing p  and approaches τ = 3 
as p → pc from below [6, 15]. Thus, the mean cluster size, 〈s〉 ≡

∑
s s

2ns, is finite for 
p � pc. Moreover, for p   >  p c, ns(p ) of finite clusters decays exponentially. Thus, 〈s〉 
is finite. These properties of a PT of growing networks are dierent from those of a 
second-order PT of static networks [7, 17–21].

The type of a phase transition can change by long-range interactions. For instance, 
a PT in one dimension is changed to an infinite-order transition by 1/r2 long-range 
connections [22]. Similarly, a PT can be changed by global suppression eects [23]. A 
second-order PT in two dimensions can be changed to a first-order one when formation 
of a spanning cluster is suppressed [24]. We remark that such PT-type changes due to 
long-range connections or global suppression eects have been investigated only in the 
static networks, where the system size is fixed; however, it has rarely investigated in 
growing networks.

Suppression dynamics may arise in growing networks. For instance, the co-author-
ship network [2] grows as a new graduate student joins a group and writes a paper 
together with group members. As a research group becomes larger, the group can 
become less ecient functionally in some aspects; thus, new students are less likely 
to join such a group and thus the growth of large groups can be suppressed. As new 
students join small or medium groups, those groups grow in size. Those large clusters 
can merge as postgraduates transfer to another large group, leading to an abrupt 
size increase of the largest cluster as we observed in the real-world data [2]. The evo
lution of such a co-authorship network does not proceed by purely random connections, 
but there exists some suppression mechanism against the growth of large clusters. 
Moreover, the suppression eect can also arise in the WWW by the reasons of inacces-
sibility and invisibility.

Here, we investigate how the infinite-order PT of growing networks is changed by 
the suppression eect. In fact, the current authors considered such a problem recently 
and showed that indeed the transition type changes from infinite-order to discontinu-
ous transition. The critical behavior in the subcritical region p   <  p c, i.e. the power-law 
decay behavior of the cluster size distribution has dierent feature: infinite-order-type 
and second-order-type properties [25]. However, properties of the phase transition were 
considered in some specific cases and derivations were not reported in detail. Here, we 
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investigate the cluster size distribution and critical behaviors as a parameter of sup-
pression strength is varied. Moreover, we consider if such properties emerge in another 
growing model, finding that such properties appear as universal features.

To implement this, we modify the GRN model by including the suppression mech
anism as follows: At each time step, a node is added to the system. To add a link, we 
select two nodes—a node from a portion of the smallest clusters and the other node from 
among all the nodes. They are connected with probability p . Because a node belonging 
to small clusters has twice the chance to be linked, while a node in large clusters has a 
single chance, the growth of large clusters is practically suppressed. The dynamic rule 
becomes global in the process of sorting out the portion of the smallest clusters among 
all cluster sizes. This model is called the restricted growing random network (r-GRN) 
model [25] following the restricted Erdős–Rényi (r-ER) model [26–29], which is static.

This paper is organized as follows: in section 2, we introduce a dynamic rule of 
the r-GRN model. In section 3, the cluster size distribution is derived explicitly, and 
its implication is discussed. In section 4, the two critical points are determined using 
the generating function technique. In section 5, the exponent τ( p) of the cluster size 
distribution is determined explicitly as a function of p  in a limited case. We also 
obtain the total number of clusters per node. In section 6, we find a similar result in 
a dierent restricted growing network model based on the protein interaction network 
(PIN) model and argue that the obtained results are universal. In section 7, we discuss 
the implications of our results. In section 8, we summarize the results of this paper. In 
the appendix, we recall the rate equation of the cluster size distribution as a function 
of link density p  and time t, previously obtained.

2. Model: r-GRN model

The r-GRN model starts with a single node. At each time step, a new node is added to 
the system. Thus, the total number of nodes at time step t becomes N(t) = t+ 1. As 
time goes on, clusters of connected nodes form. At each time step, we classify clusters 
into two sets, set R and its complement set Rc, according to their sizes. Set R contains 
�gN(t)� nodes belonging to the smallest clusters, whereas set Rc contains the nodes 
belonging to the rest large clusters. g ∈ [0, 1] is a parameter that controls the size of R. 
Let ci denote the ith cluster in ascending order of cluster size. Suppose that the (k − 1)

th cluster satisfies the condition 
∑k−1

i=1 s(ci) < �gN� �
∑k

i=1 s(ci), where s(ci) denotes 
the size of the cluster with index ci. Then, set R(t) contains all the nodes belonging 

to the k  −  1 smallest clusters and �gN� −
∑k−1

i=1 s(ci) nodes randomly selected from the 
kth smallest cluster. The complement set Rc contains the remaining (largest) clusters. 
Next, one node is randomly selected from set R(t) and another is selected from among 
all the nodes. A node in the set of smaller clusters has twice the chance of being linked, 
while a node in the set of larger clusters has one chance. Then, a link is added between 
the two selected nodes with link occupation probability p . The selection rule becomes 
global in the process of sorting out the portion of the smallest clusters among all clus-
ters. Moreover, it suppresses the growth of large clusters by allowing less chance to be 
linked. This link connection process is visualized in figure 1 for the restricted fraction 
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Figure 1.  Schematic illustration of the r-GRN model with g  =  0.4. Nodes are 
represented by the circles. R(t) is represented by the light gray region and Rc(t) 
is done by the dark grey region. The solid line between two nodes represents a 
link. In (a), the system starts at five clusters with sizes (1, 1, 2, 2, 4), respectively, 
and the total number of nodes N(t) = 10 with SR  =  2 and �gN� = 4 at time t  =  9. 
After one time step, a new node (red open circle) is added to the system. Then the 
total number of nodes N(t) becomes 11 with SR  =  2 and �gN� = 5 at t  =  10. Two 
isolated nodes (filled light grey) are selected from R and are merged and become 
one cluster of size two. But SR remains two. (b) At the next step, a new node is 
added to the system, and so N(t) = 12, SR  =  2, and �gN� = 5 at t  =  11. In this 
case, just one node of the largest cluster of size two in set R moves to set Rc. 
The newly added node is merged with the cluster of size two in R, generating a 
cluster of size three. This cluster moves to set Rc and the cluster of size two on the 
boundary between R and Rc moves to R. Set R contains three clusters and five 
nodes and SR  =  2. Set Rc contains two clusters and seven nodes. (c) At the next 
step, a new node is added to the system with N(t) = 13, SR  =  2, and �gN� = 6 at 
t  =  12. Two nodes are selected, but they are not connected with probability 1  −  p . 
(d) At the next step, a new node is added with N(t) = 14, SR  =  2, and �gN� = 6 
at t  =  13. And just one node of the largest cluster of size two in set R moves to 
set Rc again as in (b). A cluster of size two in R and the cluster of size three in 
Rc are merged and generate a cluster of size five, and then this cluster belongs to 
Rc. The cluster of size four in Rc lies on the boundary between R and Rc. At the 
same time, the cluster of size two on the boundary moves to R. SR becomes four. 
Some nodes of the cluster of size SR on the boundary are regarded as the elements 
of set R.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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g  =  0.4 as an example. This restriction rule is initially introduced in [27] and modified 
in [28, 29].

We define the size of the largest cluster in set R as SR(p ,t) for a given p  at time t, 
which determines the size of the boundary cluster(s) between the two sets. It depends 
on the fraction g [28]. Thus, when g  =  1, which means that SR is equal to the size of 
the giant cluster, denoted as GN(t), this model reduces to the original GRN model [7]. 
It has been found previously that the GRN model exhibits a continuous infinite-order 
phase transition at p c  =  1/8 [7]. However, when g → 0, SR  =  1, and an isolated node in 
R, is merged with a node in Rc with link occupation probability p .

3. Cluster size distribution ns(p )

Let us define the cluster number density ns(p ,t) for a given p  at time step t as the 
number of clusters of size s divided by the current number of nodes N(t) at t. In our 
previous studies [25], we derived the rate equations according to the cluster size s com-
paring to SR for the cluster size distribution N(t)ns. For convenient readability, those 
rate equations are rewritten in the appendix.

Here we solve the rate equation of ns(p ) for a given g. First, when s  =  1, the rate 

equation becomes n1 = −p(1 + 1
g
)n1 + 1 for SR  >  1 and n1 = −p(n1 + 1) + 1 for SR  =  1. 

Thus, n1(p ) becomes

n1 =

{
1

1+p(1+ 1
g
)

SR( p) > 1 ( p > p1),

1−p
1+p

SR( p) = 1 ( p < p1).
� (2)

The two solutions become the same at p = (1− g)/(1 + g), as shown in figure 2(e). This 
p  is denoted as p 1. For g  =  0.4, p1 = 0.428 5714 . . ..

Next, when s  =  2, the rate equations are as follows: n2 = p[(n1n1/g)− 2n2(1 + 1/g)] 
for SR  >  2; n2 = p[(n1n1/g)− 2n2 − (1− n1/g)] for SR  =  2; n2 = p(n1 − 2n2) for SR  =  1. 
We obtain n2 as follows:

n2 =





p
n1

2

g

1+2p(1+ 1
g
)

SR > 2 ( p > p2),

p[
n1

2

g
−(1−n1

g
)]

1+2p
SR = 2 ( p1 < p < p2),

pn1

1+2p
SR = 1 ( p < p1).

� (3)

Two kinks (crossovers) exist in n2(p ), as shown in figure 2(f). The position p  of the first 
kink is just p 1, and that of the second kink is determined by setting n2 for SR  >  2 equal 
to that for SR  =  2. This position is denoted as p 2. For g  =  0.4, p2 = 0.565 3082 . . ..

In general, when s  >  1, the cluster size distribution ns(p ) can be obtained from the 
rate equations in the steady state as follows:

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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Figure 2.  Cluster size distribution ns(p ) as a function of s and p  for given g: In 
this case, g  =  0.4 are taken. (a) Three-dimensional plot of ns(p ) as a function of s 
and p . A clear discontinuous pattern exists. Plots (b)–(d) are obtained with several 
fixed p  for ns(p ). (b) For p   <  p b, ns(p ) asymptotically follows the power law ∼ s−τ 
with τ > 3. The slope of the dotted guide line is  −3. Solid lines are obtained for 
p = 0.472 576 ≈ pb, 0.4, 0.3, 0.2, and 0.1 from right to left. (c) For pb � p < pc, in 
the small-cluster-size region, ns(p ) decays exponentially up to SR and then exhibits 
power-law decay behavior with 2 < τ � 3. Solid, dashed, and dashed-dotted lines 
represent for pSR

 with SR  =  2, 10 and 25, respectively. Dotted line is a guide 
line with slope of  −2. (d) For p � pc, ns(p ) for finite clusters shows exponentially 
decay distributions. Solid curves represent ns(p ) for p   =  0.6596, 0.7, 0.8, 0.9, and 
1.0 from right to left. The dotted curve is an exponentially decaying guide curve. 
Plots (e)–(h) are obtained with several values of s for ns(p ). (e) The plot of n1(p ) 
versus p . A crossover exists at p 1. (f) The plot of n2(p ) versus p . Two crossover 
behaviors occur at p 1 and p 2, where p1 < p2. (g) and (h) Plots of n3(p ) and n4(p ) 
versus p , respectively. Symbols represent simulation results, and solid lines are 
analytical results. Dotted vertical lines represent pSR

 for SR  =  1, 2, 3 and 4 at 
pSR=1 = 0.428 5714, pSR=2 = 0.565 3082, pSR=3 = 0.612 0164, and pSR=4 = 0.632 7279, 
which are close to the simulation results.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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ns( p) =





p
∑∞

i,j=1

inijnj
g

δi+j,s+δ1s

1+sp(1+ 1
g
)

s < SR,

p

[
∑∞

i,j=1

inijnj
g

δi+j,s−
(
1−

∑SR−1

k=1
knk
g

)]

1+sp
s = SR,

p

[
∑∞

j=1

∑SR−1
i=1

inijnj
g

δi+j,s+
∑∞

j=1 δSR+j,sjnj

(
1−

∑SR−1

k=1
knk
g

)]

1+sp
s > SR.

� (4)

There exist s kinks on the curve ns at p1, · · · , ps in ascending order of p . The posi-
tion of the last kink p s is determined by setting ns for SR  >  s equal to ns for SR  =  s. For 
convenience, we use the index as SR to avoid confusion with the index of cluster size s. 
The positions pSR

 as a function SR are listed in table 1. As shown in figures 2(e)–(h), 
the interval between two successive crossover points becomes narrower with increasing 
SR. The position pSR

 seems to converge to a certain value, p∞, in a power-law form of 
p∞ − pSR

 as a function of SR asymptotically as shown in figure 3. Here p∞ is estimated 
to be 0.659 48(1). Figures 2(b)–(d) show the distributions ns versus s for a given fixed 
p , which corresponds to the (log ns, log s) plane of the three-dimensional plot of ns(p ) in 
figure 2(a).

4. Two transition points, p b and p c

From the cluster size distribution ns(p ) for given p , we find that there exist two trans
ition points, say p b and p c, which characterize the following three distinct intervals on 
the line of p : (i) For p   <  p b, ns(p ) follows the power law ns( p) ∼ s−τ  for s  >  SR with 
exponent τ > 3, whereas it decays exponentially as a function of s for s  <  SR. (ii) For 
pb � p < pc, ns(p ) also follows a power law with exponent τ  for s  >  SR. Particularly, the 
exponent τ  decreases continuously from τ = 3 to 2 as p  is increased from p b to p c. For 
s  <  SR, ns(p ) decays exponentially as a function of s. (iii) For p   >  p c, a giant cluster is 
generated and the distribution of the remaining finite clusters decays exponentially as 
a function of s.

The power-law behavior of ns(p ) with τ > 3 in the region (i) is inherited from the 
infinite-order transition of the GRN model [7]. Thus the region (i) is regarded as an 
infinite-order-type critical region. Meanwhile, in the region (ii), because 2 < τ < 3, the 
mean cluster size diverges. Thus the region (ii) is regarded as a second-order-type criti-
cal region. It is worth noting that while the critical behavior occurs at a critical point 
in a prototypical second-order transition, here it occurs in the entire region (ii). At p−c , 
τ = 2. This means that clusters are extremely heterogeneous and further suppression 
of the largest cluster leads to a discontinuous transition. This feature will be discussed 
later in section 7. Indeed, a discontinuous transition occurs at p c. Both transition points 
for dierent g values are listed in table 2.

To determine p b and p c, here we introduce the generating function f(x) of the prob-
ability sns that a randomly chosen node belongs to the cluster of size s, defined as

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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f(x) ≡
∞∑
s=1

snsx
s,� (5)

where x is the fugacity in the interval 0  <  x  <  1. The giant cluster size G is obtained as 
G = 1−

∑∞
s=1 sns = 1− f(1). The mean cluster size is obtained as 〈s〉 =

∑∞
s=1 s

2ns = f ′(1), 
where the prime represents the derivative with respect to x. To determine p b (p c), we 
consider the case of SR being finite (infinite).

Table 1.  Values of pSR
 as a function of SR for g  =  0.4.

SR pSR

1 0.428 571 4285(1)
2 0.565 308 2407(1)
3 0.612 016 4684(1)
4 0.632 727 9058(1)
5 0.643 336 2667(1)
6 0.649 281 4220(1)
7 0.652 822 6406(1)
8 0.655 026 2003(1)
9 0.656 442 9142(1)

10 0.657 376 9871(1)
11 0.658 005 2394(1)
12 0.658 434 6536(1)
13 0.658 732 0681(1)
14 0.658 940 3439(1)
15 0.659 087 5632(1)
16 0.659 192 4579(1)
17 0.659 267 7124(1)
18 0.659 322 0275(1)
19 0.659 361 4370(1)
20 0.659 390 1656(1)
∞ 0.659 48(1)

Figure 3.  Plot of p∞ − pSR
 versus SR for g  =  0.4. When p∞ = 0.659 48(1), a  

power-law decay appears.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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4.1. For finite SR

When SR is finite, we derive the recurrence relation for ns. First, when SR  =  1, the rate 
equations in the steady state are simply reduced as follows:

n1 = −p(n1 + 1) + 1,� (6)

ns = p
[
(s− 1)ns−1 − sns

]
for s > 1.� (7)

Then, one can obtain the generating function f(x) as

f(x) = −xpf ′(x)− px+ x+ px2f ′(x) + pxf(x).� (8)

The giant cluster size G is G = 1−
∑∞

s=1 sns = 1− f(1) = 0. The mean cluster size is 
obtained as 〈s〉 =

∑∞
s=1 s

2ns = f ′(1) = 1/(1− 2p). So the mean cluster size diverges at 
p b  =  1/2. If this value is larger than p 1 for a given g, then we move to SR  =  2. When 
SR  =  2, G  =  0 and 〈s〉 = f ′(1) = 1/[1− 4p+ (2pn1/g)].

Generally, for finite SR, we obtain the relation

f(x) + xpf ′(x) = x+ p
[SR−1∑

s=1

sxs
(
−1

g
sns

)
− SRx

SR
(
1− 1

g

SR−1∑
s=1

sns

)

+

SR−1∑
s=1

sns

g
xs
(
xf ′(x) + sf(x)

)

+ xSR(xf ′(x) + SRf(x))
(
1− 1

g

SR−1∑
s=1

sns

)]
.

�

(9)

When x  =  1, equation  (9) may be written as f(1)J( p) = J( p) for the range 

pSR−1 � p < pSR
, where J( p) ≡ 1− p

[∑SR−1
s=1

s2ns

g
+ SR

(
1−

∑SR−1
s=1

sns

g

)]
. Now, let us 

denote p  satisfying J( p) = 0 as p *. We can calculate these values p * as SR increases 

using equation (4) in the steady state. But p * is always larger than pSR
 so J( p) cannot 

Table 2.  Numerical estimates of the transition points p b and p c. The critical 
exponents τ  are calculated at p   =  p b and p c for g  =  0.1  −  0.9. We note that the 
exponent τ  at p c becomes dicult to obtain as g approaches one.

g p b p c ∆G τ( pb) τ( pc)

0.1 1/2 0.905(1) 0.900(1) 3.00(1) 2.00(1)
0.2 1/2 0.817(1) 0.800(1) 3.00(1) 2.00(1)
0.3 1/2 0.736(1) 0.700(1) 3.00(1) 2.00(1)
1/3 1/2 0.710(1) 0.666(1) 3.00(1) 2.00(1)
0.4 0.473(1) 0.660(1) 0.600(1) 3.00(1) 2.00(1)
0.5 0.440(1) 0.587(1) 0.500(1) 3.00(1) 2.00(1)
0.6 0.405(1) 0.516(1) 0.400(1) 3.00(1) 2.00(1)
0.7 0.367(1) 0.447(1) 0.300(1) 3.00(1) 1.99(1)
0.8 0.323(1) 0.376(1) 0.200(1) 3.00(1) 1.99(1)
0.9 0.268(1) 0.297(1) 0.100(1) 3.00(1) 1.8(2)
1.0 1/8 1/8 0 3 —
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be zero as shown in figure 4 for the case g  =  0.4. Then we can obtain that f(1) = 1 for 
finite SR and the relative giant cluster G = 1− f(1) = 0.

At x  =  1, plugging f(1) = 1 into the derivative of equation (9) with respect to x, we 
obtain that

f ′(1) =
[
1 + 2p

(SR−1∑
s=1

(SR − s)sns

g
− SR

)]−1

= 〈s〉.� (10)

To obtain p b, once we set SR  =  1 and check whether a certain value of p  less than pSR
 

exists, say p *, such that 〈s〉−1 = 0. If the solution exists, p * is a critical point p b and SR 
is the size of the largest cluster in set R. Otherwise, we increase SR by one, and try to 
find a solution satisfying 〈s〉−1 = 0. We repeat these steps until the solution is found. 
The obtained values p b for dierent g are listed in table 2. The existence of p b below p c 
implies that even though the order parameter G( p) is zero for p   <  p c, the mean cluster 
size 〈s〉 can diverge at p b before p c.

4.2. For infinite SR

We consider the limit SR( p) = ∞, which corresponds to the case p > p∞. In this case, 
equation (A.4) is valid for all cluster sizes s. Equations (A.4)–(A.6) reduce to the fol-
lowing two equations:

n1 =
1

1 + (1 + 1
g
) p

,� (11)

ns =
p

1 + (1 + 1
g
)sp

s−1∑
j=1

j(s− j)njns−j

g
,� (12)

Figure 4.  Semi-log plot of p∗ − pSR
 versus SR. p∗ − pSR

 decays exponentially as SR 
increases but it is always larger than zero for finite SR values. So p * is larger than 
pSR

 for any finite SR.
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where s is limited to finite clusters. The generating function associated with sns satisfies 
the following relation:

f(x) = −x(1 +
1

g
) pf ′(x) +

2

g
pxf(x) f ′(x) + x,� (13)

and in another form,

f ′(x) =
1− f(x)

x

(1 + 1
g
)− 2

g
f(x)

1

p
.� (14)

Performing numerical integration, we obtain f(1) and f ′(1), which correspond to 
the order parameter G( p) and 〈s〉 for given p  and g in the region p � p∞. At p∞, this 
order parameter value G( p∞) is not zero but finite, indicating that the transition at 
p∞ is first-order. Moreover, G( p∞) represents the jump size of the order parameter ∆G 
of the discontinuous transition. We obtain the cluster size distribution using the equa-
tion (4), which follows a power law with τ � 2. Therefore, we think that p∞ = pc. The 
results for G and 1/〈s〉 in the entire region p  are shown in figure 5 for g  =  0.2, 0.4, and 
0.6. Numerical data of p b, p c, ∆G, τ( pb), and τ( pc) for dierent g are listed in table 2. 
Indeed, the order parameters are discontinuous at p c for dierent g  <  1. We draw a 
phase diagram shown in figure 6 in the plane of (p , g).

5.  τ ( p) in the critical region and total number of clusters

When p   <  p c, the cluster size distribution exhibits a critical behavior, it decays in a 
power law manner with exponent τ . This exponent τ  depends on the link occupation 
probability p . This property is reminiscent of the feature of the BKT transition in ther-
mal systems. However, the origin of the BKT transition in growing networks diers 
from that in thermal systems. To illustrate the origin of the critical behavior in growing 
networks, we consider a limit case with g → 0 and SR  =  1. In this case, cluster merg-
ing dynamics occur only between isolated nodes and another cluster of any size. From 
equation (4), one can obtain the explicit form of ns(p ) as follows:

ns( p) =
(s− 1)!ps−1n1( p)

(1 + sp)(1 + (s− 1) p) · · · (1 + 2p)
,� (15)

where n1(p ) is (1− p)/(1 + p), and SR  =  1. Using the Stirling formula, the gamma func-
tion Γ(z) = (z − 1)! is rewritten as

Γ(z) ∼ zz−
1
2 e−z

√
2π

(
1 +

1

12z
+

1

288z2
− 139

51 840z3
− 571

2488 320z4

)
as |z| → ∞,

one can obtain the asymptotic behavior of equation (15) as ns( p) =
Γ(s)Γ( 1

p
+2)

Γ(s+ 1
p
+1)

n1( p) ∼ s−(1+ 1
p
), 

where the critical exponent τ = 1 + 1
p
. Figure 7 shows τ  as a function of p . Because 

the merging dynamics starts from SR  =  1, τ = 1 + 1/p appears in the envelope of τ( p). 
Thus, the addition of a new node into the system at each time step is a key factor that 
generates the critical region below the transition point p c.
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Figure 5.  Plot of G and 1/〈s〉 as a function of p . For g  =  0.2 in (a) and (d), g  =  0.4 
in (b) and (e), and g  =  0.6 in (c) and (f), respectively. Symbols represent the 
simulation results for N  =  104 (©), 105 (�), 106 (�), and 107 (�). Each data point 
was averaged over 103 times. The solid (red) lines are calculated from f(1) and 
f ′(1) for G and 〈s〉, respectively. The two vertical dotted lines represent p b and p c 
(pb < pc).

Figure 6.  (a) and (b) show the phase diagrams of the r-GRN model and the r-
PIN model with δ = 0.7, respectively. Symbols � and © represent p b and p c. 
ns(p ) decays following a power law with τ > 3 in the infinite-order-type critical 
region and 2 < τ < 3 in the second-order-type critical region. Thus, the mean 
cluster size is finite and diverges, respectively. As g approaches one, the two 
phase boundaries converge to the conventional transition point p c  =  1/8 of the 
GRN model, represented by �, and p c  =  0.11(1) in the PIN model with δ = 0.7, 
represented by �.
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The total number of clusters per site, ncl( p) ≡
∑∞

s=1 ns( p), can be calculated from 
the rate equations by summing up ns(p ) over all finite clusters in equation (4). Figure 8 
shows ns(p ) for g  =  0.4. The circle symbols represent ns(p ) obtained from numerical 
simulations. They are in agreement with theoretical results (solid line) for g  =  0.4 in 
the entire p  region.

6. Universal behavior

Protein interaction network (PIN) models are growing networks and also exhibit the 
BKT transitions [6]. Nodes in this network represent proteins and links connect func-
tionally related proteins. Connected proteins form a proteome or protein complexes. 

Figure 7.  Plot of τ  versus p  for dierent g. τ  becomes two as p  approaches p c 
for any g. The black dashed curve is a guide curve representing 1  +  1/p , which is 
obtained from the limiting case SR  =  1, i.e. g → 0.

Figure 8.  Plot of the total number of clusters ncl versus p  for g  =  0.4. The red solid 
line is obtained from the rate equation  integrating the cluster size distribution. 
The open circles represent the numerical simulation data for N  =  106, averaged 
over 104 configurations. The black vertical dotted line represents p c for g  =  0.4.
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The proteome network is a usually sparse graph with a small mean degree. Inspired 
from the biological process, several minimal models for the evolution of PIN were intro-
duced [30]. Here we recall the PIN model proposed in [4, 6]. The model includes three 
important features; (i) duplication, (ii) mutation, and (iii) divergence. (i) At each time 
step, a node is newly introduced, which duplicates a randomly chosen nodes (called 
replicated node) among pre-existing nodes. (ii) The node connects to each of the neigh-
bors of the replicated node with probability 1− δ . (iii) The new node also can link to all 
pre-existing node with probability β/N , where N is the current total number of nodes. 
Thus cluster merging occurs.

In order to apply the global suppression eect of the r-GRN model to the PIN 
model, we slightly modify the process (iii) of the PIN models as follows. Each new node 
links only to the nodes belonging to set R with the smallest clusters, which is similarly 
defined in the r-GRN model. The value β in the probability β/gN , where gN is the cur
rent total number of nodes belonging to set R, corresponds to p  in the r-GRN model. 
Accordingly, the growth of large clusters is suppressed. From the numerical simulations 
up to N  =  108 with 1000 ensemble averages, we also observe the abnormal transition 
behaviors as shown in figure 9, where the previous BKT transition of the PIN model 
breaks down but the features of infinite-, second-, and first-order type transitions all 
occur similarly to the r-GRN model.

For δ = 0.7, we numerically simulate for g  =  0.4 and g  =  0.6. Figure 10 shows the 
two transition points p b  =  0.29(1) and p c  =  0.43(1) in panels (a) and (c) for g  =  0.4, and 
p b  =  0.26(1) and p c  =  0.35(1) in panels (b) and (d) for g  =  0.6. The two transition points 
obtained from the analytical results are consistent with numerical results. This result is 
also close to that obtained in the r-GRN model. Thus, we argue that our main results 
are universal independent of detailed model dynamic rules.

Figure 9.  Plots of the cluster size distribution ns(p ) of the r-PIN model as a 
function of s in dierent p  regions. We binned simulation data logarithmically 
for N = 214 × 104 averaged over 103 configurations. g  =  0.4 and δ = 0.7 are taken. 
Three cases of ns(p ) are distinguished: (a) For p   <  p b, ns(p ) asymptotically follows 
the power law ∼ s−τ with τ > 3. The slope of the dotted guide line is  −3. Solid lines 
are obtained for p = 0.29 ≈ pb, 0.25, 0.20, 0.15, 0.10, and 0.05 from right to left. 
(b) For pb � p < pc, in the small-cluster-size region, ns(p ) decays exponentially and 
then exhibits power-law decay behavior with 2 < τ � 3. Solid (black), dashed (red), 
and dashed-dotted (blue) lines represent pSR

, where SR  =  2(p   =  0.29),3(p   =  0.35), 
and 17 ( p = 0.423), respectively. Two dotted lines are guidelines with slopes of  −2 
and  −3. (c) For p � pc, ns(p ) for finite clusters shows exponentially decaying 
distributions. Solid curves represent p   =  0.43, 0.50, 0.60, 0.75, and 0.90 from right 
to left. The dotted curve is an exponentially decaying guide curve.
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7. Discussion

When the link occupation probability p  is below p c, most clusters are small and the 
suppression is not eective. Hence the infinite-order critical behavior of ns( p) ∼ s−τ( p) 
appears as the one in the Berezinskii–Kosterlitz–Thouless (BKT) transition. The expo-
nent τ( p) decreases as p  is increased. In the BKT transition, τ  decreases down to three 
as p  is increased to p c; however, in this restricted growing random network (r-GRN) 
model, the exponent τ( p) can decrease more down to two, because the transition point 
is delayed by the suppression eect. On the other hand, if the cluster size distribution 
follows a power law without any exponential cuto, the largest cluster size scales with 
the system size N(t) in the steady state as smax ∼ N1/(τ−1). When τ  decreases down 
to two, the largest cluster grows to the extent of the system size in the steady state. 
Therefore a discontinuous transition occurs.

As τ  decreases below three, the mean cluster size, i.e. the susceptibility is no longer 
finite. We divide the region p   <  p c into two subregions, p   <  p b and pb < p < pc, such 
that for p   <  p b, τ > 3, whereas for pb < p < pc, 2 < τ < 3. Thus, the mean cluster size 
is finite and diverges in the former and latter regions, respectively. Therefore, another 
type of percolation transition (PT) occurs at p b. It is interesting to note that the mean 
cluster size diverges even though the giant cluster does not form yet in the interval 
pb < p < pc. That is because the cluster size distribution exhibits a critical behavior 
without an exponential cuto. Large clusters still remain in the sub-extensive size, and 
they induce heavy fluctuations. We regard the region p   <  p b as an infinite-order-type 
critical region, because it is inherited from the infinite-order transition. The region 
pb < p < pc, in which the feature of the second-order transition appears, is regarded 

Figure 10.  Plot of G and 1/〈s〉 for the r-PIN model as a function of p  for g  =  0.4 
in (a) and (c), and for g  =  0.6 in (b) and (d), respectively. Symbols represent 
numerical simulation data for N = 22 × 104 (green circle), 28 × 104 (red triangle), 
and 214 × 104 (blue square). Each data point was averaged over 102 configurations. 
The two vertical dotted lines represent p b and pc > pb.
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as the second-order-type critical region. At p c, a first-order PT occurs. For p   >  p c, the 
size distribution of finite clusters does not follow a power law. The region p � pc is 
regarded as a supercritical region. Therefore, when the infinite-order BKT transition is 
broken by the suppression eect, a first-order PT occurs; a second-order critical phase 
appears; and an infinite-order critical phase still remains. We remark that to the best 
of our knowledge, this is the first observation of the first-order PT in random growing 
networks.

The r-GRN model was built based on the restricted Erdős–Rényi (r-ER) model 
recently introduced in [28, 29]. This r-ER model is a static network model, containing 
N nodes all the time. The two-node selection rule for a link connection is the same as 
that of the r-GRN model but once the two nodes are selected at time step t, they are 
connected definitely. This model contains a global suppression dynamic. In this r-ER 
model, a power-law behavior of ns(tc) without any exponential cuto appears only 
at the point t+c  just after the order parameter jumps. The exponent τ  is in the range 
2 < τ � 5/2 depending on the parameter g. Thus, the model exhibits not only a dis-
continuous transition but also a critical behavior. The critical behavior appears in the 
region where the order parameter is finite [28]. In contrast to the transition behavior 
of this r-ER static network model, the critical behavior in the r-GRN model appears 
below the transition point p c, so that the order parameter still remains at zero. These 
behaviors are depicted schematically in figure 11.

For the r-GRN model, the power-law decay of ns(p ) appears in a steady state over 
all cluster sizes without forming any bump or exponential cuto even for all p   <  p c. 
This reason is as follows: at each time step, a new node is added and remains as isolated 
with the probability 1−O(1/N), which is close to unity as N becomes large. Thus, sin-
gle-size nodes are accumulated in the system and they are more likely to merge finite-
size clusters, reducing the frequency of merging two large clusters. When dynamics 
reaches a steady state, the cluster merging dynamics self-organizes and forms a power-
law behavior of ns(p ). We considered an extreme case that a new node is merged with 
an existing cluster at each time step with probability p . In this case, ns(p ) is obtained 
as ∼ s−(1+1/p). More generally, as p  is increased, more links are added, and the largest 

Figure 11.  Schematic plots of the order parameter G and the inverse mean cluster 
size 1/〈s〉 for the (a) ER, (b) r-ER, (c) GRN, and (d) r-GRN models.
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cluster becomes larger, and thus the exponent τ( p) is continuously decreasing. Because 
the transition point is delayed by the suppression eect, τ  can decrease down to two. 
This eventually leads to a discontinuous PT, because the largest cluster size scales as 
N(t)1/(τ−1), where N(t) denotes the system size at a certain time t in steady state, and 
it reaches up to the extensive size to the system size when τ = 2 regardless of t in the 
steady state.

This tri-critical-like behavior at τ = 2 can be seen in the classical polymer aggre-
gation model [31–35]. The cluster aggregation phenomena in a static system were 
described via the rate equation,

dns(t)

dt
=

∑
i+j=s

wini

c(t)

wjnj

c(t)
− 2

wsns

c(t)

∑
i=1

wini

c(t)
,� (16)

where c(t) =
∑

s wsns(t). The first term on the R.H.S. represents the aggregation of 
two clusters of sizes i and j  with i  +  j   =  s, and the second term is for a cluster of size s 
merging with another cluster of any size. The rate equation reduces to the ER network 
model when c(t) = 1, which occurs when wi  =  i. A general case, wi = iω, was studied 
[31–35] long ago. In this case, as ω is smaller, the growth of large clusters is more 
suppressed. When 1/2 < ω < 1, a continuous transition occurs at tc; a giant cluster is 
generated for t  >  tc. At t  =  tc, the cluster size distribution follows a power law with 
exponent τ = ω + (3/2). When 0 < ω � 1/2, a discontinuous transition occurs, and the 
exponent τ = 1 + 2ω. The case ω = 1/2, for which τ = 2, is marginal between a second-
order and a first-order transition. We remark that another model recent introduced 
also generates either a continuous or a discontinuous PT by controlling the suppression 
strength similar to the above case [36]. These two cases are all for static networks. 
Even though the system type and the underlying mechanism of static and growing 
networks are dierent, on the basis of the above result, we could confirm that the dis-
continuous transition at p c is induced by the increase of the cluster size heterogeneity 
across the point with τ = 2.

The BKT transition was found originally in the two-dimensional XY model in 
thermal systems [8–12]. The origin of the BKT transition in thermal systems is 
dierent from that of the percolation model, but some similarities or dissimilarity in 
the transition behavior exist: in the XY model, the singular part of the free energy 
behaves as f(t) ∼ exp(−bt−1/2) with a positive constant b for the reduced temperature 
t = (T − Tc)/Tc > 0, similar to the order parameter G( p) for p   >  p c in equation  (1). 
The correlation function decays in a power-law manner as Γ(r) ∼ r−η(T ) for t  <  0, where 
η(T ) ∼ T  is continuously varying depending on T. This is often called the quasi-long-
range order. On the other hand, in a second-order transition Γ(r) ∼ r−η exp(−r/ξ) for 
t  <  0. In this regard, the pure power-law behavior of Γ(r) in the infinite-order trans
ition implies ξ = ∞ for t  <  0. Indeed, ξ = ∞ for t  <  0 in the XY model. The continuous 
varying exponent η(T ) in the XY model corresponds to the exponent τ( p) of the cluster 
size distribution ns( p) ∼ s−τ( p). In a second-order PT, ns ∼ s−τ exp(−s/s∗) for p   <  p c, 
where s* is a characteristic cluster size in the region p   <  p c. Again, the pure power-
law behavior of the infinite-order PT implies that s∗ = ∞ for p   <  p c. The susceptibil-
ity is obtained using the thermodynamic relation, χ ∼

∫
d2rΓ(r). One can find that χ 

diverges for η < 2, while it is finite for η > 2. Because η increases with temperature, χ 
diverges for t  <  0 and finite for t  >  0, where the critical temperature is determined by 
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η = 2. In percolation, the susceptibility χ =
∑

s s
2ns diverges for τ < 3, while it is finite 

for τ > 3. For the GRN model, τ > 3 for p   <  p c. Thus, the susceptibility is finite for 
p   <  p c. For p   >  p c, ns of finite clusters decays exponentially. Thus the susceptibilities 
on both sides of a transition point are finite. Even though the order parameter behaves 
as an infinite-order transition, the susceptibility behavior is dierent from that of the 
XY model. On the other hand, for the r-GRN model, the susceptibility diverges in one 
side and is finite in the other side, similar to those of the XY model. These properties 
are all summarized in table 3.

The BKT transition can occur even in static networks. For instance, the percola-
tion model in one dimension with 1/r2 long-range connections [22] and on hierarchical 
networks with short-range and long-range connections [37] exhibit BKT infinite-order 
PTs. As future works, it would be interesting to check whether the diverse phases and 
phase transitions we obtained occur or not in those static network models when the 
suppression rule is applied. Moreover, in our study, the suppression rule is applied to 
large clusters, because the giant cluster size per node is the order parameter in percola-
tion problem. As an extension of our work to thermal systems, it would be interesting 
to find an essential quantity of thermal BKT systems, for instance, the formation of 
spin waves or vortices, and see if we can control the BKT transition by the suppression 
eect. The pattern formation by topological defects in active liquid crystals recently 
draws considerable attention [38, 39]. Various patterns generated in that system are 
governed basically by the BKT theory. It would be interesting to note how those pat-
terns are changed when the system is applied by a certain suppression eect.

8. Summary

In summary, we investigated how a BKT PT of growing networks is changed in type 
when the growth of large clusters in the system is suppressed. We introduced the r-
GRN model, modified from the GRN model by including the suppression rule. In the 
r-GRN model, we found that two transition points exist, p b and p c, and three phases. 
(i) In the region p   <  p b, the order parameter is zero, and the cluster size distribution 
decays according to a power law without any exponential cuto and with exponent 

Table 3.  Comparison of the BKT transitions between in thermal systems and in 
percolations of the growing networks.

Thermal systems Percolation

f(t) ∼ exp(−bt−1/2), t = (T − Tc)/Tc G( p) ∼ exp(−a( p− pc)
−1/2)

χ ∼
∫
d2rΓ(r) ∼

∫
drrΓ(r) χ =

∑
s2ns ≈

∫
dssp(s)

Γ(r) ∼ r−η(T ) for t  <  0 p(s) = sns ∼ s1−τ  for p   <  p c

η(T ) ∼ T < 2 for χ = ∞ τ = τ( p) < 3 for χ = ∞
ξ = ∞ for t  <  0 s∗( p) = ∞ for p   <  p c

τ( p) > 3 for p   <  p c in the original growing percolation

τ( p) > 2 for p   <  p c in the restricted growing percolation

https://dx.doi.org/10.1088/1742-5468/2019/00/000000


Discontinuous percolation transitions in growing networks

20https://doi.org/10.1088/1742-5468/ab3110

J. S
tat. M

ech. (2019) 083502

τ( p) larger than three. Thus, the mean cluster size is finite. The exponent τ( p) con-
tinuously decreases as p  is increased. Accordingly, the region p   <  p b is regarded as an 
infinite-order type critical region. (ii) For the pb < p < pc region, we found that the 
order parameter is zero, and the cluster size distribution follows a power law without 
any exponential cuto, where the exponent τ( p) ranges between two and three. Thus, 
the mean cluster size diverges. This behavior is reminiscent of the critical behavior 
occurring at the critical point of a second-order transition. Thus, region (ii) is regarded 
as a second-order type critical region. The fact that the mean cluster size diverges, 
even though the largest cluster has not grown to the extensive size yet, implies that 
the fluctuations of sub-extensive-finite clusters diverge preceding to the emergence of 
the giant cluster of extensive size. Similar behavior occurs in a hierarchical model [40]. 
(iii) At p c, a discontinuous transition occurs. (iv) The region p   >  p c is regarded as a 
noncritical region because the order parameter is finite, and the cluster size distribution 
decays exponentially. Thus, our model contains the three regimes of the infinite-order, 
second-order, and first-order transitions. We obtained various properties of the trans
ition behaviors analytically and numerically. We also found that PIN models exhibit 
the BKT transitions and obtain a similar pattern of PT to those in the r-GRN model. 
Thus our main results are universal, independent of detailed dynamic rules.
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Appendix. Rate equations of the r-GRN model

Here we recall the rate equations previously derived in [25]. The cluster number den-
sity ns(p ,t) is defined as the number of clusters of size s divided by N(t) at time step t, 
where p  denotes the probability that a link is connected between two selected nodes. 
We denote the size of the largest cluster in set R as SR(p ,t). Then the rate equations of 
ns(p ,t) are as follows:

d(N(t)ns)

dt
= p

[ ∞∑
i,j=1

inijnj

g
δi+j,s − sns −

sns

g

]
+ δ1sfor s < SR,� (A.1)

d(N(t)ns)

dt
= p

[ ∞∑
i,j=1

inijnj

g
δi+j,s − sns −

(
1−

SR−1∑
k=1

knk

g

)]
+ δ1sfor s = SR,

� (A.2)
d(N(t)ns)

dt
= p

[ ∞∑
j=1

SR−1∑
i=1

inijnj

g
δi+j,s +

∞∑
j=1

δSR+j,sjnj

(
1−

SR−1∑
k=1

knk

g

)
− sns

]
for s > SR.� (A.3)

On the R.H.S. of equation (A.1) for s  <  SR, the first gain term 
∑∞

i,j=1
inijnj

g
δi+j,s means 

the probability that one node is randomly selected in set R and the other is randomly 

https://dx.doi.org/10.1088/1742-5468/2019/00/000000


Discontinuous percolation transitions in growing networks

21https://doi.org/10.1088/1742-5468/ab3110

J. S
tat. M

ech. (2019) 083502

selected from the entire system, and they are merged and then generate a cluster of 
size s. The second and third terms (1  +  1/g)sns means the probability that one node is 
randomly selected from a cluster of size s in set R regardless of the other node selected 
from all other nodes in the entire system and vice versa. The last term, δ1s represents 
the contribution by an incoming isolated node at each time step. In equation  (A.2) 
for s  =  SR, the first, second, and the last terms are obtained in the same way as in 

equation (A.1). The third term 1−
∑SR−1

k=1
knk

g
 means the probability that one node is 

randomly selected from the largest cluster of size SR in set R regardless of the other 
node selected from all nodes in the entire system. In equation (A.3) for s  >  SR, the first 

term 
∑∞

j=1 δi+j,sjnj

∑SR−1
i=1

ini

g
 means the probability that one node is randomly selected 

from the nodes, which do not belong to the cluster of size SR in set R and the other 
node randomly selected in all nodes that generates a cluster of size s  >  SR. The second 

term 
∑∞

j=1 δSR+j,sjnj

(
1−

∑SR−1
i=1

ini

g

)
 means the probability that one node is randomly 

selected from the cluster of size SR in set R and the other node randomly selected from 
all nodes in the entire system. The third loss term sns is obtained in the same way as 
in equation (A.1) and (A.2). p  means the probability that two selected nodes are linked.

In the steady state t → ∞, SR(p ,t) and ns(p ,t) become independent of t, and they 
are written as SR(p ) and ns(p ), respectively. Then the L.H.S. of equations (A.1)–(A.3) 
become ns(p ) and the R.H.S. of equations (A.1)–(A.3) are rewritten as follows:

ns = p
[ ∞∑
i,j=1

inijnj

g
δi+j,s −

(
1 +

1

g

)
sns

]
+ δ1sfor s < SR,� (A.4)

ns = p
[ ∞∑
i,j=1

inijnj

g
δi+j,s − sns −

(
1−

SR−1∑
k=1

knk

g

)]
+ δ1sfor s = SR,� (A.5)

ns = p
[ ∞∑
j=1

SR−1∑
i=1

inijnj

g
δi+j,s +

∞∑
j=1

δSR+j,sjnj

(
1−

SR−1∑
k=1

knk

g

)
− sns

]
for s > SR.

� (A.6)

References

	 [1]	 Newman M E 2004 Coauthorship networks and patterns of scientific collaboration Proc. Natl Acad. Sci. 
USA 101 5200

	 [2]	 Lee D, Goh K-I, Kahng B and Kim D 2010 Complete trails of coauthorship network evolution Phys. Rev. E 
82 026112

	 [3]	 Leskovec J, Kleinberg J and Faloutsos C 2007 Graph evolution: densification and shrinking diameters ACM 
Trans. Knowl. Discov. Data 1 2

	 [4]	 Solé R V, Pastor-Satorras R, Smith E D and Kepler T 2002 A model of large-scale proteome evolution Adv. 
Complex Syst. 05 43

	 [5]	 Vázquez A, Flammini A, Maritan A and Vespignani A 2003 Modeling of protein interaction networks  
ComPlexUs 1 38

	 [6]	 Kim J, Krapivsky P L, Kahng B and Redner S 2002 Infinite-order percolation and giant fluctuations in a 
protein interaction network Phys. Rev. E 66 055101

	 [7]	 Callaway D S, Hopcroft J E, Kleinberg J M, Newman M E J and Strogatz S H 2001 Are randomly grown 
graphs really random? Phys. Rev. E 64 041902

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
https://doi.org/10.1073/pnas.0307545100
https://doi.org/10.1073/pnas.0307545100
https://doi.org/10.1103/PhysRevE.82.026112
https://doi.org/10.1103/PhysRevE.82.026112
https://doi.org/10.1145/1217299.1217301
https://doi.org/10.1145/1217299.1217301
https://doi.org/10.1142/S021952590200047X
https://doi.org/10.1142/S021952590200047X
https://doi.org/10.1159/000067642
https://doi.org/10.1159/000067642
https://doi.org/10.1103/PhysRevE.66.055101
https://doi.org/10.1103/PhysRevE.66.055101
https://doi.org/10.1103/PhysRevE.64.041902
https://doi.org/10.1103/PhysRevE.64.041902


Discontinuous percolation transitions in growing networks

22https://doi.org/10.1088/1742-5468/ab3110

J. S
tat. M

ech. (2019) 083502

	 [8]	 Berezinskii V L 1971 Destruction of long-range order in one-dimensional and two-dimensional systems having 
a continuous symmetry group I. Classical systems Sov. Phys.—JETP 32 493

	 [9]	 Berezinskii V L 1972 Destruction of long-range order in one-dimensional and two-dimensional systems pos-
sessing a continuous symmetry group II. Quantum systems Sov. Phys.–JETP 34 601

	[10]	 Kosterlitz J M and Thouless D J 1972 Long range order and metastability in two dimensional solids and 
superfluids J. Phys. C: Solid State Phys. 5 L124

	[11]	 Kosterlitz J M and Thouless D J 1973 Ordering, metastability and phase transitions in two-dimensional 
systems J. Phys. C: Solid State Phys. 6 1181

	[12]	 Kosterlitz J M 1974 The critical properties of the two-dimensional XY model J. Phys. C: Solid State Phys. 
7 1046

	[13]	 Kosterlitz J M 2017 Nobel lecture: topological defects and phase transitions Rev. Mod. Phys. 89 040501
	[14]	 Haldane F D M 2017 Nobel lecture: topological quantum matter Rev. Mod. Phys. 89 040502
	[15]	 Dorogovtsev S N, Mendes J F F and Samukhin A N 2001 Anomalous percolation properties of growing  

networks Phys. Rev. E 64 066110
	[16]	 Jaeger G 1998 The Ehrenfest classification of phase transitions: introduction and evolution Arch. Hist. 

Exact. Sci. 53 51–81
	[17]	 Oh S M, Son S-W and Kahng B 2016 Explosive percolation transitions in growing networks Phys. Rev. E 

93 032316
	[18]	 Yi S D, Jo W S, Kim B J and Son S-W 2013 Percolation properties of growing networks under an achlioptas 

process Europhys. Lett. 103 26004
	[19]	 Jo W S, Kim B J, Yi S D and Son S-W 2014 Structural properties of networks grown via an achlioptas pro-

cess J. Korean Phys. Soc. 65 1985
	[20]	 Stauer D and Aharony A 1994 Introduction to Percolation Theory (London: Taylor and Francis)
	[21]	 Cohen R, Erez K, ben-Avraham D and Havlin S 2000 Resilience of the internet to random breakdowns Phys. 

Rev. Lett. 85 4626
	[22]	 Grassberger P 2013 SIR epidemics with long-range infection in one dimension J. Stat. Mech. P04004
	[23]	 Riordan O and Warnke L 2011 Explosive percolation is continuous Science 333 322
	[24]	 Cho Y S, Hwang S, Herrmann H J and Kahng B 2013 Avoiding a spanning cluster in percolation models  

Science 339 1185
	[25]	 Oh S M, Son S-W and Kahng B 2018 Suppression eects on the Berezinskii–Kosterlitz–Thouless transitions 

in growing networks Phys. Rev. E 98 060301
	[26]	 Erdős P and Rényi A 1960 On the evolution of random graphs Publ. Math. Inst. Hung. Acad. Sci. A 5 17
	[27]	 Panagiotou K, Sphöel R, Steger A and Thomas H 2011 Explosive percolation in Erdős-Rényi-like random 

graph processes Electron. Notes Discrete Math. 38 699
	[28]	 Cho Y S, Lee J S, Herrmann H J and Kahng B 2016 Hybrid percolation transition in cluster merging  

processes: continuously varying exponents Phys. Rev. Lett. 116 025701
	[29]	 Choi K, Lee D, Cho Y S, Thiele J C, Herrmann H J and Kahng B 2017 Critical phenomena of a hybrid 

phase transition in cluster merging dynamics Phys. Rev. E 96 042148
	[30]	 Solé R V and Pastor-Satorras R 2002 Complex networks in genomics and proteomics Handbook of Graphs 

and Networks ed S Bornholdt and H G Schuster (Berlin: Wiley)
	[31]	 Zi R M, Hendriks E M and Ernst M H 1982 Critical properties for gelation: a kinetic approach Phys. Rev. 

Lett. 49 593
	[32]	 Levyraz F and Tschudi H R 1981 Singularities in the kinetics of coagulation processes J. Phys. A: Math. 

Gen. 14 3389
	[33]	 Cho Y S, Kahng B and Kim D 2010 Cluster aggregation model for discontinuous percolation transitions 

Phys. Rev. E 81 030103
	[34]	 Son S-W, Bizhani G, Christensen C, Grassberger P and Paczuski M 2011 Irreversible aggregation and  

network renormalization Europhys. Lett. 95 58007
	[35]	 Son S-W, Christensen C, Bizhani G, Grassberger P and Paczuski M 2011 Exact solutions for mass-dependent 

irreversible aggregations Phys. Rev. E 84 040102
	[36]	 Bianconi G 2018 Rare events and discontinuous percolation transitions Phys. Rev. E 97 022314
	[37]	 Berker A N, Hinczewski M and Netz R R 2009 Critical percolation phase and thermal Berezinskii–Kosterlitz–

Thouless transition in a scale-free network with short-range and long-range random bonds Phys. Rev. E 
80 041118

	[38]	 Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M and Aditi Simha R 2013 Hydro-
dynamics of soft active matter Rev. Mod. Phys. 85 1143

	[39]	 Tang X and Selinger J 2017 Orientation of topological defects in 2D nematic liquid crystals Soft. Matter 13 5481
	[40]	 Boettcher S, Singh V and Zi M R 2012 Ordinary percolation with discontinuous transitions Nat. Commun. 

3 787

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
https://doi.org/10.1088/0022-3719/5/11/002
https://doi.org/10.1088/0022-3719/5/11/002
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/7/6/005
https://doi.org/10.1088/0022-3719/7/6/005
https://doi.org/10.1103/RevModPhys.89.040501
https://doi.org/10.1103/RevModPhys.89.040501
https://doi.org/10.1103/RevModPhys.89.040502
https://doi.org/10.1103/RevModPhys.89.040502
https://doi.org/10.1103/PhysRevE.64.066110
https://doi.org/10.1103/PhysRevE.64.066110
https://doi.org/10.1007/s004070050021
https://doi.org/10.1007/s004070050021
https://doi.org/10.1007/s004070050021
https://doi.org/10.1103/PhysRevE.93.032316
https://doi.org/10.1103/PhysRevE.93.032316
https://doi.org/10.1209/0295-5075/103/26004
https://doi.org/10.1209/0295-5075/103/26004
https://doi.org/10.3938/jkps.65.1985
https://doi.org/10.3938/jkps.65.1985
https://doi.org/10.1103/PhysRevLett.85.4626
https://doi.org/10.1103/PhysRevLett.85.4626
https://doi.org/10.1088/1742-5468/2013/04/P04004
https://doi.org/10.1126/science.1206241
https://doi.org/10.1126/science.1206241
https://doi.org/10.1126/science.1230813
https://doi.org/10.1126/science.1230813
https://doi.org/10.1103/PhysRevE.98.060301
https://doi.org/10.1103/PhysRevE.98.060301
https://doi.org/10.1016/j.endm.2011.10.017
https://doi.org/10.1016/j.endm.2011.10.017
https://doi.org/10.1103/PhysRevLett.116.025701
https://doi.org/10.1103/PhysRevLett.116.025701
https://doi.org/10.1103/PhysRevE.96.042148
https://doi.org/10.1103/PhysRevE.96.042148
https://doi.org/10.1103/PhysRevLett.49.593
https://doi.org/10.1103/PhysRevLett.49.593
https://doi.org/10.1088/0305-4470/14/12/030
https://doi.org/10.1088/0305-4470/14/12/030
https://doi.org/10.1103/PhysRevE.81.030103
https://doi.org/10.1103/PhysRevE.81.030103
https://doi.org/10.1209/0295-5075/95/58007
https://doi.org/10.1209/0295-5075/95/58007
https://doi.org/10.1103/PhysRevE.84.040102
https://doi.org/10.1103/PhysRevE.84.040102
https://doi.org/10.1103/PhysRevE.97.022314
https://doi.org/10.1103/PhysRevE.97.022314
https://doi.org/10.1103/PhysRevE.80.041118
https://doi.org/10.1103/PhysRevE.80.041118
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1039/C7SM01195D
https://doi.org/10.1039/C7SM01195D
https://doi.org/10.1038/ncomms1774
https://doi.org/10.1038/ncomms1774

	﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿Discontinuous percolation transitions 
in growing networks﻿﻿﻿﻿
	﻿﻿Abstract
	﻿﻿1. ﻿﻿﻿Introduction
	﻿﻿2. ﻿﻿﻿Model: ﻿﻿-GRN model
	﻿﻿3. ﻿﻿﻿Cluster size distribution ﻿n﻿﻿﻿s﻿﻿(﻿p﻿ )
	﻿﻿4. ﻿﻿﻿Two transition points, ﻿p﻿ ﻿﻿b﻿﻿ and ﻿p﻿ ﻿﻿c﻿﻿
	﻿﻿4.1. ﻿﻿﻿For ﬁnite ﻿S﻿﻿﻿R﻿﻿
	﻿﻿4.2. ﻿﻿﻿For inﬁnite ﻿S﻿﻿﻿R﻿﻿

	﻿﻿5. ﻿﻿﻿﻿﻿ in the critical region and total number of clusters
	﻿﻿6. ﻿﻿﻿Universal behavior
	﻿﻿7. ﻿﻿﻿Discussion
	﻿﻿8. ﻿﻿﻿Summary
	﻿﻿﻿Acknowledgment
	﻿Appendix. ﻿﻿﻿Rate equations of the ﻿r﻿-GRN model
	﻿﻿﻿References﻿﻿﻿﻿


