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We investigate percolation clusters in a d-dimensional hypercube of linear dimension 2. This set
can be used to describe the configurational space of an Ising spin-glass system. We derive the per-
imeter polynomials for general dimensions and expand in powers of 1/7, where n=d —1 and the
coordination number is d. The leading term in the series expansion yields the Bethe approximation.
In a finite dimension, a crossover occurs from scaling to homogeneous behavior in a finite region
above the percolation threshold. In the scaling region, finite-dimensional scaling is considered for
the cluster size distribution by applying a phenomenological renormalization-group argument. For
the percolation clusters we consider the mean Hamming distance of random walks; this quantity
corresponds to the Ising spin-glass order parameter. This configuration-averaged Hamming dis-
tance shows (i) a stretched exponential relaxation (p —p.) % *exp[ — (¢t /T)?] with T~(p —p,) %"

3 2

as p—p." with the exponents @~ g, X ~%, B=+%, zv=3; and (ii) an extremely slow relaxation at

P =p,, in infinite-dimension limit. This result illustrates Ogielski’s numerical simulation data [Phys.
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Rev. B 32, 7384 (1985)] in an Ising spin-glass system.

I. INTRODUCTION

The phenomenon of stretched exponential relaxation in
spin-glass systems has been the focus of considerable at-
tention.! % In addition to occurring in spin glasses, this
stretched exponential relaxation arises in diverse situa-
tions such as, e.g., in the autocorrelation function of the
structure factor of polymer chains,’ or in the kinetics of
trapping reactions,® etc. In Ising spin glasses, it is the
Edwards-Anderson order parameter, g (¢), that exhibits a
stretched exponential relaxation near the glass tempera-
ture,

q(t)~t Yexp[ —(t /T, (1)

where 0<fB<1, and T is the characteristic relaxation
time. Many theoretical approaches to describe this be-
havior have been undertaken. For example, Palmer
et al.? have considered the hierarchical model and de-
rived stretched exponential decay depending on the
weight distribution. Ogielski® has performed Monte Car-
lo simulation in an Ising spin glass, and obtained the
stretched exponential decay phenomenologically in which
the exponents x and B depend on temperature, and the
characteristic relaxation time diverges as temperature ap-
proaches the critical temperature. Recently experimental
measurements’ on Fe, sMn, sTiO; for the order parame-
ter, g (t), are also in good fit with the Ogielski’s simula-
tion result. A study of infinite-range mean-field theory'®
of spin glasses has been also considered, but it does not
agree with experimental data.

Recently a very appealing picture of spin-glass relaxa-
tion has been proposed by Campbell et al.,'! in which
the evolution of the Edwards-Anderson order parameter
is mapped into the dynamics of a random walk on per-
colation clusters which are embedded in high-
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dimensional hypercubes of linear dimension 2. The hy-
percube contains 29 vertices which represent the
configurations of a system containing d Ising spins. The
mean Hamming distance of the random walk from its
starting position corresponds to the Edwards-Anderson
order parameter, where the Hamming distance is defined
as the shortest distance on the underlying undiluted lat-
tice. Moreover the percolation disorder mimics energy
disorder in spin-configuration states of the Ising spin-
glass system. This connection will be reviewed in Sec. II.
Numerical simulations'! indicate that the mean displace-
ment decays to its equilibrium values according to the
stretched exponential decay given in Eq. (1), with a prob-
ability dependent exponent, 3, that equals 1 at the per-
colation threshold p. and with T— c as p—p,.. This ex-
ponent value appears to be consistent with the estimate
obtained in Ogielski’s simulations of Ising spin glasses.
Recently Bray and Rodgers'? have considered diffusion
on percolation clusters embedded in a hypertetrahedron
as a model for spin-glass relaxation. They found
stretched exponential relaxation for the probability of re-
turn to the origin, with the exponent 8= for all values
of p. This result was derived assuming that percolation
clusters on the hypertetrahedron are quasi-one-
dimensional. In our work, we find, however, that branch-
ing of clusters plays an important role for percolation on
the hypercube. Therefore we argue that the percolation
clusters on hypercube cannot be regarded as quasi-one-
dimensional.

In this paper, we investigate the behavior of random
walks on percolation clusters which are embedded in a
d-dimensional hypercube of linear dimension equal to 2, a
2-hypercube. In addition to the connection to Ising spin
glasses, there is intrinsic interest for understanding the
geometry of percolation clusters in a confined space. For
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studying this percolation problem, we first employ exact
enumeration to derive the perimeter polynomials that
characterize the cluster size distribution on 2-hypercubes
of various dimensionalities. Owing to the restriction to
linear dimension 2, exact enumeration provides consider-
able information about the cluster structure on the hyper-
cube. From the enumeration data, we derive the perime-
ter polynomials for general spatial dimension d and we
derive series in powers of n=1/(d —1), where d is also
the coordination number on the hypercube. The leading
term in this type of series coincides with the Bethe ap-
proximation, while the leading and the first-order correc-
tion agree with the corresponding series terms in the
high-dimensional series expansion for percolation on an
infinite lattice. We also use the enumeration data to de-
velop a finite-dimensional scaling ansatz, which is analo-
gous to finite- size scaling for a large system at its critical
point.

The dynamics of random walks on these percolation
clusters is considered next. From the purely exponential
decay of the probability distribution of a random walk on
a fixed one-dimensional interval, a stretched exponential
relaxation emerges upon averaging over all interval
lengths. Similarly for a finite-size fractal structure, the
long time relaxation of a random walk is purely exponen-
tial, with the characteristic decay time determined by the
fractal dimension of the random walk, d,,. For percola-
tion clusters on the hypercube, there is a broad distribu-
tion of cluster sizes and correspondingly broad distribu-
tion of relaxation times. Thus by averaging the pure ex-
ponential decay over the cluster size distribution, we ob-
tain the stretched exponential relaxation of the form
given in Eq. (1) for p—p.. Also we obtain the exponents

=2 and x ~ 1 in infinite dimension, which corresponds
to the thermodynamic limit. Our result seems to be
reasonable with the estimated Ogielski’s numerical simu-
lation values in the Ising spin-glass system near the criti-
cal temperature.

The paper is organized as follows. In Sec. II, we intro-
duce the random-walk model on the 2-hypercube and ex-
plain the connection to Ising spin glasses. In Sec. III, the
geometry of percolation clusters embedded in the hyper-
cube is examined using exact enumeration, together with
developing an asymptotic expansion for the high-
dimensionality limit. In order to compare the numerical
simulation results of random walks performed in finite di-
mension, !! we consider the cluster size distribution nu-
merically in finite dimension in Sec. IV based on exact
enumeration and Monte Carlo data. In Sec. V, we
present the solution for the relaxation of one-dimensional
random walks and then study the corresponding relaxa-
tion of random walks on percolation clusters in the hy-
percube in Sec. VI. From this investigation, we obtain
predictions for the nature of the relaxation function. The
final section is devoted to the conclusions.

II. CONNECTION BETWEEN AN ISING GLASS
AND RANDOM WALKS

Consider an Ising spin glass with nearest-neighbor in-
teractions which can take on the values +J with probabil-
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ity . The temporal evolution of the spins is taken to fol-
low the single-spin-flip Monte Carlo simulation method
as discussed in Ref. 6. The configurational average of the
spin autocorrelation function gives the Edwards-
Anderson order parameter g (1)=3,(S,(0)S,(¢)). Here
the angle brackets represent an average over all temporal
evolutions and the overbar denotes an average over the
random bond configurations.

For a given configuration of bonds and for a given tem-
poral evolution the spin autocorrelation function can be
written as

7()= 3 5,(0)S,(1)=N{;—N; =N —2N,,, ()

where N;; (N4 ) represents the number of spins having
the same (opposite) orientation at time ¢ =0 and at time ¢,
and N is the total number of spins in the system. Since
each spin has two states, the total number of
configurations is 2V, each of which can be represented as
a corner of an N-dimensional hypercube of linear size 2, a
2-hypercube. We define the distance between two corners
of the hypercube, a and b, as the minimum number of the
edges needed to connect a and b. This measure is the
Hamming distance, and it counts the number of spins
that have different orientations in two distinct
configurations which are represented by different corners
in the cube. If two corners represent the spin
configurations with time difference ¢, the distance be-
tween the corners, denoted as r(t), equals the number of
spins with different spin orientations N;,. Hence
(r())~(N;,), and the time-dependent part of the or-
der parameter g (¢) corresponds to the relaxation of ran-
dom walks {(r())—(r(¢)). For the 2-hypercube, the
Hamming distance is also equivalent to the square of the
Euclidean distance. Notice that the Hamming distance is
different from the chemical distance, which is defined as
the shortest distance between two points on a cluster.

Suppose that each site of the hypercube is randomly
occupied with probability p, and consider the dynamics
of a random walk on the percolation clusters that are
formed. Each step of the walk is equivalent to flipping
one spin in the corresponding spin configuration. The
possibility of a spin flip in a Monte Carlo simulation is
determined by the value of a local exchange field acting
on the spin. The percolation occupation probability
mimics the disorder in the local field value. Since the
value of the local field depends on temperature, the site
occupation probability is related to temperature. We
presumably regard the percolation threshold as the criti-
cal point, the glassy temperature. However, the model of
random walk on percolation clusters is a naive picture of
the Ising spin-glass dynamics, because percolation disor-
der is purely random, while the spin-glass disorder has a
correlation between spin configurations. Nevertheless, it
is worthwhile to consider the percolation model as a sim-
ple model to understand the dynamics of the Ising spin-
glass system.

III. PERCOLATION ON THE HYPERCUBE

To investigate percolation on the hypercube, we have
modified an enumeration program'?® to calculate the num-
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ber of clusters and the number of associated perimeter
sites on the 2-hypercube for up to nine sites for spatial di-
mension d =9. These computations required approxi-
mately 2.5 h of CPU time on an IBM 3090 computer.
We then followed the steps outlined by Gaunt, Sykes, and
Ruskin'* (GSR), for percolation in an infinite system in
high-dimensionality limit, to calculate the first nine terms
in the general-d series for the perimeter polynomials,
D,(p,d), as defined in Eq. (3) below.

Since we are ultimately interested in finding probability
to have an s-site cluster which is connected to the origin,
it proves convenient to define the perimeter polynomials
in terms of the first moment of the cluster size distribu-
tion as

> sngp,d)= 3 A p,d)=3 s g,p(1—p)
s S s t
=3 pD,(p,d) . (3)

Here g, is the number of animals containing s sites and ¢
perimeter sites on the hypercube, n (p,d) is the average
number of s-site clusters per site when each site is occu-
pied with probability p, and ¢ =1—p. The perimeter po-
lynomial that we employ, 55 (p,d), corresponds to
sD(p,d), of the conventional perimeter polynomial. The
data for the perimeter polynomials are presented in the
Appendix.

We have also computed the number of s-site lattice an-
imals, N,(d), and the series coefficients for the mean clus-
ter size, S'(p), on the hypercube. Following the notation
of GSR, these can be written in the form

_ s—1 d
N,d)= 3 4} s—&
£=1
d d
=552 s —1 +1s5 74 s —2)(s —3)2 3_2}+
4)

and

S(p)= 3 stig(p,d)= 3 b,p° . (5)

Substituting g =1—p into the perimeter polynomials, the
series coefficients b, are

(6)

For fixed d, the series for N (d) and b, differ from the
terms in the corresponding series for ordinary percolation
due to the restriction of the system to a hypercube.

We can now derive the general-d form of the series for
the hypercube by applying the general methods

developed by Fisher and Gaunt.' For this purpose, we
write the series coefficients in powers of the parameter
1/7. This expansion parameter, 1/7, is essentially the
inverse effective coordination number for the hypercube.
Hence in a d-dimension hypercube, the expansion param-
eter equals 1/9=1/(d —1), rather than 1/(2d —1). We
first write the binomial coefficient (%) in powers of 1/7

aSlS

d s
S S PR S
s o 1 277s(s 3)
+ (s — (s —2)(3s —13)+ - - -
247n

)

Substituting Eq. (7) into Eq. (4) leads to general-d expres-
sion for the number of animals

s ! (s —1)(4s>—21s+18) _,
= 252 "

Using Stirling’s approximation, this can be written as

N,(d)~ As 3% 70 (9)

where 4 is a constant, and @ = —(1+1In%). Similarly, we
also obtain b, as an expansion in 1/7 by substituting Eq.
(7) into (6) to yield

b(d)=n[1—(3s —4)m 14+ ---]. (10)

2

Equations (8) and (10) are identical to Eq. (3.3) and (3.12)
in GSR, even though the series for fixed d are very
different in the two cases.

Following GSR, we have also derived the first two
terms in the perturbation series in powers of 1/ for the
percolation threshold,

pe=n [1+3n7 "+ 1. (11)

Our basic conclusion from these calculations is that
percolation on the 2-hypercube and in an infinite system
are essentially the same in the high-dimension limit. The
coincidence of our two terms in 1/7 expansions reflects
the irrelevancy of the restriction to linear dimension 2 in
the high-dimensional limit. In this limit, each bond that
is added to a cluster extends into yet another spatial di-
mension with probability unity, and this topology can al-
ways be embedded on the 2-hypercube. This also ex-
plains why the 1/7 expansions of the two problems coin-
cide, to lowest order. The primary difference lies in the
reduction of the coordination by one-half, which may be
interpreted as the spatial dimension reduced by half.
This smaller coordination number implies that the
correction to the Bethe approximation is more significant
for the hypercube than for an infinite-size system.
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In this confined space, the spatial dimension also gives
the maximum cluster length d in the Hamming metric.
Thus d is the quantity that controls finite-size effects. We
will consider the quantitative verification of the finite-
dimensional scaling that follows in the next section.

IV. NUMERICAL EVIDENCE
FOR FINITE-DIMENSIONAL SCALING

In this section, we analyze both enumeration and
Monte Carlo data for 7 in order to test the hypothesis
that percolation properties on the hypercube obey finite-
dimensional scaling, in close analogy with the finite-size
scaling of systems at the critical point. For this scaling
analysis, we supplemented our enumeration results with
Monte Carlo data, obtained by adapting the Leath algo-
rithm'® to generate clusters connected to the origin of a
2-hypercube in spatial dimension d =10 and d =16. In
addition to complementing the enumeration results, the
Monte Carlo data allows us to determine the scaling of
cluster mass versus length on the hypercube. This mass-
length relation will be used to describe the relaxation
time of random walks on a given configuration in terms
of the cluster mass.

A. At the percolation threshold

At the percolation threshold [Eq. (11)] we postulate
that the cluster size distribution, 7, has the scaling form

A (p =p.,d)~s'""F(s/s}), (12)

where F(s/sj)—const for s <<sj, and F(s/sj) decays
faster than any power law for large s /s). Here sJ is the
typical cluster size on a 2-hypercube in dimension d at
p =p.. This characteristic size is limited by the finite
dimensionality of the system. This is analogous to the
limitation of the characteristic size in a system of finite
linear dimension, which is the basis of finite-size scaling.
Since the spatial dimension d now plays a role of a length,
we expect that s; will scale as d /, where d is the fractal
dimension describing the relation between cluster mass
and length.

In Fig. 1, we illustrate the dimensional crossover,
which sets in for s;=90 in d =10 and for s; =900 in
d=16. For s<s}, f,(p.,d) scales as s'~ " while for
s>sy, Ay p,,d) decays rapidly. From a Neiville
analysis!” on the enumeration polynomial, we estimate
that 1—7=—1.38+0.02, —1.44+0.02, —1.48+0.02,
and —1.491+0.02 for d =16, 20, 30, and 40, respectively.
Evidently, 1 —7 tends to its mean-field value!® of —1.5 as
the spatial dimension increases.

To estimate the fractal dimension of clusters on the hy-
percube, we plot the cluster mass versus length, where we
use the maximum Hamming distance of each cluster as
its length measure (Fig. 2). To interpret the data, it is
helpful to classify clusters according to whether or not
they contain closed loops, as a power-law relation be-
tween mass and length (Hamming distance) appears to
hold only for loopless clusters (Fig. 2). For increasing
spatial dimension, however, clusters without closed loops
form a progressively larger fraction of the total number
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FIG. 1. Double logarithmic plot of 7 (p.,d) vs s. (a) Monte
Carlo data for the cases d =10 (O) and for d =16 (X) are
shown. This data represent averages over 10° configurations.
Also shown is (b) the enumeration data for d =16 (X), 20 (0),
and 40 (O). (c) Slopes between two successive points of (b) vs
1/s. The dashed lines are to represent the expected behavior for
large s.
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FIG. 2. Plot of the averaged mass vs L on a double logarith-
mic scale at p.. The slope means the fractal dimension d,.
Data points are for the cases, including the loop structures (X),
and not including the loop structures (O), in d =16. Slope 2 is
indicated by the straight line.

of clusters (cf. Table I). Consequently, we study only the
scaling behavior of the loopless clusters. From this data,
we estimate the fractal dimension d; to be approximately
equal to 2 in d =16. This accords with the mean-field
value, d =4, when we account for the fact that the Ham-
ming distance is the square of the Euclidean distance.
This exponent value supports the hypothesis that per-
colation clusters in the hypercube and on an infinite lat-
tice are very similar when the spatial dimension is
sufficiently large.

B. Above the percolation threshold

Above the percolation threshold, the percolation corre-
lation length &, which scales as &~e ¥ with
e=(p —p.)/p., introduces an additional characteristic

. . d —vd
size s* which scales as s*~§&/ ~¢€ v, Therefore, we
postulate that the cluster-size distribution obeys the two-
variable scaling form

A(p >pe,d)~s'"TG(s/s*(€),s/s}) . (13)

For a fixed spatial dimension d, there now exists a cross-
over value of €*, which is determined by £* ~(€*)™"~d.
When € < €*, the cluster size is limited only by the finite
dimensionality d. In this case, the first argument of G
can be set to zero, leading to the finite-dimensional scal-

TABLE 1. Compared are dimensional dependences for (1)
number of configurations with closed loops among 10*
configurations, (2) average number of branches, and (3) fraction
of mass in side branches. The quantities (2) and (3) are averaged
over configurations with loopless clusters.

d=10 d=13 d=16 d=18
(1) 3434 2804 2350 2228
(2) 2.49+0.026 2.5740.029 2.70+0.035 3.04+0.054
(3) 0.35+0.008 0.34+0.008 0.35+0.008 0.421+0.012
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FIG. 3. Plot of v,(d) vs x on a double logarithmic scale, to
check the data collapse for d =20. The estimated scaling re-
gime is indicated by arrows.

ing statement of Eq. (12). For e€>e€*, the percolation
correlation length & is smaller than the dimensional
correlation length d, and Eq. (13) reduces to the single-
parameter scaling statement of conventional percola-
tion.'® Thus the cluster size distribution scales as s~ "
for s<s*(e), and cut off exponentially fast for
s*(e)<s <s;. However, the cluster size is ultimately
limited by s; due to the finite dimensionality of the sys-
tem so that for s >sJ the scaling in 5 /s * breaks down.

To test this picture, we plot enumeration data for
v,=—In(,/s'~7) versus the scaling variable
x=¢€/%s~s/s*, where 1/ Evdf, for the cases d =20 in
Fig. 3, in which we use the mean-field value 0 =1. Ac-
cording to the scenario described above, there exists a
range of x for which data collapsing holds. In fact we ob-
serve three distinct regimes, with data collapsing occur-
ring only for x* <x <xj. In this intermediate “scaling”
regime, the scaling function varies exponentially in s /s*.
When x >xJ, the “compact regime,” data collapsing
breaks down, but 7, is still an exponentially damped
function of s/s;. However for x <x*, 7, follows a
power-law behavior.

To determine the functional form of the scaling func-
tion in the scaling regime G (s /s *,s /sJ) we plot v, versus
s in Fig. 4 on a double logarithmic scale, for several
values of €. In this plot, we expect a crossover between
the power-law regime to the scaling regime to occur
when s*(e)~¢e~'/?, which should be observable for small
€. This behavior is suggested by the data shown in Fig. 4.
For €=0.01 the points appear to lie on a horizontal line,
indicative of power-law behavior. However for larger e,
the data points appear to fall on a line of nonzero slope,
suggesting that

fi,~s' Texp[ —(€!7s)"] . (14)

By computing the slope of the straight line that passes
through two successive data points in Fig. 4, and plotting
these successive slopes versus 1/s, we determine the ex-
ponent n (Fig. 5). Even for the case e=1.0, for which the
data are linear to the eye, the successive slopes change
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continuously with 1/s. For d =16, the slope increases
monotonically as 1/s decreases for €e=1,3,5. However
for e=8, the slopes do not always increase, and by €=9,
the slopes actually decrease. This change indirectly sug-
gests the occurrence of the second crossover behavior
from scaling to compact regime which arises for large €.
That the slopes change continuously with s means Eq.
(14) does not hold precisely in finite dimension. But as
we can observe in Fig. 5, the total range of slopes over
the entire range of s (s <s;) becomes smaller as € or di-
mension becomes larger. Eventually in the limit d — o,
the slopes for each two successive points are independent
of cluster mass s. Therefore for large dimension, Eq. (14)
is relevant to describe the probability 7.

The value of the exponent » in Eq. (14) is known as the
Kunz and Souillard formula'® to be 1—1/d, for the
infinite linear size case. However, when the cluster is
bounded, we do not expect the Kunz and Soulillard for-
mula to be valid. In Fig. 5(a), we cannot extrapolate reli-
ably to the 1/s—0 limit, because the cluster size is
bounded. Hence even for the case e=1 in d =16, we esti-
mate the slope to increase up to ~0.9 for large size clus-
ters. But if we extrapolate up to the 1/s—0 limit, the
slope is expected to be 1—1/d =0.9375 in d =16, the
Kunz and Souillard value.

In summary, there are three regimes of behavior for
7i,(d) in finite spatial dimension above p,. When p is very
close to p,, fi,(d) decays as a power law. In the inter-
mediate regime, defined by the region between the two ar-
rows in Fig. 3, 7,(d) is described approximately by the
scaling function, Eq. (14), with an exponent n that de-
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FIG. 4. Plot of vi(d) vs s on a double logarithmic scale, to
check the formula Eq. (14). The slope of the straight line means
the exponent n. Data points are in d=20 for
€=0.01,0.05,0.1,0.3,0.5,1.0 from the bottom.
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pends on dimension. On the other hand, when p is near
1, there is a second crossover to a regime where percola-
tion clusters are compact and homogeneous.

V. RANDOM WALKS ON ONE-DIMENSIONAL
PERCOLATION CLUSTERS

As a preliminary to understanding the relaxation of
random walks on percolation clusters embedded in the
hypercube, we first consider the relaxation of a random
walk on a finite interval of length L. In the continuum
limit, the random walk obeys the diffusion equation

Pnt) _ hypix,r) , (15)

ot
where P(x,t) is the random-walk probability density at
position x and time ¢, and D is the diffusion coefficient.
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We must solve this equation for the initial condition in
which a random walker starts at x =/ with reflecting
boundary conditions at the ends of the interval, i.e.,
dP/3x =0 at x =0 and x =L. By standard methods, the
solution is

L—1

nTx Sn77'l
L

L 7L

o
>, cos

n=1

P(x,t)=—+

=
e

Xe~D(n7r/L>2z _ (16)

Thus the probability density relaxes to its equilibrium
value at an exponential rate.

Next consider the mean of the absolute value of the
displacement of the random walk from its starting point,
averaged over all random-walk trajectories

<r(z)>,=fo’(z—x)P(x,t)dx+flL‘l(x—z)P(x,ndx ,
(17)

where the subscript denotes that the initial position of the
walk is at x =/, and the angle brackets denote an average
over all random-walk trajectories (see Fig. 6). After
averaging over initial positions, the asymptotic decay of
(r(e))—{r(1)) is given by

_ 2
2(L —1) _Df—zt

(r(oo)>—(r(t)>~*——2——exp (18)
o

Note that the characteristic time of this decay varies as
the square of the interval length.

A stretched exponential decay occurs when one aver-
ages Eq. (18) over a suitable distribution of interval
lengths L. For example, in one-dimensional percolation,
the probability to have an interval of length L equals
pE(1—p)%. Thus by averaging over this distribution, we
find

(r(eo))—<r(1)
o2 mo
NQ&Z_E_)_I ech(L _l)efD(vz/LZ)zdL , (19)
T 0
where ¢ = —Inp, so that ¢ ~(p, —p) for p=1. Here the

overline denotes the average over all interval lengths.
Using the steepest-descent method, we thereby obtain

(r())—{r()) ~(p.—p) 't exp[—(t/T)?], (20)

with T=(p,—p) 2. The relaxation exhibits stretched ex-

o 1

FIG. 6. Schematic picture for the metric used in Sec. V on a
one-dimensional chain with length L.

ponential decay with an exponent , and a characteristic
time 7 that diverges as (p,—p) 2. The exponent value
of 1 is a characteristic feature of the one-dimensional na-
ture of the system.

VI. RANDOM WALKS ON PERCOLATION CLUSTERS
IN THE HYPERCUBE

The relaxation of random walks on the hypercube de-
pends on the structure of percolation clusters in this sys-
tem. In Sec. IV, we have argued that these percolation
clusters are self-similar near the percolation threshold,
but with a structure which resembles that of clusters on
the Bethe lattice, namely clusters are ramified and highly
branched. According to our Monte Carlo data, the num-
ber of side branches and the mass fraction in the side
branches are both increasing functions of dimension (cf.
Table I). Thus clusters cannot be regarded as quasi-one-
dimensional, and this feature is an essential ingredient in
our description of the relaxation of random walks on the
hypercube.

Due to the correspondence between percolation clus-
ters on the hypercube and on the Bethe lattice, the fractal
dimension of a random walk is d, =3 (according to our
use of the Hamming distance as the metric), rather than
the value d,=2 which is appropriate for one dimen-
sion.?>2! Employing a characteristic time scaling as L%
with d, =3, the leading behavior of the relaxation of the
mean displacement to its equilibrium value is given by

(r(0))=(r(n)) ~Lexp(—t/L™) 1)
with d, =3.
We now average Eq. (21) over all cluster

configurations. In the self-similar regime, the cluster size
distribution is most conveniently expressed as a function
of cluster mass, rather than in 1t/e;rms of a length scale.
Hence we use the relation L ~s ~ / where L is the max-
imum Hamming distance of the cluster, to rewrite Eq.
(21) as

(r(o))—{r(t)) ~s¥exp(—t/s%) , (21"
where a=d, /d,; and y =1/d;. Using the cluster-size
distribution, Eq. (14), the configurational average of the
relaxation function now becomes

(r(oo))—<{r(t))

~f0 maxsl—fexp(—€n/gsn)syex13(_Z/Sa)ds (22)

with e=(p —p.)/p.. In the limit of the spatial dimension
becoming large, the upper limit of the integral can be re-
garded as infinite. Now using the steepest-descent
method, Eq. (22) yields

(r(o))—<r())~€e % *exp| —(¢t/T)*] (p—p.),
(23)

where
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n
n+ta

B:

>

T~(p—p)~ "

_n4=27+2% +a)
20(n +a) ’
1 y+3—r

2 n+2

We consider the infinite-dimensional case, which corre-
sponds to the thermodynamic limit. Thus substituting
the mean-field values d,=2, d,=3, 7=3, 0=4, n=1
into Egs. (24), we find

(r(e))—{r(t)) ~(p —p,) 3t " Voexp[ —(t /T)"]

’

(p—p.), 25)

with T~(p —p,). 3
At the percolation threshold, the absence of a cutoff in
the cluster size function in Eq. (22) now leads to

(r(0))—(r())~t= (p=p,, (26)
with

x'=1—r—< —2 .
a

(27)

The exponent x’ turns out to equal zero when the mean-
field values of the exponent 7, y, a are used. The value x’
is close to the value by Ogielski, xg5( T, )=0.065+0.005.
Hence the relaxation at the critical temperature (proba-
bility) is extremely slow.?? Since x’ may actually be equal
to zero, we need to consider the next order term in the
saddle-point calculation. So there might be some possi-
bility to have a different functional form from power-law
relaxation at p,. The way to derive the stretched ex-
ponential decay is basically the same as the one used in
Ref. 12 except for the following. In the reference, the
percolation clusters are regarded as quasi-one-
dimensional, so that they used d,=2, but we proved
d, =3 is correct. Finally it is worthwhile to note that the
stretched exponential behavior derived above is very
relevant in the long time limit, because we used the
ground-state energy of the characteristic times in Eq.
(21).

A. A comparison to the simulations of Ogielski

Let us compare our numerical values with the ones in
the Ising spin-glass system obtained by Ogielski.® We
first notice that Eq. (25), which corresponds to g (¢), has
the same functional form as the Ogielski’s empirical for-
mula. In the spin-glass system, the exponents x and 3 de-
pend on temperature. Since Eq. (25) was obtained near
the percolation threshold, it is natural to compare our re-
sult with the relaxation function of a spin glass near the
critical point, the glassy temperature. Numerical values
seem to be consistent with the numerical estimation of
the simulation data as near the critical temperature® that
the exponents x,f3 are very “roughly” x ~0.1 and 8~0.4.

This stretched exponential behavior is expected to
occur only in the scaling regime near the percolation
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threshold. In the compact regime sufficiently above p,,
the random-walk relaxation follows a pure exponential
decay, which was proved analytically by Campbell
et al.'' Consequently, it is natural to expect that esti-
mates for the exponent 3 which are based on a numerical
approach will decay monotonically from =1 to f~0.4
in the large-dimensionality limit, as probability p de-
creases from 1 to near p,. A sharp transition is expected
to happen across the boundary of the two different re-
gimes, the scaling regime and the compact regime.

Next we define dynamic exponent z in the random-
walk problem as T~ (p —p.)”*". Since zv=3 from Eq.
(25), we obtain the dynamic exponent z to be 6 with the
mean-field value v=1 in the Euclidean metric. The dy-
namic exponent value z =6 accidentally coincides with
zg4g for the spin-glass system obtained by Ogielski. From
the above numerical comparison between the random-
walks model and the spin-glass model, we could say that
the random-walk model illustrates well the relaxation of
the Ising spin-glass system.

B. A comparison to the simulations of Campbell et al.

Next let us compare our results with the numerical
simulations of Campbell et al. In their work, simula-
tions were performed in dimensions d =10, 14, 16, 17
and data were presented for d =16. However, the situa-
tion of interest is the limit of d — o0, and they do not pro-
vide a systematic way of extrapolating their results to this
limit. In particular, the exponent # in the cluster size dis-
tribution of Eq. (14) has an apparent size dependence for
spatial dimension d =16 (cf. Fig. 5). This variation feeds
in to the apparent value of 3 that would be observed in
the random-walk relaxation. Furthermore, the simula-
tion of Campbell et al. was apparently performed on the
“largest” percolation clusters. This selection is desirable
in order that the correct cluster size distribution for large
clusters follow the cluster size distribution formula Eq.
(14) more reasonably. Nevertheless, percolation clusters
have to be selected randomly in the scaling regime in or-
der to have a variety of characteristic times. Thus the
stretched exponential distribution can be obtained by
averaging over many characteristic times. An additional
source of discrepancy is that the value of percolation
threshold employed by Campbell ef al. is somewhat
greater than the value given by the high-dimensional ex-
pansion of Eq. (11) in d =16. Hence the relaxation they
observe is rather a behavior characteristic of p slightly
above p.. These difficulties would be playing a lesser role
in larger spatial dimension. Nevertheless, in order to
compare to their data, we exploit the fact that the spec-
tral dimension depends on dimension very weakly
(Alexander-Orbach conjecture)?®. Hence if we plug a=3
into Eq. (24), then the exponent (3 is only a function of the
exponent n. We estimate the value to be n =0.85~0.9 in
d =16 for the large size cluster from Fig. 5. Using the es-
timated value of n, we obtain £=0.362~0.375, which is
comparative to the value S~1 obtained by Campbell
et al. But when dimension is very large, which is in the
thermodynamic limit, we expect that §=0.4 for p —p,".
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VII. CONCLUSIONS

We have investigated the structure of percolation clus-
ters on a hypercube of linear dimension 2 and the dynam-
ics of random walks on these percolation clusters, in or-
der to study the relaxation of an Ising spin glass. We em-
ploy the exact enumeration method to obtain the cluster
size distribution of the percolation clusters. The perime-
ter polynomials are derived for general dimension up to
ninth order. Based on numerical values of the exact
enumeration polynomials, we find that above the percola-
tion threshold, a crossover from scaling to compact be-
havior occurs in a finite range of p. The dimensional
dependent behavior of the crossover is explained by intro-
ducing the finite-dimensional scaling argument. Since the
coordination number is d in a d-dimensional hypercube
instead of 2d, it is likely that percolation clusters in a d-
dimensional hypercube resemble the ones in a (d/2)-
dimensional hypercubic lattice of infinite-dimensional
limit; the percolation cluster in a hypercube is reduced to
the one on the Bethe lattice.

We obtained the configuration-averaged mean dis-
placement of random walks on the percolation clusters,
which shows (1) a stretched exponential relaxation as
(p —p.) % “exp[—(¢t/T)] where T~(p—p,) *p
—p." with the exponents a ~ %, x ~L, B=2, zv=3 in the
long time limit, and shows (2) a tendency of extremely
slow relaxation at p =p_.. These results give a good illus-
tration for Ogielski’s empirical formula and numerical
data. Besides Ogielski’s empirical formula, our result in-
cludes the behavior of the amplitude which diverges as
(p —p.)" % We noticed in Ogielski’s paper that ampli-

]

D,(p,d)=q“,

_ d
D,(p,d)=¢** 2 } ,

D;y(p,d)=¢* *|3¢7"

+(12q "2+4973)

)

~ d
D4(p,d):q4d—6 q -2 lz

~ d
Ds(p,d)=g> 7% |30 ™% |4

D¢(p,d)=q% 102147

3

d
+(360g ~*+720g ~°+90g ~®+120g ~"+6q ~10) [5

57(P>d):q7d-12 7q—8

3

+(60g ~3+60g " *+59 ¢

4

d
+(72q ~*+2169 ~3+324qg °+369 )

d
+(756g ~7+861g “2+238¢ )

tude decreases with increasing temperature. But the de-
tail divergent behavior cannot be checked with the data
appearing in the paper.® The temperature (probability)
dependent behavior for the exponents x and 8 can be un-
derstood from the transition behavior of the cluster size
distribution from the compact to scaling regime. Finally
we compare our prediction with the numerical simulation
performed by Campbell et al. Due to the memory space
limitation, they performed in relatively low dimension, in
which theoretical prediction is not expected to be good.
The numerical results are in agreement only qualitatively
with our prediction. We do not agree with Campbell’s
conclusion that the relaxation shows the stretched ex-
ponential with exponent =1 at the percolation thresh-
old. Instead we showed that the relaxation is of critical
slowing down at the percolation threshold.

Note added. The 1/d expansion has also been per-
formed to investigate the phase structure of the Ising spin
glass on a hypercubic lattice recently.?*
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APPENDIX

The perimeter polynomials D,(p,d)=sS,g,,(1—p)* for
general dimension d:

4

.

4

d
+(1260g ~3+3360g ~®+5670g ~7+2100g ~+1260g ~°+70g ") ‘5 }

d
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—10

d
q +(2676g ~'0+920g "' +40¢ ") | 4

+(2400g ~%+5760g "7+ 17 160g ~ ~¥+29 520¢ ~°+22080g ~!°+7440¢g ~ '+ 12409 ~ 12

d
+480g ") |5

+(17280g ~®+66240g ~7+97 920 ~8+70 560 ~°+36 720g ~1°+12 960g ~!!

d
+2520¢ ~1>+2880g " *+120g 7') |

+(20 160g ~®+ 100 800g ~7+75 600g ~®+ 38 640g ~°+20 160g ~1°+ 5600 ~ 2

b

d
+840g ~1P+336g 1°+8¢ ) |5

_ d
Dy(p,d)=q°* % |(4464¢ P +441g ') |,

+(5400g ~8+27540q ~°+62370g 1+ 111240 !

+122355¢ 712463990 “13+16 740 ~1*

+1980g ~'°+585¢ ~1¢)

:

+(71280g ~7+281880g %+ 579 150 ~°+ 848 880g ~'°+ 793 800g ~ !

+498960g ~ 2+ 189 000g ~ 3+ 63 990g ~ 14423 220g ~1°+5400g ~'°

d
+405¢ ~'7+1080g ~'®) | ¢

+(226 800g ~7+1270080g ~®+2018520¢ °+1884 330 ~1°

+1084860g ~''+640710g ~'2+120960q ~ '3+ 144 5859 ~'*+34020¢ ~°

d
+5670g ~'©+3780g ~'7+5670g ~ ¥+ 189g ~22) .

+(181440g ~7+1270080g ~ 5+ 1587 600g ~°+ 846 720 ~'°+ 635 040 ~!!
+52920g "2+ 141 120 ~13+52 9209 ~14+25209 ~1°+ 10584 ~ 17+ 1512¢ 1®

+504g ~**+9¢ %)

|

*Present address.

IP. C. Hohenberg and B. I Halperin, Rev. Mod. Phys. 49, 435
(1977).

2R. G. Palmer, D. L. Stein, E. Abrahams, and P. W. Anderson,
Phys. Rev. Lett. 53, 958 (1984).

3M. Randeria, J. P. Sethna, and R. G. Palmer, Phys. Rev. Lett.
54, 1321 (1985).

4D. Dhar and M. Barma, J. Stat. Phys. 22, 259 (1980).

SH. Sompolinksy and A. Zippelius, Phys. Rev. B 25, 6860
(1982).

SA. T. Ogielski, Phys. Rev. B 32, 7348 (1985).

7J. E. Martin and J. P. Wilcoxon, Phys. Rev. Lett. 61, 373
(1988).

8B. Y. Balagurov, and V. G. Vaks, Zh. Eksp. Teor. Fiz. 65, 1939

(1974) [Sov. Phys.—JETP 38, 968 (1974)]; P. Grassberger and
1. Procaccia, J. Chem. Phys. 77, 6281 (1982); K. Kang and S.
Redner, Phys. Rev. A 32, 435 (1985).

9K. Gunnarsson, P. Svedlindh, P. Nordblad, L. Lundgren, H.
Aruga, and A. Ito, Phys. Rev. Lett. 61, 754 (1988).

10§, Kirkpatrick and D. Sherrington, Phys. Rev. B 17, 4384
(1978).

1], A. Campbell, J. M. Flesselles, R. Jullien, and R. Botet, J.
Phys. C 20, L47 (1987); Phys. Rev. B 37, 3825 (1983).

12A. J. Bray and G. J. Rodgers, Phys. Rev. B 38, 11461 (1988).

133, Redner, J. Stat. Phys. 29, 309 (1982).

14D, S. Gaunt, M. F. Sykes, and H. Ruskin, J. Phys. A 9, 1899
(1976).

ISM. Fisher and D. S. Gaunt, Phys. Rev. 133, A224 (1964).



43 PERCOLATION IN THE HYPERCUBE AND THE ISING SPIN-. .. 1801

16p, L. Leath, Phys. Rev. B 14, 5064 (1976). 20B, Kahng and S. Redner, J. Phys. A 22, 887 (1989).

1D, S. Gaunt and A. J. Guttmann, in Phase Transitions and  2!S. Havlin, J. E. Kiefer, and G. H. Weiss, Phys. Rev. A 35,
Critical Phenomena, edited by C. Domb and M. S. Green 1403 (1987).
(Academic, New York, 1974), Vol. 3. 22R. B. Griffiths, Phys. Rev. Lett. 23, 17 (1969).

18D, Stauffer, Introduction to Percolation Theory (Taylor and  23S. Alexander and R. Orbach, J. Phys. (Paris) 43, L625 (1982).
Francis, London, 1985). 24A. Georges, M. Mezard, and J. S. Yedidia, Phys. Rev. Lett.

19H. Kunz and B. Souillard, J. Stat. Phys. 19, 77 (1978). 64, 2937 (1990).



