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Abstract — We modify the Kuramoto model for synchronization on complex networks by
introducing a gauge term that depends on the edge betweenness centrality (BC). The gauge term
introduces additional phase difference between two vertices from 0 to 7w as the BC on the edge
between them increases from the minimum to the maximum in the network. When the network has
a modular structure, the model generates the phase synchronization within each module, however,
not over the entire system. Based on this feature, we can distinguish modules in complex networks,
with relatively little computational time of O(NL), where N and L are the number of vertices and
edges in the system, respectively. We also examine the synchronization of the modified Kuramoto
model and compare it with that of the original Kuramoto model in several complex networks.

Copyright © EPLA, 2008

Complex networks have drawn considerable attention
from diverse disciplines such as sociology, information
science, physics, biology and so on [1]. Many complex
networks in real world contain modules within them,
which form in a self-organized way to achieve the effi-
ciency functionally or regionally. Such modular systems
can exhibit collective synchronized patterns within each
module, not forming the global synchronization [2] as can
be found in the cortex of neural network [3] or differ-
ent synchronization transition behaviors depending on the
patterns of inter-modular connections [4].

In this letter, we study the modular synchronization
pattern generated from a modified Kuramoto equation
(KE), which we call the gauge KE,

N
%ft) =Q;—J ai;sin(¢i(t) — ¢;(t) —ng(bi;)). (1)
j=1

Here, ¢; is the phase of vertex i, €2; is the natural
frequency of vertex i selected from the Gaussian distri-
bution e~/ 2/\/2m, J is the overall coupling constant
and a;; is the (¢, j)-th component of the adjacency matrix,
which is one when the vertices ¢ and j are connected, and

(3) E-mail: bkahng@snu.ac.kr

zero otherwise. 7 is a control parameter. The extra phase
term g(b;;), we call the gauge term below, is defined as

bi' - bmin
g(bij) = ——"—,

bmax - bmin (2)
where by, and byax are the minimum and the maximum
edge betweenness centrality (BC) [5] or load [6], respec-
tively, in the system. Here, the edge BC or load is the
amount of effective traffic passing through a given edge
when every pair of vertices sends and receives a unit packet
that travels along the shortest path between them. Then
the gauge term g(b;;) is in the range from 0 to 7 depending
on the BC of edge. When 1 =0, the gauge KE recovers the
standard KE [7] which becomes fully synchronized when
J is sufficiently large. The KE with the extra phase of
the form sin(¢; — ¢; —¢) (c=constant) was studied first
in [8]. The effect of the extra phase is to destroy the
synchronization. Intuitively, one expect that the BCs on
intra-module links are smaller than those on inter-module.
Thus, each module can be synchronized, while the entire
system is not. Moreover, the gauge term induces an effec-
tive coupling that can be negative at the edges connecting
different modules. Due to this negative coupling, the aver-
age phase of each module may have velocity different from
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each other. Using this property, the gauge KE can be used
for module identification in complex networks.

The module identification in the context of synchroniza-
tion has been studied [9,10]. These studies are inspired
by the so-called dynamic clustering (DC) approach that
individual oscillators have different levels of synchroniza-
tion time owing to the heterogeneity of degree in network.
Since vertices within modules are densely connected, they
are synchronized more earlier than those between modules.
Using this idea, the hierarchical structure can be detected
by monitoring the temporal evolution of synchroniza-
tion [9]. To identify the modules, however, the information
of characteristic time at each hierarchical level is needed,
which may be obtained from the spectrum of the Lapla-
clan matrix of the system. Boccaletti et al. [10] introduced
another model, in which the coupling strength of the KE
depends on the BC as b?;-(t), where a(t) is negative. Thus,
the coupling strengths across the module-connecting edges
are weaker than those within module. «(t) is then tuned
to detect the modules. In both methods, one needs to
control the parameters such as time and «(t). However,
our method based on eq. (1) with n=1 does not contain
any control parameter, so that we can identify the modules
without any prerequisite information.

We begin to study the synchronization pattern gener-
ated from eq. (1). Firstly, we apply the gauge KE to an
ad hoc network [11] with a modular structure. The
network is composed of N =128 vertices and L =1024
edges. Those vertices are grouped to four modules, each
of which is of equal size. And edges are connected with
probability p;i, for pairs of nodes belonging to the same
module whereas pairs belonging to different modules have
edges with probability pout. By controlling the parame-
ter pin and pout We can obtain a fraction of inter-modular
edges, zout/ (k) as we want, where 2yt is the mean degree
of inter-modular edges and (k) = 2L /N is the mean degree.
This ad hoc network has been used as a benchmark for
module identification algorithms in previous studies [12].

We measure the order parameter defined as

1 N
Mmt—< Ly g, >
N

where (---) denotes the time and ensemble average. The
order parameter is measured in the steady state. When
7 =0, the order parameter saturates to 1 for large J,
however, as 7 is increased toward 1, it saturates at lower
values as shown in fig. 1(a). This behavior indicates that
the network is not synchronized globally. To check if
the synchronization forms within each module, the local
order parameter, defined as M, = (| Ej\/:al €% /N,|), is
measured, where « is the module index, N, is the number
of vertices within the module « and the sum is over
vertices within the module. We find that indeed the
order parameter My,,q reaches 1 for large J as shown in
fig. 1(b), indicating that the oscillators within the module
are synchronized. We examine the average phase of each
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Fig. 1: (Color online) The order parameter defined over the
entire network (a) and within a module (b) wvs. the coupling
constant J for the ad hoc network in case of zout/(k) = 0.05.
Data are for n=0.0, 0.6, 0.7, 0.8, 0.9 and 1.0 from the top in
(a). The same symbols are used for (b), but data for different
71 collapse onto the single curve.

s 2 10]
ohx 4 R

dX LB A

Oph o A

w2t of Spe %>§§‘ X A

A
= ot £ o A
<) C?[i%(ﬁ‘ A
o‘:&f‘ >2< £ DD
ok A X A O
B X A O
-2 | C?Dxﬁ‘ LA U9
ax O[ixA ax A 3
ox ODXA aIx A M
ax A gx £ gx
o X
X A
- % NS &L A <
0 1 2 3 4 5
time ¢

Fig. 2: (Color online) The time evolution of average phases of
the four modules, distinguished by different symbols, for the
ad hoc network with zout/(k) =0.05 when n=1.0 and J = 2.0.

module as a function of time. As shown in fig. 2, the
modules are distinguishable by different average phases
and average phase velocities.

The stability of synchronization of the model (1) is
examined. Assuming the fully synchronized state of
the form ¢f =¢? +Qt, and linearizing eq. (1), we get
&i(t)=—J >, Gij&i(t), where &(t)=0i(t) —¢;, Gij=
(Zk aikwik)&-j — QWi and Wiy = COS((b? — ¢9 — ng(b”))
A1 =0 is the trivial eigenvalue of G and the sign of other
eigenvalues determines the stability of the fully synchro-
nized state. Due to the negative element of the coupling
matrix G, its eigenvalues can be negative, and then the
Lyapunov exponent in the linear stability analysis can
be as well. In that case, the synchronization is no longer
stable. We obtain w;; from cos(¢;(t) — ¢;(t) —ng(bs;)) at
an arbitrary but sufficiently large ¢ and trace out the
eigenvalues for the ad hoc network having zout/(k) = 0.05
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Fig. 3: (Color online) The first 4 eigenvalues, A1 =0, A2, A3 and
A4, of G;; vs. the parameter n for the ad hoc network in case
of zout/(k) =0.05 and J =2.0. Data beyond 7.~ 0.59 depend
sensitively on time ¢ where w;; is obtained.

and plot the first 3 non-zero eigenvalues vs. 77 in fig. 3. Ay
is positive at =0 and decreases to zero as 7 increases
from 0 to 7.~ 0.59. And increasing 7 further above 7.
drives the system to unstable state. For 0 <n <., the
order parameter Mo is almost 1 in the steady state,
whereas M, has a smaller constant value for 1> 7.
In many cases, they actually oscillates in time before
the time average due to disparate group velocities of the
modules as shown in fig. 2. The curve fitting of A9 in the
vicinity of =17, shows Ay o (1. —n)'/2. The square-root
singularity of Ay near the stability edge is the signature
of the saddle-node bifurcation [13].

We introduce how to identify modules with the gauge
KE. To this end, we take the following steps:

i) We apply the gauge KE (1) to all oscillators with
a sufficiently large coupling constant J. The phases
{#i(t)} of each oscillator are obtained in the steady
state.

ii) We measure the phase similarity defined as
Cij = ([1+cos(¢;(t) — ¢;(t))]/2) for each connected
pair of oscillators (i, 7). The brackets are the average
over different times, natural frequencies {2;}, and
initial random phases {¢;(0)}.

From the empty state, where all edges are absent, we
add edges (i,7) one by one that are chosen following
the descending order of Cj;. Clusters after the step
iii) are regarded as modules. The edges that existed
originally, but not connected yet until the step iii) are
regarded as inter-modular edges.

iii)

iv) We repeat the step iii) until the modularity of the

system becomes maximum. The modularity @ is

defined as
szeaafaczm (4)
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Fig. 4: (Color online) The mutual information vs. zout/(k), the
fraction of inter-modular edges per mean degree for the ad hoc
network. See the text for abbreviations.

where a,, = Eﬁ e, and eqyg is the fraction of edges
that connect the vertices belonging to the modules «
and § [11].

To test the performance of our algorithm, we measure
the mutual information on several networks, defined as

M M’

23" > log (NN—]{”)

i=15=1
M o M .
ZlNi log (&) + '21 NJlog (W)
= =

where M =4 is the number of preassigned modules and
M’ is the number of detected modules. N7 is the number
of vertices belonging to the i-th preassigned and the j-th
detected modules, N; =3, N/ and N7 =37, N/ [12].

Figure 4 shows the mutual information measured on
the ad hoc network as a function of z,y/(k) for several
module-detecting algorithms. The preliminary result of
this comparison was presented in a proceeding paper [14].
The performance of our algorithm is not better than
those of the Potts model and the simulated annealing
(SA) [15,16]. Even though they are better in performance,
if we count for their long computation time, then ours may
be useful practically. The performance of opinion-changing
rate model (OCR) algorithms [10] is somewhat better,
however, it requires an extra task of parameter tuning,
so that ours is easier to implement. Since our algorithm
shares with the Girvan-Newman (GN) algorithm [17] the
idea of clustering based on BC, the performances of the
two algorithms are close to each other. However, since ours
calculates the BC on each edge only once, whereas the
GN algorithm does it repeatedly for each disconnected
cluster, the computational time can be reduced drasti-
cally from O(NL?) to O(NL). The performance of our
algorithm is better than that of the Clauset-Newman-
Moore (CNM) algorithm [18], which runs in O(N In® N)
for sparse graphs.

Secondly, we apply our algorithm to the hierarchical
network proposed by Ravasz and Barabdsi [19]. When the
number of levels is two, the modules are well selected in a

I(A,B) =

)
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Fig. 5: (Color online) The dendrogram based on the phase simi-
larity between connected pairs of vertices for the hierarchical
network with three levels.
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Fig. 6: (Color online) The order parameter vs. the coupling
constant J for the ER (a) and the SF network with the degree
exponent 3.5 (b). The data are for the cases of n=0, 0.2, 0.4,
0.6, 0.8 and 1.0 from the top.

similar way as in fig. 3 of ref. [9]. For the three level case,
the dendrogram constructed by our method is shown in
fig. 5. Here, the hub at the second level is grouped with
one of the four identical modules connected to it in the
second level.

Thirdly, we apply the gauge KE to Erdés-Rényi (ER)
random networks and scale-free (SF) networks with no
modular structure to see the dependence of the network
structure. The SF network is generated using the static
model with degree exponent 3.5 [6]. The order parame-
ter (3) behaves differently for the two networks. For the
ER network, the saturated value of the order parameter
decreases from 1 to 0 as 7 increases from 0 to 1(fig. 6(a)).
However, for the SF network, the order parameter does
not decrease to 0, but ~ 0.7 even if 7 reaches 1 (fig. 6(b)).

The mechanism of this difference is complex. To under-
stand it, we measure the phase difference A¢ across an
edge connected to the hub for the case n=1. Typical
patterns are as follows: For the ER network, the phase
difference changes with time running from —7 to 7 as
shown in fig. 7(a). For the SF network, its pattern shows
two different patterns depending on the degree of the other

/2

A

-2

0 2 4 6 8 10 12 14

-m/2

-

time ¢

Fig. 7: (Color online) Typical patterns of the phase difference
across an edge connected to the hub for the ER network (a)
and the SF network (b). In (b), the solid (dotted) curve is likely
to occur across an edge between the hub and a node with large
(small) degree.

node. It either oscillates as for the ER network (dotted
curve in fig. 7(b)) or stays around a smaller value in
short intervals as shown in fig. 7(b) (solid curve). As a
consequence of this partially oscillating behavior of phase
difference for the case of SF network, the order parameter
can remain finite as Mo, &~ 0.7. We find that the different
patterns in A¢ for the ER and the SF network are closely
related to the fraction of edges that have the gauge term
larger than 7 /2. This fraction is about 15% and 1% for the
ER network and SF network, respectively. Note that the
BC distribution follows an exponential function (a power
law) for the ER (SF) network [6], so that the fraction of
edges with BC larger than 7/2 is larger for the ER network
than for the SF network. When the gauge term is larger
than 7/2, the edge acts as an anti-ferromagnetic coupling
between the two nodes. The anti-ferromagnetic coupling
induces a frustration in synchronization. As the fraction of
the anti-ferromagnetic coupling increases, the destruction
of phase and frequency synchronization is more likely to
occur. Thus, the feature in figs. 6 and 7 can emerge.

In summary, we have introduced a gauge KE in which
the gauge term depends on the edge BC. The gauge term
drives the phase difference between the two vertices of an
edge from 0 to 7 as the BC across the edge increases. As
a result, the phase difference of two oscillators belonging

68003-p4
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to different modules is large, however, it is small across
the edges within modules. Thus, the model generates the
phase synchronization within each module, however, it
does not globally. Measuring the phase similarity between
two connected oscillators, we constructed the dendro-
gram and identified the modules. Such module-detecting
method works efficiently.
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