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Avoiding a Spanning Cluster in
Percolation Models
Y. S. Cho,1 S. Hwang,1 H. J. Herrmann,2 B. Kahng1*

When dynamics in a system proceeds under suppressive external bias, the system can undergo
an abrupt phase transition, as can happen when an epidemic spreads. Recently, an explosive
percolation (EP) model was introduced to understand such phenomena. The order of the EP
transition has not been clarified in a unified framework covering low-dimensional systems and
the mean-field limit. We introduce a stochastic model in which a rule for dynamics is designed
to avoid the formation of a spanning cluster through competitive selection in Euclidean space.
We use heuristic arguments to show that in the thermodynamic limit and depending on a control
parameter, the EP transition can be either continuous or discontinuous if d < dc and is always
continuous if d ≥ dc, where d is the spatial dimension and dc is the upper critical dimension.

The notion of percolation transition (PT)
(1) is widely applied in a variety of dis-
ciplines; it explains the formation of a

spanning cluster connecting two opposite sides
of a system in Euclidean space, such as occurs in
metal-insulator or sol-gel transitions. Alternative-
ly, percolation can also be interpreted as the for-
mation of a macroscopic cluster in the system,
and this concept has been used to model the
spread of epidemics (2) and the formation of
opinions within social networks (3). These two
pictures may be regarded as the same, but they
can lead to different evolution processes in Eu-
clidean space. Here, we study an abrupt PT (4)
from these two perspectives.

One of the models in the more general second
category is the classic Erdős and Rényi (ER) (5)
model, in which the evolution proceeds as fol-
lows: Starting with N isolated nodes, an edge
is connected between a randomly selected un-
connected pair of nodes at each time step. Then,
as the number of connected edges is increased, a
macroscopic cluster is generated at the percola-
tion threshold, and its size is increased continu-
ously. Recently, the ER model was modified by
imposing additionally a so-called product rule or
sum rule, which suppresses the formation of a
large cluster (4). Because of this suppressive bias,
the percolation threshold is delayed; thus, when
the giant cluster eventually emerges, it does so
explosively. Hence, this model has been called
the explosive percolation (EP) model. This result
has attractedmuch interest (6–23), including open-
ings toward other subjects such as synchroniza-
tion phenomena (23), jamming in the Internet (24),
and analysis of real-world networks (25). Initial-
ly, this explosive PT was regarded as a discon-
tinuous transition; however, it was recently found

that the transition is continuous in the thermo-
dynamic limit (9), followed by a mathematical
proof (10) and extensive supporting simulations
(11–13). The random graph in fact represents
the mean-field description of the model on a
Euclidean lattice. EP problems in Euclidean space
have also been considered, and the numerical
results suggest discontinuous percolations (14).
Because of the absence of analytic results, the
order of explosive PT in Euclidean space has not
yet been determined. Under this circumstance, it
is of interest to clarify the order of the explosive
PT in Euclidean space and on random graphs in a
unified manner.

The product rule or sum rule was inspired by
an idea first mathematically developed in (26, 27)
to investigate the power of multiple choices in
random processes. These ideas were refined to
what is called an Achlioptas process, in which
one chooses the best among randomly given mul-
tiple options to avoid the formation of a certain
target pattern (28). Here, we choose the spanning
cluster rather than the giant cluster as the target
pattern of the PT in Euclidean space. Surprisingly,
this choice, while keeping the strategy of choosing

the best among several options, enables us to
determine analytically the order of the explosive
PT for the spanning cluster in the thermodynamic
limit. In this spanning cluster–avoiding (SCA)
model, the transition can be either discontinuous
or continuous below the upper critical dimension,
depending on the number of potential bonds m
introduced in the dynamic rule, and it is contin-
uous above the upper critical dimension (i.e.,
in the mean-field limit). Thus, the appearance of
an abrupt PT can be clarified within a unified
scheme. Moreover, the analytic results and the
methodology used in the SCA model can serve
as a platform for understanding the PTs for other
models showing abrupt transitions, such as the
product rule (4) and the Gaussian model (18). In
fact, the general mechanism underneath the abrupt
PT is that by throttling spanning, the finite clus-
ters can become very dense, so that when they
finally merge to a percolating configuration, a
substantial fraction of sites is immediately in-
volved in the largest cluster.

We begin by introducing an adequate sup-
pressing rule in Euclidean space. Starting with a
d-dimensional regular square lattice of linear size
L having N = Ld nodes and Nb = zN unoccupied
bonds, where z is the coordination number di-
vided by 2, we randomly choose at each time step
m unoccupied bonds. They are classified into two
types: bridge and nonbridge bonds. Bridge bonds
are those that would form a spanning cluster if
occupied. We want to avoid bridge bonds being
occupied, and thus one of the nonbridge bonds is
randomly selected and occupied (Fig. 1A). If the
m potential bonds are all bridge bonds, then one
of them is selected randomly and occupied (Fig.
1B). Once a spanning cluster is created, no more
restrictions are imposed on the occupation of
bonds. This procedure continues until all bonds
are occupied. The selection rule among multiple
options is inspired by the best-of-m model (19).
We denote the number and the fraction of oc-
cupied bonds as ‘ and t = ‘/zN, respectively. By
analogy to ordinary percolation, t can be inter-
preted as an occupation probability, and also as
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A B

Fig. 1. (A) Dynamics of the SCA model on a square lattice. For the case m = 2, two empty bonds, b1 and
b2 (shown as dashed lines), are randomly selected. If one of them is a bridge bond (b2), by which a
spanning cluster would be formed, then the nonbridge bond (b1) is chosen. (B) At t= tc2, two bridge bonds
can be selected for the first time. Then, one of them is taken randomly and a spanning cluster is formed.
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the time of our dynamic system. We define ‘cm
as the number of occupied bonds when a bridge
bond is occupied for the first time. The perco-
lation threshold is tcm ≡ ‘cm/Nb, which form > 1 is
larger than the percolation threshold tc of ordinary
percolation.

We performed extensive numerical simulations
for various system sizes L and parameter values
m to see (i) how the order parameter Gm(t)—the
fraction of sites (nodes) belonging to the span-
ning cluster—behaves as a function of t and m,
and (ii) how the percolation threshold tcm aver-
aged over configurations depends on m, L, and
dimension d. Then, extrapolating these results,
we determined the order of the PT under the sup-
pressing rule in the thermodynamic limit.

We now briefly show numerical results and
then theoretical results, of which derivations are
presented in (29). First, for a given m, Gm(t) = 0
for t < tcm. For tc < t < tcm, a spanning cluster is
not created because of the suppressing rule,
whereas it is formed in ordinary percolation.
However, for m > 1 and t > tcm, once one bridge
bond is occupied, no further bonds are suppressed
and thus the spanning cluster is not modified.
Thus, Gm(t) follows the curve of G1(t) for t > tcm
(Fig. 2A). Therefore, there exists a finite dis-
continuityG1(tcm) at tcm. In the reverse evolution,
dynamics proceeds under the bias of sustaining
the spanning cluster. For this case, evolution
can be understood as the opposite procedure—
that is, from occupation to deletion of bonds.
Then, the spanning cluster can sustain up to 1 – tcm,
but its size reduces to NBB/Nb, where NBB is the
number of bridge bonds. In the thermodynamic
limit, the fraction NBB/Nb is zero in the interval
[1 – tcm, 1 – tc] for d < 6 (20). Thus, the order
parameter behaves as shown in Fig. 2B.

Next, we plot the percolation threshold for
systems with linear size L, tcm(L), versus L for
several values ofm.We find that tcm(L) decreases
and converges to tc as L increases for m = 2, and
that tcm(L) increases and converges to 1 as L
increases for m ≥ 3 in two dimensions. More
generally, we find that there exists a critical value
mc(d ) = d/(d – dBB) for d > dBB, where dBB is the
fractal dimension of the set of bridge bonds (20),
such that if m < mc, tcm(L) decreases and con-
verges to tc as L increases, and if m > mc, tcm(L)
increases and converges to 1 as L increases. This
is shown in Fig. 2C for two dimensions, and in
fig. S2, A and C, for three and four dimensions,
respectively. The analytic solution for mc(d) is
presented in (29). It is estimated that mc(d) ≈
2.55 T 0.01 (d = 2), 5.98 T 0.07 (d = 3), 16.99 T
5.23 (d = 4), 50 (d = 5), and∞ (d = 6). For d = 5,
the standard deviation is larger than the mean
value. dBB is equal to d in d = 6, which is thus
the upper critical dimension, and the formula for
mc is valid for d < dc = 6. To simulate for non-
integer m cases, once we select an unoccupied
bond randomly, and if that bond is a bridge bond,
then it is occupied with the probability q(t)1–(1/m),
where q(t) is the probability that m potential
bonds are all bridge bonds. Otherwise, it is always

occupied. This dynamic process can be imple-
mented without choosing m different unoccupied
bonds, but by choosing just one bond.

Subsequently, we check the convergence rates
for tcm(L) – tc and 1 – tcm(L) as a function of L.We
obtain power-law behaviors, tcmðNÞ − tc e N−1=n<

and1 − tcmðNÞ e N−1=n>,where the exponentsn<
and n> are derived analytically (29) as 1=n< ¼
½1 − ðm=mcÞ�=ðmzþ1Þ and 1=n> ¼ ½ðm=mcÞ −
1�=ðm − 1Þ. The exponent n is rewritten as dn,

where d is the spatial dimension and n is the ex-
ponent characterizing the scaling relation between
length scale L and the occupation probability t.
These results are shown in Fig. 2, D and E, for
two dimensions, and in fig. S2, B andD, for three
and four dimensions, respectively. We show in
(29) that the standard deviation for the statistical
fluctuations of the critical point tcm(N) behaves in
the same manner as s< e N−1=n< for m < mc and
s> e N−1=n> for m > mc, and this is confirmed

Fig. 2. (A) Schematic plot of the spanning cluster size Gm(t) versus t, the number of attached bonds per
Nb for the SCA model, with m = 1 (red), 2 (green), 3 (blue), and 4 (purple). Inset: Same plot with real
data, which are obtained after averaging over the samples containing nonzero Gm(t) at each time t.
Data are obtained for a system size of N = 106 in two dimensions. (B) Hysteresis curve of the order
parameter in forward and backward evolution. (C) Plot of tcm(L) versus L for various values of m.
(D) Plot of tcm(L) – tc for m = 2 versus L, which is the case m < mc. (E) Plot of 1 − tcm(L) for m = 3
and 4 versus L, which is the case m > mc. Solid lines are guidelines with the slopes theoretically
predicted. All data are averaged over 104 configurations.

A B

Fig. 3. (A) Plot of the giant and second largest clusters just before the percolation threshold tc4− for
m = 4. Clusters are compact and the boundary is self-affine, with fractal dimension dBB ≈ 1.22. In
general, for sufficiently large m, only very few clusters remain at tcm−(N). (B) Plot of ns versus s at tcm−
for m = 3, 4, 5, and mc ≈ 2.55 in two dimensions. Simulations are performed for N = 106, and the
data are averaged over 103 configurations. The solid line is a guideline with slope –3.
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numerically in fig. S1B. Note that at a tricritical
point mc, tcmcðL → ∞Þ is finite; for example,
tcmcð∞Þ ≈ 0:72 in two dimensions, which is nei-
ther tc nor unity, and the fluctuation is large and
independent of N.

On the basis of the above results, we come to
the conclusion that for d < dc = 6, the percolation
threshold in the limit N → ∞ is tc for m < mc,
finite tcm atm =mc, and 1 for m > mc [(29), equa-
tions 8 to 10]. For d ≥ dc, mc → ∞, and for finite
m, tcm → tc (29). We conclude that when m is
finite, the PT is continuous in the limit N → ∞.
In statistical physics, it is known that mean-field
results above the upper critical dimension are
equivalent to the solution on sparse randomgraphs.
From this perspective, our result for d > dc is
comparable to previous results for the EP model
(10) on random graphs.

For the SCA model in the regime m > mc at
t−cmðLÞ, we find that there are only a few clusters
and that they are compact (Fig. 3A). Thus, the
cluster size distribution at t−cmðLÞ decays rapidly
in the region of small cluster size and exhibits a
peak in the region of large cluster size (Fig. 3B).
The interface between clusters forms naturally
along the bridge bonds and is self-affine. Because
of the presence of already macroscopically grown
but not yet spanning clusters, the order parameter
is increased drastically when occupying a bridge
bond. Finally, we note that for d ≥ dc, a discon-
tinuous PT can take place if m varies with the
system size N. We obtain a characteristic value
mc ~ ln N such that when m increases with N
slower than mc, the PT is continuous, and when

m increases with N faster than mc, the PT is
discontinuous. They occur at tc and 1, respec-
tively [see (29)].

For the product rule (4), the nature of the PT is
similar to the mean-field behavior of the SCA
model in low dimensions such as d = 2. Under
the best-of-m strategy, when m varies with the
system size as m > mc ~ ln N, clusters are also
compact and the number of clusters is limited to a
finite value, and thus a discontinuous PTcan take
place. However, for a fixed m and in the thermo-
dynamic limit, the PT is continuous [see (29)].
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Emergence of a Measurement Basis
in Atom-Photon Scattering
Yinnon Glickman, Shlomi Kotler, Nitzan Akerman, Roee Ozeri*

After measurement, a wave-function is postulated to collapse on a predetermined set of
states—the measurement basis. Using quantum process tomography, we show how a measurement
basis emerges in the evolution of the electronic spin of a single trapped atomic ion after
spontaneous photon scattering and detection. This basis is determined by the excitation laser
polarization and the direction along which the photon was detected. Quantum tomography
of the combined spin-photon state reveals that although photon scattering entangles all
superpositions of the measurement-basis states with the scattered photon polarization, the
measurement-basis states themselves remain classically correlated with it. Our findings shed light
on the process of quantum measurement in atom-photon interactions.

The interaction between quantum systems
and their environment results in decoher-
ence and reduction of quantum superpo-

sitions to classical statistical ensembles. On the
other hand, probing a fraction of the environment
(environments by nature are too large to be mo-
nitored as a whole) yields information about the

system state. The back-action on the system can
then result in the emergence of a measurement
basis. The measurement basis states will be those
that are classically correlated with the detected
environmentmodes, whereas their superpositions
will be entangled with the environment (1, 2).
Thus, decoherence, measurement, and entangle-
ment all partake in the quantum measurement
process.

Because atomic systems can be well iso-
lated from their environment and coherently
controlled with good fidelity, they are a good

experimental platform for the study of such
fundamental quantum phenomena. In a typical
experiment, a bipartite atomic superposition is
controllably coupled to its environment and mon-
itored in order to investigate different facets of
decoherence and measurement. Examples in-
clude the study of decoherence due to coupling
to engineered reservoirs by using trapped atomic
ions (3) or the observation of the progressive de-
coherence of the measurement apparatus by using
the interaction between atoms and a microwave
cavity (4).

A natural environment for atomic systems is
the electromagnetic vacuum to which they couple
via spontaneous photon scattering. The effect of
light scattering on the coherence of atomic inter-
ferometers showed that scattered photons expose
the path an atom has taken (5–7). Photon scattering
by trapped atomic ions, in which the direction
and magnitude of the internal angular momen-
tum of an atom become correlated with a scattered
photon, results in spin decoherence (8–10). State-
selective florescence by use of resonant laser light
was used tomeasure the internal electronic state of
atoms with a very small error probability (11–13).
Last, the entanglement between a single atom and
a spontaneously scattered photon was recently
observed (10, 14, 15). In all of these experiments,
decoherence, measurement, and entanglement

Department of Physics of Complex Systems,Weizmann Institute
of Science, Rehovot 76100, Israel.
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