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Abstract.  The hypergraph oers a platform to study structural properties 
emerging from more complicated and higher-order than pairwise interactions 
among constituents and dynamical behavior such as the spread of information or 
disease. Recently, a simplicial contagion problem was introduced and considered 
using a simplicial susceptible-infected-susceptible (SIS) model. Although recent 
studies have investigated random hypergraphs with a Poisson-type facet degree 
distribution, hypergraphs in the real world can have a power-law type of facet 
degree distribution. Here, we consider the SIS contagion problem on scale-free 
uniform hypergraphs and find that a continuous or hybrid epidemic transition 
occurs when the hub eect is dominant or weak, respectively. We determine 
the critical exponents analytically and numerically. We discuss the underlying 
mechanism of the hybrid epidemic transition.
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1.  Introduction

In past decades, extensive research has been done on emerging phenomena in complex 
networks, including the spread of epidemic diseases and innovations [1, 2], opinion 
formation [3–5], and many other topics [6–8]. An important issue for such emerging 
phenomena is to understand the origin and properties of phase transitions. Complex 
networks represented by graphs enable researchers to study such issues successfully. 
A graph is a collection of vertices and edges, where an edge represents a pairwise 
interaction between two vertices. In complex systems, however, interactions among 
constituents can be more complex than pairwise. For instance, more than two people 
can collaborate on a team.

A hypergraph is a generalization of a graph whose hyperedge connects two or more 
vertices. Consequently, it can be used to encode complicated social interactions that 
the graph representation cannot. In this hypergraph representation, a hyperedge of 
size n connects n researchers who collaborate on one task, for instance, d authors of 
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a d-author paper in coauthorship networks [9]. This hypergraph representation suc-
cessfully accounts for various types of collaborations [10–17]. In particular, a uniform 
hypergraph is one in which all the hyperedges have the same size. If the size of these 
hyperedges is d, the structure is called a d- uniform hypergraph, or d-hypergraph. 
Uniform hypergraphs can describe systems in which a uniform number of agents inter-
act at the same time. Trivially, a 2-uniform hypergraph reduces to a graph. Owing to 
its simplicity, the uniform hypergraph enables succinct expression of diverse static and 
dynamic problems in terms of linear algebra using the adjacency tensor [25].

A simplicial complex is a particular hypergraph with an additional constraint: if a 
hyperedge is in a simplicial complex, any non-empty subset of vertices in the hyperedge 
is also a hyperedge of the simplicial complex. This requirement makes the simplicial 
complex an appropriate tool for studying systems with high-order interactions, i.e. 
interactions that involve a large number of agents, which also include lower-order inter-
actions. A hyperedge in a simplicial complex is often called a simplex. The simplicial 
complex has been a topic of extensive research. Examples include the collaboration net-
work [18, 19], semantic network [20], cellular network [21], and brain network [22, 23].

A simplicial contagion model was recently introduced [24] to describe a complex con-
tagion process on simplicial complexes; however, the model can also be easily applied to 
general hypergraphs. Here, we consider this simplicial contagion process on d-uniform 
hypergraphs with hyperedges of the same size, which corresponds to (d− 1) dimensional 
pure simplicial complexes. Specifically, we consider the case that infection spreads only 
when all but one of the nodes in the hyperedge are infected. Even though this is a 
simple case with a maximally conservative contagion process, it provides an essential 
factor that leads to a hybrid epidemic transition on hypergraphs. Here, we consider 
a simplicial susceptible-infected-susceptible (s-SIS) model, where infection spreads by 
a simplicial contagion process. Each node is in either the susceptible (S) or infected 
(I) state. A susceptible node becomes infected at a rate β when all the other nodes in 
the same hyperedge are infected. If a node is infected, it changes spontaneously to the 
susceptible state S at a rate µ. This recovery process (I → S) is defined as in the SIS 
model of a network because the recovery process occurs on each node independently, 
making it irrelevant to the structural type of the contagion process.

Here we explore the s-SIS model on scale-free (SF) uniform hypergraphs. We use 
the annealed approximation for the static model of the uniform hypergraph, which is 
extended from the static model of the complex graph [26]. We find analytically that 
there exists a characteristic degree λc = 2 + 1/(d− 1) such that when the exponent λ 
of the degree distribution is 2 < λ � λc, a continuous transition occurs; however, when 
λ > λc, a hybrid phase transition occurs. In this hybrid phase transition, the order 
parameter jumps at a macroscopic scale and then increases continuously with critical-
ity as a control parameter, η ≡ β/µ, is increased.

2. Static model of uniform hypergraph

The static model of a complex network [26, 27] has been widely used to generate SF 
networks owing to its simplicity and analytical tractability. The model has been used 
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to study the q-state Potts model [28], sandpile model [29], spin glasses [30], and many 
other topics [31–34] involving complex networks.

A static model of a uniform hypergraph is a generalization of the static model of 
a complex graph. The static model of a d-uniform hypergraph is generated as follows:

	 (i)	� Set the number of nodes in the system, N.

	 (ii)	� Assign each node a weight p i as

pi =
i−µ

ζN(µ)
� 1− µ

N1−µ
i−µ,� (1)

		 where ζN(µ) =
∑N

j=1 j
−µ, and 0 < µ < 1. The normalization condition 

∑N
i=1 pi = 1 

is satisfied.

	 (iii)	� Select d distinct nodes with probabilities pi1 · · · pid. If the hypergraph does not 
already contain a hyperedge of the chosen d nodes, then add the hyperedge to the 
hypergraph.

	 (iv)	� Repeat step (iii) NK times.

Then, each node i has average degree 〈ki〉. These average degrees have a power-law 
distribution Pd(k) ∼ k−λ with λ = 1 + 1/µ, where the brackets of 〈ki〉 are omitted. The 
degree distribution of the static model of 2-uniform and 3-uniform with 1/µ = 1.3 are 
illustrated in figure 1. The details are presented in appendix A. The minimum degree 

is obtained as kmin = N1−µ〈k〉/
∑N

j=1 j
−µ, which converges to a finite value, λ−2

λ−1
〈k〉, 

where 〈k〉 denotes the mean degree 
∑

k kPd(k). The maximum degree is obtained as 

kmax = N〈k〉/
∑N

j=1 j
−µ, which behaves as λ−2

λ−1
〈k〉N1/(λ−1) ∼ N1/(λ−1). Thus, it diverges 

as N → ∞. Hereafter, the minimum degree is denoted as km. Throughout this algo-
rithm, NK hyperedges are generated.

The probability that a hyperedge composed of d distinct nodes {i1 · · · id} is present 
is given by

fi1···id = 1− (1− d!pi1 · · · pid)
NK � 1− e−d!NKpi1 ···pid ,� (2)

and the probability that a hypergraph G is generated is

P (G) =
∏

ai1···id∈G

(
1− e−d!NKpi1 ···pid

) ∏
ai1···id /∈G

e−d!NKpi1 ···pid .
� (3)

Because d!NKpi1 · · · pid ∼ Ndµ−d+1/ (i1 · · · id) µ, for 0 < µ < d−1
d

, which is equivalent to 

λ > 2 + 1
d−1

,

fi1···id � d!NKpi1 · · · pid ,� (4)
and for 2 < λ < 2 + 1

d−1
,

fi1···id �
{
1 (i1 · · · id)µ � Ndµ−d+1

d!NKpi1 · · · pid (i1 · · · id)µ � Ndµ−d+1 .� (5)

https://doi.org/10.1088/1742-5468/ab5367
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We note that λ = 2 + 1/(d− 1) is a characteristic degree and is denoted as λc, which 
reduces to λc = 3 for an SF graph (d  =  2) and λc < 3 for an SF hypergraph (d  >  2). 
The fraction of nodes that satisfies the second case of equation (5) is proportional to 
1− ANdµ−d, where A is a constant, which converges to one as N → ∞. For d  =  2, the 
static model of the hypergraph reduces to the static model of the graph. For µ = 0, i.e. 
λ = ∞, the expected degree of all the nodes is identical, and the model reduces to an 
Erdős–Renyi-like hypergraph.

3. Simplicial SIS model

A contagion process through an edge on a graph is called a simple contagion pro-
cess. Simple contagion processes on complex graphs have been extensively studied to 
describe the spread of disease [35, 36], adoption of innovation [37], and opinion forma-
tion [3–5]. However, social phenomena that cannot be reduced to simple contagion pro-
cesses have been observed, for instance, belief in bizarre urban legends [38], adoption of 
unproven new technologies [39], willingness to participate in risky migrations [40], and 
the appeal of avant-garde fashion [41], and they depend on contact with multiple early 
adopters. Adoption of behaviors that are costly, risky, or controversial often requires 
armation or reinforcement from an independent source. More complicated models of 
contagion, namely, a complex contagion process, have been proposed to describe such 
social phenomena. Examples include the threshold model [42, 43] and a generalized 
epidemic model [44, 45].

A recently introduced simplicial contagion model [24] represents a complex conta-
gion process on a hypergraph. It applies a maximally conservative contagion process 
on the hypergraph, in which contagion through a hyperedge of size d occurs only when 
all but one of the nodes in the hyperedge are infected. When this condition is met, 
the remaining susceptible node is infected at a rate βd per unit time as illustrated in 
figure 2. For instance, when nodes j  and k are infected in the hyperedge {i, j, k}, node i 
is infected with probability β3δt in duration δt. If only node j  is infected and the other 
node, k, is not, the infection does not spread to node i through the hyperedge.

The complex contagion process in a d-uniform hypergraph is described by an adja-
cency tensor of dimension d. The rate equation is written as follows:

d

dt
qi1 = −µqi1 +

1

(d− 1)!
(1− qi1) βd

∑
i2···id

ai1···idqi2 · · · qid ,� (6)

where qi1 is the probability that a node i1 is infected, and ai1···id is the adjacency tensor, 
where ai1···id = 1 if nodes {i1 · · · id} are fully connected, and otherwise, it is zero.

4. Heterogeneous mean-field theory (annealed approximation)

We use the heterogeneous mean-field theory to study the stationary states of the SIS 
model on SF d-uniform hypergraphs. This theoretical approach has been successful 

https://doi.org/10.1088/1742-5468/ab5367
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for examining the SIS [46, 48] and susceptible-infected-recovered [49] models on SF 
graphs. It represents well the significant eect of a small portion of nodes with large 
degrees. Here, we consider the SIS model on SF d-dimensional uniform hypergraphs. 
We set up a dierential equation for the density of infected nodes of degree k and then 
obtain the self-consistency equation for the stationary solution. We solve a self-consis-
tency equation to calculate the density of infected nodes as a function of infection rate. 
We investigate the properties of the epidemic transition.

4.1. Self-consistency equation

The density of infected nodes with degree k, denoted as ρk, evolves with time as follows:

d

dt
ρk = −µρk + β (1− ρk) kΘ

d−1.� (7)

The first term on the rhs of the above equation  is a loss term associated with the 
recovery process I → S. The second term is a gain term associated with the conta-
gion process (d− 1)I + S → dI . That is, a given node i in state S is changed to state 
I by contagion from d  −  1 infected nodes in a hyperedge of size d at a rate β , which 
is equivalent to βd in the previous notation, in which node i is included. Θ is given by

Θ =

∑∞
k=km

kPh(k)ρk(t)

〈k〉
,� (8)

where kPh(k)ρk/〈k〉 is the probability that a node connected to a randomly chosen 
hyperedge has degree k and is infected at time t. We are interested in the behavior of 
ρk in the stationary state, in which dρk/dt = 0, and we set η ≡ β/µ for convenience.

The stationary solution of ρk is obtained as

ρk =
ηkΘd−1

1 + ηkΘd−1
.� (9)

This solution implies that the infection probability ρk always increases and approaches 
one as k → ∞ for η > 0, and that it is controlled by a single factor, ηΘd−1. The density 
of infected nodes becomes ρ ≡

∑
k Ph(k)ρk, which serves as the order parameter of the 

epidemic transition.
To obtain ρ, we set up a self-consistency equation for Θ in the stationary state as 

follows:

Θ =
1

〈k〉
∑
k

kPh(k)ρk =
1

〈k〉
∑
k

kPh(k)
ηkΘd−1

1 + ηkΘd−1
.� (10)

We define the self-consistency function G(Θ) as

G(Θ) =
1

〈k〉
∑
k

kPh(k)
ηkΘd−1

1 + ηkΘd−1
−Θ� (11)

and then obtain a solution Θ0 of G(Θ0) = 0.
For the power-law degree distribution, Ph(k) = (λ− 1)kλ−1

m k−λ for k � km, and the 

mean degree 〈k〉 = λ−1
λ−2

km,

https://doi.org/10.1088/1742-5468/ab5367
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G(Θ) = (λ− 2)kλ−2
m

∑
k

k1−λ ηkΘd−1

1 + ηkΘd−1
−Θ.� (12)

We treat k as a continuous variable and recast the summation 
∑∞

k=km
· · · as the integra-

tion 
∫∞
km

dk · · ·.

G(Θ) = (λ− 2)kλ−2
m

∫ ∞

km

dkk−λ+1
(
1 +

1

ηkΘd−1

)−1 −Θ� (13)

= (λ− 2)

∫ 1

0

dzzλ−3
(
1 +

z

ηkmΘd−1

)−1 −Θ� (14)

= 2F1

(
λ− 2, 1;λ− 1;− 1

ηkmΘd−1

)
−Θ,� (15)

where we changed the variable k to z as z  =  km/k in equation (14), and 2F1(a, b; c, d) in 
equation (15) is the Gauss hypergeometric function, which is defined as [50]

2F1(a, b; c, z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

dzzb−1(1− z)c−b−1(1− tz)−a.� (16)

To obtain a solution Θ0 of G(Θ0) = 0, we first note that the self-consistency func-
tion has the following properties: G(0) = 0, and G(1) < 0. Second, we examine the 
derivative with respect to Θ, which can be written as

G′(Θ) =
(d− 1)(λ− 2)

kmηΘd(λ− 1)
2F1

(
λ− 1, 2;λ;− 1

kmηΘd−1

)
− 1.� (17)

If limΘ→0 G
′(Θ) > 0, there exists at least one nonzero solution Θ0. Using the asymptotic 

properties of the hypergeometric function, we find that there exists a characteristic 
degree exponent λc = 2 + 1/(d− 1) such that

lim
Θ→0

G′(Θ) =





+∞ for λ < λc

π/(d−1)
sin(π/(d−1))

(kmη)
1/(d−1) − 1 for λ = λc

−1 for λ > λc

.� (18)

The self-consistency function is illustrated in figure 3 for three typical values of λ’s. See 
appendix B for details.

After we obtain Θ0, the density of infection ρ, which serves as the order parameter 
for the epidemic transition, is calculated as follows:

ρ =

∫ ∞

km

dkPh(k)
ηkΘd−1

0

1 + ηkΘd−1
0

= 2F1

(
λ− 1, 1;λ;− 1

kmηΘ
d−1
0

)
.� (19)

We will determine the solution Θ0 and ρ for each case in equation  (18) in the next 
section.

https://doi.org/10.1088/1742-5468/ab5367
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5. Phase transition and critical behavior

The type of phase transition and the epidemic threshold are determined by the behav-
ior of G(Θ), which in turn is determined by limΘ→0 G

′(Θ). Accordingly, we consider the 
epidemic transition separately for each case in equation (18).

5.1. Order parameter

To solve equations  (15) and (19), we use a Taylor expansion of the hypergeometric 
function

2F1

(
λ− 2, 1;λ− 1;− 1

kmηΘd−1

)
=

(λ− 2)π

sin(πλ)
(kmηΘ

d−1)λ−2

+ (λ− 2)
∞∑
n=1

(−1)n
(kmηΘ

d−1)n

n− (λ− 2)
.

�
(20)

	 (i)	� For λ < λc, limΘ→0 G
′(Θ) = ∞. Because G(0) = 0 and G(1) < 0, there exists at 

least one solution Θ0 > 0 for η > 0. Here, we find one such nontrivial stable 
solution Θ > 0, leading to ρ > 0. Therefore, a transition occurs at ηc = 0. As η is 
increased, both ρ and Θ increase, and the transition is continuous. Analytically, 
we find that as η → 0,

G(Θ0; kmη) �
(λ− 2) π

sin (πλ)

(
kmηΘ

d−1
0

)λ−2 −Θ0 = 0,� (21)

Θ0 ∼ η
λ−2

1−(d−1)(λ−2) .� (22)

		 The density of infection ρ can also be calculated from equation (19):

ρ ∼ ηΘd−1
0 ∼ η

1
1−(d−1)(λ−2) .� (23)

		 Thus, the exponent β = 1/[1− (d− 1)(λ− 2)]. In particular, when d  =  2, 
ρ ∼ η1/(3−λ) [46].

	 (ii)	� For λ = λc, the epidemic threshold is finite as ηc =
1
km

[
sin(π/(d−1))

π/(d−1)

]d−1

. Above ηc, 

G′(Θ) > 0, and thus there exists a finite Θ0 satisfying G(Θ0) = 0. As η → η+c , 
both ρ and Θ0 decrease to zero. Thus, a second-order transition occurs at ηc. 
Specifically, the self-consistency function G(Θ) is written in equation (21). In this 
case, we need to consider higher-order terms of G(Θ) as

G(Θ; kmη) �
[
(
η

ηc
)1/(d−1) − 1

]
Θ− kmηΘ

d−1

d− 2

� 1

d− 1

(
η − ηc
ηc

)
Θ− kmηΘ

d−1

d− 2
.

� (24)

https://doi.org/10.1088/1742-5468/ab5367
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		 Therefore,

Θ0 ∼ (η − ηc)
1

d−2 ,� (25)

ρ ∼ (η − ηc)
d−1
d−2 .� (26)

		 Consequently, the critical exponent β = (d− 1)/(d− 2) for d  >  2. When d  =  2, 
ρ ∼ e−1/kmη was obtained [46].

	 (iii)	� For λ > λc, limΘ→0 G
′(Θ) < 0, and thus ηc is finite. In this case, Θ0 and ρ do not 

decrease to zero but are finite as η → η+c . We calculate the asymptotic behaviors 
of Θ0(η)−Θ0(ηc) and ρ(η)− ρ(ηc). At the transition point, G  =  0 and ∂ΘG = 0; 
thus, near this point,

G(Θ; kmη) =
1

2

∂2G

∂Θ2
(∆Θ)2 +

∂G

∂η
∆η + · · · ,� (27)

Θ0(η)−Θ0(ηc) ∼ (η − ηc)
1/2 ,� (28)

ρ(η)− ρ(ηc) ∼ (η − ηc)
1/2 ,� (29)

		 where Θ0(ηc) and ρ(ηc) are calculated using equations  (15) and (19), 
respectively. Therefore, the transition is hybrid with the exponent 
β = 1/2. The density of infection is illustrated for 3- and 4-uniform hypergraph  
in figure 4(a) and (b).

5.2. Susceptibility

The susceptibility is defined as the response of the order parameter, that is, the density 
of infection, to a conjugated field h:

d

dt
ρ = −ρ+ η〈k〉 (1−Θ)Θd−1 + (1− ρ)h.� (30)

The conjugated field h is implemented using the rate of spontaneous infection S → I , 
i.e. the rate at which a susceptible node is changed to an infected state independently of 
the contagion process [47]. The susceptibility is defined as the sensitivity of the density 
of infection to the conjugated field:

χ1 =
∂ρ

∂h
.� (31)

The dierential equation for ρk is written as

dρk
dt

= −ρk + ηk (1− ρk)Θ
d−1 + (1− ρk)h.� (32)

The steady-state solution is obtained as

ρk =
h+ ηkΘd−1

1 + h+ ηkΘd−1
.� (33)

https://doi.org/10.1088/1742-5468/ab5367
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The self-consistency equation is modified as follows:

G(Θ,h) = 2F1

(
λ− 2, 1;λ− 1;− 1 + h

kmηΘd−1

)

+ h
λ− 2

λ− 1

1

kmηΘd−1 2
F1

(
λ− 1, 1;λ;− 1 + h

kmηΘd−1

)
−Θ.

�
(34)

The susceptibility is obtained using the following relation:

χ1 =
∂ρ

∂h

∣∣∣
η,Θ0

− ∂ρ

∂Θ

∣∣∣
η,h

∂G

∂h

∣∣∣
η,Θ0

(
∂G

∂Θ

∣∣∣
η,h

)−1

.� (35)

Detailed calculations of the susceptibility are presented in appendix C.
The results are as follows: (i) For λ � λc, the susceptibility converges to a finite 

value near the critical point, and therefore the critical exponent γ1 = 0.
(ii) For λ > λc, the susceptibility diverges as (η − ηc)

−γ1 with 
γ1 = 1/2. The susceptibility is illustrated for 3- and 4-uniform hypergraph in  
figure 4(c) and (d).

5.3. Correlation size

In the static model, the maximum degree diverges as kmax ∼ N1/(λ−1), which is called 
the natural cut-o [27]. We assign a weight p i to each node using equation (1). The 
exponent of the hyperedge degree distribution is λ = 1 + 1/µ.

The self-consistency equation for finite systems reduces to

GN(Θ) =
1

N 〈k〉

N∑
i=1

ηΘd−1k2
i

1 + ηΘd−1ki
−Θ,� (36)

where ki =
Ni−µ∑
j j

−µ. Further,

1

N

N∑
i=1

ηΘd−1k2
i

1 + ηΘd−1ki
P (ki)dki �

∫ kmax

kmin

ηΘd−1k2
i

1 + ηΘd−1ki
P (ki)dki,� (37)

where

kmin =

[
1

N

N∑
j=1

(
j

N

)−µ
]−1

�
∫ 1

0

x−µdx−
∫ 1/N

0

x−µdx� (38)

=
λ− 2

λ− 1
〈k〉

(
1−N−λ−2

λ−1

)
,� (39)

kmax = kminN
1

λ−1 .� (40)

Therefore,

GN(Θ) � λ− 2

k−λ+2
m

∫ kmax

kmin

dk
ηk−λ+2Θd−1

1 + ηkΘd−1
−Θ� (41)
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� G(Θ) + kmN
−λ−2

λ−1
ηk−λ+2

m Θd−1

1 + ηkmΘd−1

−N−λ−2
λ−1 2F1

(
λ− 2, 1;λ− 1;− 1

kmN1/(λ−1)ηΘd−1

)
,

�

(42)

where G(Θ) is the self-consistency function of the infinite system provided in equa-
tion (15). The solution of GN(Θ) = 0 yields the density of infected nodes in finite sys-
tems. This function is illustrated in figure 5(a) for a 3-uniform hypergraph with λ = 2.8.

By expanding the finite-size self-consistency function in equation (42) for large N, 
we can calculate the critical exponent of the correlation size, ν̄, which is defined by the 
relation ηc(N)− ηc(∞) ∼ N−1/ν̄.

	 (i)	� For λ < λc, λc = 0, and thus λc(N) is expected to be close to zero for large N. 
Therefore, for large N,

N−(λ−2)/(λ−1)
2F1

(
λ− 2, 1;λ− 1;− 1

kmN1/(λ−1)λΘd−1

)
� N−(λ−2)/(λ−1),� (43)

		 because the hypergeometric function converges rapidly to 1. The finite-size epi-
demic threshold is obtained when the maximum value of the function given by 
equation (21) is equal to that given by equation (43). Therefore,

ηc(N) ∼ N−[1−(d−1)(λ−2)]/(λ−1).� (44)

		 The inverse of the correlation size exponent is 1/ν̄ = [1− (d− 1)(λ− 2)] /(λ− 1), 
which approaches zero as λ → λc = 2 + 1/(d− 1).

	 (ii)	� For λ = λc, (λ− λc) → 0, and Θ → 0 with λc > 0. The self-consistency function 
near the critical point is

GN(Θ) = A (λ− λc)Θ− BΘd−1 −N−(λ−2)/(λ−1),� (45)

		 where A and B are positive constants. Therefore,

(η − ηc) ∼ N
− d−2

(d−1)2(λ−1) .� (46)

		 The inverse of the correlation size exponent becomes 1/ν̄ = (d− 2)/[(d− 1)2(λ− 1)].

	 (iii)	� For λ > λc, the self-consistency function in finite systems becomes

GN(Θ) = G(Θ) +
∂G

∂λ
(λ− λc)−N−(λ−2)/(λ−1).� (47)

		 Therefore,

(η − ηc) ∼ N− λ−2
(λ−1) .� (48)

		 The inverse of the correlation size exponent is 1/ν̄ = (λ− 2)/(λ− 1).
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In this section, we obtained the critical exponents thorough the heterogeneous 
mean-field theory. The results are summarized in table  1. Continuous (discontinu-
ous) transition occurs for λ � λc (λ > λc). At λ = λc, this is the boundary point where 
transition type and universality class are changed. Thus, λ = λc can be regarded as the 
tricritical point.

6. Numerical simulations

6.1. Numerical methods

We perform numerical simulations using the sequential updating algorithm. The s-SIS 
model is simulated on an SF uniform hypergraph with N nodes. Initially, all the nodes 
are assigned to fully infected states. At each time step t, the following processes are 
applied:

Figure 1.  Degree distribution of the static model of (a) 2-uniform (graph) and (b) 
3-uniform hypergraph generated with the fitness exponent 1/µ = 1.3. The system 
size N is given as N = 105, 106, and 107. As the system size is increased, the tail 
part of the degree distribution is extended, and power-law behavior with exponent 
λ = 1 + 1/µ = 2.3 is confirmed.

Figure 2.  Schematic illustration of the simplicial contagion process through 
hyperedges of size 3 in (a) and (b), and 4 in (c) and (d). The susceptible and 
infected nodes are depicted as white open circles and red filled circles, respectively. 
When d  −  1 of d nodes in a hyperedge are infected, the infection spreads to the 
remaining susceptible node through the hyperedge at a rate βd.

https://doi.org/10.1088/1742-5468/ab5367
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	 (i)	� With probability κ ≡ η/(1 + η), we attempt the contagion process. We select a 
random hyperedge, and if the hyperedge satisfies the contagion condition, i.e. if 
all but one node of the hyperedge is in the infected state, the susceptible node in 
the hyperedge enters the infected state.

Figure 3.  Self-consistency function G(Θ) of SF 3-uniform hypergraphs with degree 
exponent (a) λ = 2.2, (b) 2.5, and (c) 2.8, corresponding to cases (i) λ < λc, (ii) 
λ = λc, and (iii) λ > λc in the main text. The derivative of the function with respect 
to Θ at Θ = 0 (a) diverges, (b) is positive, and (c) is negative as Θ approaches zero.
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Figure 4.  Density of infected nodes versus control parameter λ for various degree 
exponent values λ for (a) d  =  3 and (c) d  =  4. Susceptibility versus control parameter 
λ for various λ values for (b) d  =  3 and (d) d  =  4. For λ = 2.2 and λ = 2.4, the 
transition point is λc = 0, and for λ = 2.5, 2.6, and 2.8, λc is finite. For λ = 2.2, 2.4, 
and 2.8, the transition is second-order, and for λ = 2.6 and 2.8, the transition is 
hybrid. For λ � λc, the susceptibility converges to a finite value 1 + d(d− 2). For 
λ > λc, the susceptibility diverges as λ → λ+

c .

Figure 5.  (a) Self-consistency function GN(Θ) in finite systems versus Θ for 
3-uniform hypergraphs with λ = 2.8. (b) Deviation λc(N)− λc(∞) versus system 
size N for various degree exponents λ. Red dotted lines denote λ < λc = 2.5; black 
solid lines denote λ = λc; and blue dashed lines denote λ > λc.
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	 (ii)	� With the remaining probability 1− κ = 1/(1 + η), by contrast, we attempt the 
recovery process. A node is chosen at random, and if the chosen node is in the 
infected state, we change it to the susceptible state.

	 (iii)	� If the number of active sites is zero, the simulation ends. Otherwise, the time t 
is updated as t → t+ 1/N  in each step. Hereafter, we use the rescaled control 
parameter κ instead of η.

A Markov process with an absorbing state in a finite-size system will ultimately reach 
the absorbing state. If the system has a nonzero probability of reaching the absorb-
ing state after some time, the probability that the system remains active decreases 
exponentially and therefore converges to zero. To investigate the stationary state in a 
finite-size system in an absorbing state, samples surviving after a suciently long time 
are often taken as averages [52]. This method is not computationally ecient, because 
the samples that have reached the absorbing state cannot be used to calculate the sta-
tistical properties of the stationary state. An alternative method is the quasistationary 
method [53, 54]. In this method, if the system reaches an absorbing state, it reverts to 
an active configuration selected randomly from the history of the simulation. After a 
suciently long time, the system and the history simultaneously reach the stationary 
ensemble. In simulations, a list of 100 previously visited configurations, is tracked and 
updated at each time step.

We performed the simulations in annealed hypergraphs. An annealed hypergraph 
is a mean-field theoretical treatment of an ensemble of hypergraphs. We replaced the 
adjacency tensor with its ensemble average:

aα = āα = fi1···id .� (49)
The probability of a particular hyperedge fi1···id in the static model of a uniform 
hypergraph was introduced in section 2. For the probability of a hyperedge, we used 
NKpi1 · · · pid, which is a valid approximation, even in the thermodynamic limit, as 
long as it is finite. This is a generalization of an annealed network. The annealed net-
work, which was introduced as a randomly selected neighboring network [51], has been 
widely used to study dynamical processes because heterogeneous mean-field theory and 
other mean-field theoretical approaches are exact in annealed networks [53, 55–57].

6.2. Numerical results

6.2.1.  Static exponents.  From section 5, the order parameter behaves as

ρ(κ) =

{
0 for κ < κc,

ρc + r(κ− κc)
β for κ � κc,

�
(50)

Table 1.  Analytic solutions of the critical exponents for the s-SIS model.

λ ηc ρc β γ1 1/ν̄

λ < λc 0 0 1
1−(d−1)(λ−2)

0 1−(d−1)(λ−2)
λ−1

λ = λc Finite 0 d−1
d−2

0 d−2
(d−1)2(λ−1)

λ > λc Finite Finite 1
2

1
2

λ−2
λ−1
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where ρc is zero (finite) for λ � λc (> λc) and κc is zero (finite) for λ < λc (� λc) in the 
thermodynamic limit. Moreover, two types of susceptibilities are defined as follows: 
χ1 ≡ ∂ρ/∂h ∼ (κ− κc)

−γ1 and χ2 = N (〈ρ2〉 − 〈ρ〉2)/〈ρ〉 ∼ (κ− κc)
−γ2. The correlation 

size exponent ν̄ is defined as κc(N)− κc(∞) ∼ N−1/ν̄.
We performed simulations on a hypergraph with d  =  3 and the characteristic 

degree λc = 2.5. Because the simulation results should be sensitive near λc, we chose 
λ ∈ {2.1, 2.9, 3.5}. We note that for the static model, a degree-degree correlation exists 
for 2 < λ < 3. Thus, the exponent ν̄ is expected to be dierent for λ = 2.9 and 3.5, 
whereas the other critical exponents, β and γ, would be similar. Using finite-size scaling 
(FSS) analysis, we obtain the following:

	 (i)	� For λ = 2.1 < λc, we plot ρNβ/ν̄ versus κN1/ν̄ for dierent system sizes but a fixed 
d  =  3 in figure 6(a). We find that the data points for dierent system sizes col-
lapse onto a single curve for β = 1.25± 0.02 and ν̄ = 1.59± 0.01. β corresponds to 
the analytical result of equation (23), but ν̄ is dierent with the analytical result 
of equation (44). This discrepancy will be discussed in section 7. For χ2(κ), we 
plot χ2N

−γ2/ν̄ versus (κ− κc)N
1/ν̄ for γ2 = 0.15± 0.01 and ν̄ = 1.59 in figure 6(b). 

Data points for systems of dierent sizes collapse well onto a single curve.

	 (ii)	� For λ = 2.9 > λc, the transition point κc and ρc are numerically estimated to 
be ≈0.494 62 and ≈0.538 77, respectively, by solving the self-consistency equa-
tion  (equation (15)) and using equation  (19). On the basis of these values, we 
plot (ρ− ρc)N

β/ν̄ versus (κ− κc)N
1/ν̄ for β = 0.52± 0.02 and ν̄ ≈ 2.11± 0.01 for 

dierent system sizes N in figure 6(c). Thus, we confirm that the numerically 
estimated values are marginally consistent with the theoretical values from 
equations (29) and (48). In figure 6(d), we plot the rescaled quantity χ2N

−γ2/ν̄ 
versus (κ− κc)N

1/ν̄ for dierent system sizes. We estimated γ2 = 0.62± 0.01 and 
ν̄ = 2.11 using FSS analysis. Using the plot of χ1N

−γ1/ν̄ versus (κ− κc)N
1/ν̄ for 

dierent system sizes in figure 7, we estimated γ1 = 0.48± 0.02.

	 (iii)	� For λ = 3.5, we plot (ρ− ρc)N
β/ν̄ versus (κ− κc)N

1/ν̄ for dierent system sizes N 
for β = 0.50± 0.01 and ν̄ = 1.63± 0.01 in figure 6(e). For χ2(κ), we plot χ2N

−γ2/ν̄ 
versus (κ− κc)N

1/ν̄ for γ2 = 0.62± 0.01 and ν̄ = 1.63. The data collapse well 
onto a single curve, as shown in figure 6(f). We plot χ1N

−γ1/ν̄ versus (κ− κc)N
1/ν̄ 

in figure 7. We estimated γ1 = 0.50± 0.02. The obtained values, β = 0.5± 0.01, 
γ2 = 0.62± 0.01, and ν̄ = 1.63± 0.01, marginally satisfy the hyperscaling relation 
ν̄ = 2β + γ2.

The correlation size exponent is measured directly as κc(N)− κc(∞) ∼ N−1/ν̄ with 
1/ν̄ = 0.63, 0.47, and 0.61 in figure 8, which correspond to ν̄ � 1.59, 2.13, and 1.64 for 
λ = 2.1, 2.9, and 3.5, respectively. These values are in reasonably good agreement with 
the values ν̄ = 1, 59± 0.01, 2.11± 0.01, and 1.63± 0.01 obtained by FSS analysis in 
figure 6. We summarize the numerical values in table 2.

6.2.2. Dynamic exponents.  Next, we also performed dynamical FSS analysis to obtain 
the dynamic exponents. We consider the temporal dynamics of the density of infec-
tion starting from a fully infected state. The average density of infection at time t over 
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many realizations, ρ(t), shows critical behavior when the contagion rate is equal to 
the critical value κc. We choose λ ∈ {2.9, 3.5} because for λ < λc, the critical point κc 
becomes zero, and only a decay process remains. In this section, we change the notation 
of ν̄ to ν̄⊥ as a counterpart of the mean survival time exponent ν‖.

	 (i)	� For λ = 2.9, we plot (ρ− ρc)t
δ versus tN−z̄ for dierent system sizes N in 

figure  9(a). Here, the dynamical critical exponents are defined conventionally 

Figure 6.  Finite-size scaling analysis of the s-SIS model on SF 3-uniform hypergraphs 
with three degree exponents: λ = 2.1 < λc (a) and (b), λ = 2.9 > λc (c) and (d), 
and λ = 3.5 > λc (e) and (f). Scaling plots of (ρ− ρc)N

β/ν̄ versus (κ− κc)N
1/ν̄ are 

drawn, with (a) β = 1.25 and ν̄ = 1.59, (c) β = 0.52 and ν̄ = 2.11, and (e) β = 0.5 
and ν̄ = 1.63. Scaling plots of χ2N

−γ2/ν̄ versus (κ− κc)N
1/ν̄ are drawn, with (b) 

γ2 = 0.15 and ν̄ = 1.59, (d) γ2 = 0.62 and ν̄ = 2.11, and (f) γ2 = 0.62 and ν̄ = 1.63.
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as δ = β/ν‖ and z̄ ≡ ν‖/ν̄ = ν‖/dν⊥. In figure 9(b), we plot the rescaled quantity 
(ρ− ρc)t

δ versus t(κ− κc)N
ν‖. ν‖ is the mean survival time exponent associated 

with the relaxation time. We estimated the dynamical critical exponents as 
δ = 0.89± 0.02, z̄ = 0.26± 0.01, and ν‖ = 0.56± 0.01.

	 (ii)	� For λ = 3.5, we used a method similar to that used in (i). We estimated the dynam-
ical critical exponents as δ = 0.93± 0.02, z̄ = 0.32± 0.01, and ν‖ = 0.53± 0.01.

The critical exponents {δ, z̄, ν‖} obtained using dynamical FSS and the {β, ν̄, γ2} 
values obtained using steady-state FSS are comparable.

Figure 7.  Scaling plots of χ1N
−γ1/ν̄ versus (κ− κc)N

1/ν̄ with degree exponents (a) 
λ = 2.9 and (b) λ = 3.5, with (a) γ1 = 0.48 and ν̄ = 2.11, (b) γ1 = 0.50 and ν̄ = 1.63.

Figure 8.  Plots of κc(N)− κc(∞) versus N on double-logarithmic scale for (a) 
λ = 2.1, (b) λ = 2.9, and (c) λ = 3.5. Slope of each plot represents −1/ν̄.

Table 2.  Numerical list of critical exponents of the s-SIS model obtained by the 
FSS method. Theoretical values calculated in section 5 are presented in parentheses.

λ κc ρc β γ1 γ2 ν̄

2.1 0 0 1.25± 0.02 0 0.15± 0.01 1.59± 0.01
(1.25) (0) (1.35)

2.9 0.494 62 0.268 306 0.52± 0.02 0.48± 0.02 0.62± 0.01 2.11± 0.01
(0.50) (0.50) (2.11)

3.5 0.538 77 0.395 602 0.50± 0.01 0.50± 0.02 0.62± 0.01 1.63± 0.01
(0.50) (0.50) (1.67)
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7. Summary

In summary, we investigated the phase transitions and critical phenomena of the s-SIS 
model in SF uniform hypergraphs. We proposed a static model of the uniform hyper-
graph, which is a generalization of the static model of a complex network. We showed 
that the model indeed exhibits a degree distribution with a power-law tail.

Using the heterogeneous mean-field theory, we analytically studied the s-SIS model. 
We showed that the system exhibits rich phase transition and critical phenomena when 
the exponent of the degree distribution λ is larger than two. There exists a characteris-
tic degree λc = 2 + 1/(d− 2). For λ < λc, the epidemic threshold vanishes. Thus, there 
exists a stationary state for an arbitrarily small contagion rate in the thermodynamic 

Figure 9.  Scaling plots of the density of infection ρ(t) starting from the fully 
infected state versus tN−z̄ (a) and (c) and t(κ− κc)

ν‖ (b) and (d) for λ = 2.9 (a) and 
(b) and λ = 3.5 (c) and (d). The dynamical critical exponents δ = 0.89, z̄ = 0.26, 
and ν‖ = 0.56 are obtained from (a) and (b), and δ = 0.86, z̄ = 0.32, and ν‖ = 0.53 
are obtained from (c) and (d).

Table 3.  Dynamic critical exponents of s-SIS model obtained using the dynamical 
FSS method.

λ δ z̄ ν‖

2.9 0.89± 0.02 0.26± 0.01 0.56± 0.01
3.5 0.93± 0.02 0.32± 0.01 0.53± 0.01
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limit. The susceptibility χ2, the fluctuations of the order parameter, diverges as κ → 0. 
Thus, a second-order contagion transition occurs at κc = 0. For λ = λc, the epidemic 
threshold becomes finite and the susceptibility χ2 diverges as κ → κc. Thus, a second-
order contagion transition occurs. For λ > λc, the system undergoes a hybrid phase 
transition at a finite transition point κc. The susceptibility diverges at the transition 
point. We note that in a previous study [24], a discontinuous contagion transition was 
observed owing to higher-order interactions in a dierent model; however, we observed 
a hybrid phase transition, which exhibits a discontinuous transition with criticality at 
the same transition point. We also notice that for the static model, when the degree 
exponent is 2 < λ � 3, a degree-degree correlation exists. Consequently, the correlation 
size exponent ν̄⊥ diers from that for λ > 3. Accordingly, whereas the measured criti-
cal exponents β and γ are close to each other for λc < λ < 3 and λ > 3, the dynamic 
exponents δ and z̄  associated with ν̄⊥ and ν‖ are dierent.

We performed numerical simulations of annealed SF 3-uniform hypergraphs with 
λc = 2.5 and the degree exponents λ = 2.1, 2.9, and 3.5. Using dynamical FSS and 
steady-state FSS, the critical exponents {δ, z̄, ν‖} and {β, ν̄⊥, γ1, γ2} are listed in 
tables 2 and 3, respectively. The two methods are consistent within the error bars. 
Finally, the numerical values of the critical exponents {β, ν̄⊥, γ2} are consistent with 
the theoretical values based on the heterogeneous mean-field theory in section 5. They 
are listed in table 1.
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Appendix A. Degree distribution of static model

Throughout this construction algorithm, a node is selected with probability 
1− (1− pi)

d � dpi. Therefore, the probability that a node i has degree k follows the 

Poisson distribution: P
(R)
i (k) = 〈ki〉k exp (−〈ki〉) /k!. The degree distribution is then

P (R)(k) =
1

N

∑
Pi(k) �

∫ kmax

kmin

d〈ki〉P (〈ki〉)
〈ki〉k exp (−〈ki〉)

k!
� (A.1)

=
(λ− 1)

〈ki〉−λ+1
min − 〈ki〉−λ+1

max

1

k!

∫ 〈ki〉max

〈ki〉min

d 〈ki〉 〈ki〉−λ+k exp (−〈ki〉) .� (A.2)

In the thermodynamic limit, 〈ki〉max → ∞ and 〈ki〉min → λ−2
λ−1

〈k〉. Further,

lim
N→∞

P (R)(k) = (λ− 1) kλ−1
m

Γ (−λ+ k + 1, km)

Γ(k + 1)
∼ k−λ

� (A.3)

for suciently large k. Therefore, the tail of the degree distribution of a static model of 
a uniform hypergraph follows a power law.
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Appendix B. Asymptotic behavior of G′(Θ)

Using the identity

2F1 (a, b; c;−z) =
z−aΓ(c)Γ(b− a)2F1

(
a, a− c+ 1; a− b+ 1;−1

z

)
Γ(b)Γ(c− a)

+
z−bΓ(c)Γ(a− b)2F1

(
b, b− c+ 1;−a+ b+ 1;−1

z

)
Γ(a)Γ(c− b)

,

�

(B.1)

we can obtain the asymptotic behavior of the hypergeometric function 2F1 (a, b; c;−z) 
as z → ∞:

2F1 (a, b; c;−z) ∼

{
Γ(c)Γ(b−a)
Γ(b)Γ(c−a)

z−a a < b
Γ(c)Γ(a−b)
Γ(a)Γ(c−b)

z−b a > b
.� (B.2)

The formula also allows us to calculate the next dominant terms proportional to z−a−1, 
z−a−2, ⋯  and z−b−1, z−b−2, ⋯. As Θ → 0,

G′(Θ) ∼

{
π(d−1)(λ−2)2

sin(πλ)
(kmλ)

λ−2 Θ(d−1)λ−(d−1)−d − 1 λ < 3
(d−1)(λ−2)

(λ−3)
kmλΘ

d−2 − 1 λ > 3
.� (B.3)

Then we obtain equation (18).

Appendix C. Susceptibility

To calculate equation (35), we first take the derivatives and then set h  =  0 and Θ = Θ0:

∂ρ

∂h

∣∣∣
η,Θ

= 1− 2F1

(
λ− 1, 1;λ;− 1

kmηΘ
d−1
0

)

− λ− 1

λ

1

kmηΘ
d−1
0

2F1

(
λ, 2;λ+ 1;− 1

kmηΘ
d−1
0

)
,

�
(C.1)

∂ρ

∂Θ

∣∣∣
η,h

=
(d− 1)(λ− 1)

λ

1

kmηΘd
0
2F1

(
λ, 2;λ+ 1;− 1

kmηΘ
d−1
0

)
,� (C.2)

∂G

∂h

∣∣∣
η,Θ

=
λ− 2

λ− 1

1

kmηΘ
d−1
0

[
2F1

(
λ− 1, 1;λ;− 1

kmηΘ
d−1
0

)

− 2F1

(
λ− 1, 2;λ;− 1

kmηΘ
d−1
0

)]
,

�

(C.3)

∂G

∂Θ

∣∣∣
η,h

=
(d− 1)(λ− 2)

λ− 1

1

kmηΘd
0
2F1

(
λ− 1, 2;λ;− 1

kmηΘ
d−1
0

)
− 1.� (C.4)
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Using equation (20), we obtain the following:

	 (i)	� For λ < λc, equation  (C.1) becomes 1, and all other terms vanish in the limit 
Θ0 → 0 and η → 0. Therefore, χ1 = 1 near the critical point, and the critical 
exponent of the susceptibility, γ1, is zero.

	 (ii)	� For λ = λc, equations (C.1)–(C.4) in the limit Θ0 → 0 and η → ηc are given as

∂ρ

∂h

∣∣∣
η,Θ0

= 1,
∂ρ

∂Θ

∣∣∣
η,h

∼ d(d− 2)
η − ηc
ηc

,� (C.5)

∂G

∂h

∣∣∣
η,Θ0

∼ 1,
∂G

∂Θ

∣∣∣
η,h

∼ −d− 2

d− 1

η − ηc
ηc

.� (C.6)

The susceptibility is given by χ1 ∼ 1 + d(d− 1).
	 (iii)	� For λ > λc, equation (C.4) exhibits singular behavior, and equations (C.1)–(C.3) 

are finite. Hence, the susceptibility diverges near the critical point. Equation (C.4) 
is calculated as

∂G

∂Θ
∼ ∂2G

∂Θ2
(∆Θ0) .� (C.7)

Inserting equation  (28) into equation  (C.7) yields χ1 ∼ (η − ηc)
−1/2, and therefore 

γ1 = 1/2.
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