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Abstract. The hypergraph offers a platform to study structural properties
emerging from more complicated and higher-order than pairwise interactions
among constituents and dynamical behavior such as the spread of information or
disease. Recently, a simplicial contagion problem was introduced and considered
using a simplicial susceptible-infected-susceptible (SIS) model. Although recent
studies have investigated random hypergraphs with a Poisson-type facet degree
distribution, hypergraphs in the real world can have a power-law type of facet
degree distribution. Here, we consider the SIS contagion problem on scale-free
uniform hypergraphs and find that a continuous or hybrid epidemic transition
occurs when the hub effect is dominant or weak, respectively. We determine
the critical exponents analytically and numerically. We discuss the underlying
mechanism of the hybrid epidemic transition.
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1. Introduction

In past decades, extensive research has been done on emerging phenomena in complex
networks, including the spread of epidemic diseases and innovations [1, 2], opinion
formation [3-5], and many other topics [6-8]. An important issue for such emerging
phenomena is to understand the origin and properties of phase transitions. Complex
networks represented by graphs enable researchers to study such issues successfully.
A graph is a collection of vertices and edges, where an edge represents a pairwise
interaction between two vertices. In complex systems, however, interactions among
constituents can be more complex than pairwise. For instance, more than two people
can collaborate on a team.

A hypergraph is a generalization of a graph whose hyperedge connects two or more
vertices. Consequently, it can be used to encode complicated social interactions that
the graph representation cannot. In this hypergraph representation, a hyperedge of
size n connects n researchers who collaborate on one task, for instance, d authors of
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a d-author paper in coauthorship networks [9]. This hypergraph representation suc-
cessfully accounts for various types of collaborations [10-17]. In particular, a uniform
hypergraph is one in which all the hyperedges have the same size. If the size of these
hyperedges is d, the structure is called a d uniform hypergraph, or d-hypergraph.
Uniform hypergraphs can describe systems in which a uniform number of agents inter-
act at the same time. Trivially, a 2-uniform hypergraph reduces to a graph. Owing to
its simplicity, the uniform hypergraph enables succinct expression of diverse static and
dynamic problems in terms of linear algebra using the adjacency tensor [25].

A simplicial compler is a particular hypergraph with an additional constraint: if a
hyperedge is in a simplicial complex, any non-empty subset of vertices in the hyperedge
is also a hyperedge of the simplicial complex. This requirement makes the simplicial
complex an appropriate tool for studying systems with high-order interactions, i.e.
interactions that involve a large number of agents, which also include lower-order inter-
actions. A hyperedge in a simplicial complex is often called a simplex. The simplicial
complex has been a topic of extensive research. Examples include the collaboration net-
work [18, 19], semantic network [20], cellular network [21], and brain network [22, 23].

A simplicial contagion model was recently introduced [24] to describe a complex con-
tagion process on simplicial complexes; however, the model can also be easily applied to
general hypergraphs. Here, we consider this simplicial contagion process on d-uniform
hypergraphs with hyperedges of the same size, which corresponds to (d — 1) dimensional
pure simplicial complexes. Specifically, we consider the case that infection spreads only
when all but one of the nodes in the hyperedge are infected. Even though this is a
simple case with a maximally conservative contagion process, it provides an essential
factor that leads to a hybrid epidemic transition on hypergraphs. Here, we consider
a simplicial susceptible-infected-susceptible (s-SIS) model, where infection spreads by
a simplicial contagion process. Each node is in either the susceptible (S) or infected
(I) state. A susceptible node becomes infected at a rate S when all the other nodes in
the same hyperedge are infected. If a node is infected, it changes spontaneously to the
susceptible state S at a rate p. This recovery process (I — S) is defined as in the SIS
model of a network because the recovery process occurs on each node independently,
making it irrelevant to the structural type of the contagion process.

Here we explore the s-SIS model on scale-free (SF) uniform hypergraphs. We use
the annealed approximation for the static model of the uniform hypergraph, which is
extended from the static model of the complex graph [26]. We find analytically that
there exists a characteristic degree A, =2+ 1/(d — 1) such that when the exponent A
of the degree distribution is 2 < A < A., a continuous transition occurs; however, when
A > A., a hybrid phase transition occurs. In this hybrid phase transition, the order
parameter jumps at a macroscopic scale and then increases continuously with critical-
ity as a control parameter, n = (/u, is increased.

2. Static model of uniform hypergraph

The static model of a complex network [26, 27] has been widely used to generate SF
networks owing to its simplicity and analytical tractability. The model has been used
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to study the ¢-state Potts model [28], sandpile model [29], spin glasses [30], and many
other topics [31-34] involving complex networks.

A static model of a uniform hypergraph is a generalization of the static model of
a complex graph. The static model of a d-uniform hypergraph is generated as follows:

(i) Set the number of nodes in the system, N.

(ii) Assign each node a weight p; as

TG TN ®

where (y(p) = Zjvzl j* and 0 < p < 1. The normalization condition Efil pi=1
is satisfied.

(iii) Select d distinct nodes with probabilities p;, - - - p;,. If the hypergraph does not
already contain a hyperedge of the chosen d nodes, then add the hyperedge to the
hypergraph.

(iv) Repeat step (iii) NK times.

Then, each node i has average degree (k;). These average degrees have a power-law
distribution P;(k) ~ k= with A = 1 + 1/u, where the brackets of (k;) are omitted. The
degree distribution of the static model of 2-uniform and 3-uniform with 1/ = 1.3 are
illustrated in figure 1. The details are presented in appendix A. The minimum degree

is obtained as Ay, = Nl’“<k:>/2§.vzl j~*, which converges to a finite value, 3=2(k),
where (k) denotes the mean degree ), kP,(k). The maximum degree is obtained as
Emax = N<k>/2jv:1 j~#, which behaves as 3=2(k)N'/*A~1D ~ NV/(*=1. Thus, it diverges
as N — oo. Hereafter, the minimum degree is denoted as k,. Throughout this algo-
rithm, NK hyperedges are generated.

The probability that a hyperedge composed of d distinct nodes {i; - - - i4} is present
is given by

fiyig=1—(1—d'p;, - ~pid)NK ~ ] — e MNEPi Py (2)
and the probability that a hypergraph G is generated is

P(G) = H (1 — e N Kiypiy) H o dINKpi, i,

ail"’ideG ailu.id%G

3)

Because dINKp;, -+ pi, ~ NW=/ (i1 -dg) #, for 0 < p < 41, which is equivalent to
A> 24

firiy = dINKp;, -+ py, (4)
andfor2<>\<2+ﬁa
fo o d ! (i1 )" < NI
i1-ig leKp“ © e Diy <Z1 e id)l" > Ndu—d+1 . (5)
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We note that A =2+ 1/(d — 1) is a characteristic degree and is denoted as A., which
reduces to A\. = 3 for an SF graph (d=2) and A. < 3 for an SF hypergraph (d > 2).
The fraction of nodes that satisfies the second case of equation (5) is proportional to
1 — ANd#—d where A is a constant, which converges to one as N — co. For d = 2, the
static model of the hypergraph reduces to the static model of the graph. For u = 0, i.e.
A = 00, the expected degree of all the nodes is identical, and the model reduces to an
Erdés—Renyi-like hypergraph.

3. Simplicial SIS model

A contagion process through an edge on a graph is called a simple contagion pro-
cess. Simple contagion processes on complex graphs have been extensively studied to
describe the spread of disease [35, 36], adoption of innovation [37], and opinion forma-
tion [3-5]. However, social phenomena that cannot be reduced to simple contagion pro-
cesses have been observed, for instance, belief in bizarre urban legends [38], adoption of
unproven new technologies [39], willingness to participate in risky migrations [40], and
the appeal of avant-garde fashion [41], and they depend on contact with multiple early
adopters. Adoption of behaviors that are costly, risky, or controversial often requires
affirmation or reinforcement from an independent source. More complicated models of
contagion, namely, a complex contagion process, have been proposed to describe such
social phenomena. Examples include the threshold model [42, 43] and a generalized
epidemic model [44, 45].

A recently introduced simplicial contagion model [24] represents a complex conta-
gion process on a hypergraph. It applies a maximally conservative contagion process
on the hypergraph, in which contagion through a hyperedge of size d occurs only when
all but one of the nodes in the hyperedge are infected. When this condition is met,
the remaining susceptible node is infected at a rate [; per unit time as illustrated in
figure 2. For instance, when nodes j and k are infected in the hyperedge {i, 7, k}, node i
is infected with probability 30t in duration dt. If only node j is infected and the other
node, k, is not, the infection does not spread to node i through the hyperedge.

The complex contagion process in a d-uniform hypergraph is described by an adja-
cency tensor of dimension d. The rate equation is written as follows:

d 1
g b = T HA + m (1 —¢i)Ba Z iy -iqiz ** * Qig> (6)

ig-ig

where ¢;, is the probability that a node 7 is infected, and a;,...;, is the adjacency tensor,
where a;,..;;, = 1if nodes {i; - - - i4} are fully connected, and otherwise, it is zero.

4. Heterogeneous mean-field theory (annealed approximation)

We use the heterogeneous mean-field theory to study the stationary states of the SIS
model on SF d-uniform hypergraphs. This theoretical approach has been successful
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for examining the SIS [46, 48] and susceptible-infected-recovered [49] models on SF
graphs. It represents well the significant effect of a small portion of nodes with large
degrees. Here, we consider the SIS model on SF d-dimensional uniform hypergraphs.
We set up a differential equation for the density of infected nodes of degree k and then
obtain the self-consistency equation for the stationary solution. We solve a self-consis-
tency equation to calculate the density of infected nodes as a function of infection rate.
We investigate the properties of the epidemic transition.

4.1. Self-consistency equation

The density of infected nodes with degree k, denoted as py, evolves with time as follows:

%pk = —ppr + B (1 — pp) kO (7)
The first term on the rhs of the above equation is a loss term associated with the
recovery process I — S. The second term is a gain term associated with the conta-
gion process (d — 1)1 + S — dI. That is, a given node ¢ in state S is changed to state
I by contagion from d — 1 infected nodes in a hyperedge of size d at a rate 3, which
is equivalent to (4 in the previous notation, in which node i is included. © is given by

S, BP0

© CE— ®

where kP, (k)pr/(k) is the probability that a node connected to a randomly chosen

hyperedge has degree k£ and is infected at time ¢. We are interested in the behavior of

pr in the stationary state, in which dpg/dt = 0, and we set n = 3/u for convenience.
The stationary solution of pj is obtained as

B nk@dfl
P T ket ©)

This solution implies that the infection probability px always increases and approaches
one as k — oo for n > 0, and that it is controlled by a single factor, n©%~!. The density
of infected nodes becomes p = >, P,(k)pk, which serves as the order parameter of the
epidemic transition.

To obtain p, we set up a self-consistency equation for © in the stationary state as
follows:

0= N kPuk)pr = = 3 kD (k) O
We define the self-consistency function G(O) as
1 nke4-1
S P(k)—"—
G(6) = 7 ;k’ W) T rerT — © (11)

and then obtain a solution ©y of G(6) = 0.
For the power-law degree distribution, P, (k) = (A — 1)k)"1k=> for k > k,,, and the
A—

mean degree (k) = A—_;km,
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A2 1y nke™!
G(O) = 2)k;, Zk T+ ke —— — 0. (12)

We treat k as a continuous variable and recast the summation )7, ---as the integra-
tion [ dk---

o [ 1 -
G(O) = (=2 [ ak (1 ) e 13)
L < -1
=(A—2) 0dzz (1+W) -0 (14)
1

where we changed the variable k to z as z = k,,/k in equation (14), and 2 Fi(a,b;c,d) in
equation (15) is the Gauss hypergeometric function, which is defined as [50]

To obtain a solution Oy of G(0¢) = 0, we first note that the self-consistency func-
tion has the following properties: G(0) =0, and G(1) < 0. Second, we examine the
derivative with respect to ©, which can be written as

, d—1)(\—2 1
G'(0) = E{mn@d(& — 1))2F1 (A — L2\ _W) - L an

If limg_,0 G'(O) > 0, there exists at least one nonzero solution ©y. Using the asymptotic
properties of the hypergeometric function, we find that there exists a characteristic
degree exponent A. =2+ 1/(d — 1) such that

2F1(CL, b; C, Z) =

+00 for A< A,
= /(d—1) 1/(d-1) _
gghG (©) =4 e/ @ (k) 1 for A=A, . (18)
-1 for A > A,

The self-consistency function is illustrated in figure 3 for three typical values of \’s. See
appendix B for details.

After we obtain Oy, the density of infection p, which serves as the order parameter
for the epidemic transition, is calculated as follows:

> nkeI! ( 1 )
= [ dkP (k) —0 =R (A=, 1A ————— ).
! /km 2 >1+nk93‘1 o kmn©) " (19

We will determine the solution ©¢ and p for each case in equation (18) in the next
section.
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5. Phase transition and critical behavior

The type of phase transition and the epidemic threshold are determined by the behav-
ior of G(©), which in turn is determined by limg_,o G'(0). Accordingly, we consider the
epidemic transition separately for each case in equation (18).

5.1. Order parameter

To solve equations (15) and (19), we use a Taylor expansion of the hypergeometric
function

gy 1 - (A=2)7 d—1\A—2
oIy ()\ 2, —1; kmn@d—l)_ S (kmn©™™)
o n(kaI@d 1)n
+(A—2);(—1) ) (20)

(i) For A < A, limg_,0 G'(©) = 0o. Because G(0) =0 and G(1) < 0, there exists at
least one solution ©y > 0 for 1 > 0. Here, we find one such nontrivial stable
solution © > 0, leading to p > 0. Therefore, a transition occurs at 7. = 0. As 7 is
increased, both p and © increase, and the transition is continuous. Analytically,
we find that as n — 0,

‘ N AN=2)7 -2 o
G(O0; ki) = ~— o) (kmn©5™") 6 =0, 1)
A—2
Oy ~ nT=@-DG-2 (22)

The density of infection p can also be calculated from equation (19):

d—1 S gy Tow 1
p~nOs ! ~ @ HG-2, (23)

Thus, the exponent [ =1/[1—(d—1)(A—2)]. In particular, when d=2,
p ~ 0B [46].
in(r/(d-1))] 41

(ii) For A = )., the epidemic threshold is finite as 1. = ﬁ [%} . Above 7,
G'(©) > 0, and thus there exists a finite O¢ satisfying G(0¢) = 0. As n — nf,
both p and ©y decrease to zero. Thus, a second-order transition occurs at 7.
Specifically, the self-consistency function G(0) is written in equation (21). In this
case, we need to consider higher-order terms of G(©) as

3 km @dfl

G(O; k) = [(ﬁ)wd D 1] o- %
Lo(n=n)\g_ kmn©7 1 24)

S d-1 Ne d—2
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Therefore,
_1
Og ~ (1 —n.)"7, (25)
d—1
pr~(n—mne)2. (26)

Consequently, the critical exponent § = (d —1)/(d —2) for d > 2. When d = 2,
p ~ e kml wag obtained [46].

(iii) For A > A, limg_,0 G'(©) < 0, and thus 7. is finite. In this case, Oy and p do not
decrease to zero but are finite as 7 — 7. We calculate the asymptotic behaviors
of ©y(n) — BOu(n.) and p(n) — p(n.). At the transition point, G =0 and deG = 0;
thus, near this point,

162G oG
G(O; k) = 5555 (A0)* + Fyinte @27)
O0(n) — Qo) ~ (n—n:)"?, (28)
p(n) — plne) ~ (1 —ne)"?, (29)

where ©¢(n.) and p(n.) are calculated using equations (15) and (19),
respectively. Therefore, the transition is hybrid with the exponent
B =1/2. The density of infection is illustrated for 3- and 4-uniform hypergraph
in figure 4(a) and (b).

5.2. Susceptibility

The susceptibility is defined as the response of the order parameter, that is, the density
of infection, to a conjugated field h:

d _

/= P+ nlk) (1=0)0" 4 (1 - p)h. (30)
The conjugated field h is implemented using the rate of spontaneous infection S — I,
i.e. the rate at which a susceptible node is changed to an infected state independently of
the contagion process [47]. The susceptibility is defined as the sensitivity of the density
of infection to the conjugated field:

X1 = on (31)
The differential equation for py is written as
d
E = —pt k(L= p) 0 4 (1= p) b (32)
The steady-state solution is obtained as
_ h4nke*!
P T bt ket @
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The self-consistency equation is modified as follows:

1+h
G(©,h) =1 ()\ -2, A~ 1§—W>
A—2 1 1+h
F -1, ——— | —06.
+h)\—1km77@d*12 1()\ C 1A kmn@dl) © (34)

The susceptibility is obtained using the following relation:

9p oG oG\ 5
oo \DO n) (35)

X o wh OR
Detailed calculations of the susceptibility are presented in appendix C.
The results are as follows: (i) For A < A, the susceptibility converges to a finite
value near the critical point, and therefore the critical exponent v; = 0.
(il) For A> )., the susceptibility diverges as (n—mn.)~ "  with
71 = 1/2. The susceptibility is illustrated for 3- and 4-uniform hypergraph in
figure 4(c) and (d).

_ %
1,00 (9@

5.3. Correlation size

In the static model, the maximum degree diverges as kmax ~ NY/*~1, which is called
the natural cut-off [27]. We assign a weight p; to each node using equation (1). The
exponent of the hyperedge degree distribution is A =1+ 1/pu.

The self-consistency equation for finite systems reduces to

1 n@d_1k~2
Gy(O) = i _g
¥ N (k) ; 1+n0d-1k (36)
where k; = Zj\z Z;_HH. Further,
N
1 n@d—l kz kmax n@d_lk.Q
N ; ENCEIEE /k;mi T not i ) 37)
where
~1
_ ! i\ " b N
7j=1
A—2 a2
= (). (39)
kmax = kminNﬁ. (40)
Therefore,
A= fhmac pp-At2gd-l
o dpi=—
Gn(O) fi A2 /kmin L+ k0d 1 © (1)
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a2 nkAT2@4-1

~ kmN*fm—

O s =
_a=2 1

where G(©) is the self-consistency function of the infinite system provided in equa-
tion (15). The solution of Gn(0) = 0 yields the density of infected nodes in finite sys-
tems. This function is illustrated in figure 5(a) for a 3-uniform hypergraph with A = 2.8.

By expanding the finite-size self-consistency function in equation (42) for large N,

we can calculate the critical exponent of the correlation size, v, which is defined by the
relation 7.(N) — n.(00) ~ N7/7.

(i) For A < A, A\, =0, and thus A.(N) is expected to be close to zero for large N.
Therefore, for large N,

1
Nf()\f2)/()\71)2F1 <)\ . 2’ 1’ A —1: > ~ N*(/\fz)/()‘fl)’ (43)

» k,, N1/(-1) \@d-1

because the hypergeometric function converges rapidly to 1. The finite-size epi-
demic threshold is obtained when the maximum value of the function given by
equation (21) is equal to that given by equation (43). Therefore,

UC(N) ~ N*[lf(dfl)()‘*Q)]/()‘*l)' (44)

The inverse of the correlation size exponent is 1/v = [1 — (d — 1)(A — 2)] /(A — 1),
which approaches zero as A — A\, =2+ 1/(d — 1).

(ii)) For A= X.,;, (A —A.) = 0, and © — 0 with A, > 0. The self-consistency function
near the critical point is

Gn(©O)=A(N—)) O — Be! - N-(A=2/(A=1) (45)

where A and B are positive constants. Therefore,

(1= 1e) ~ N0, (46)
The inverse of the correlation size exponent becomes1/v = (d — 2)/[(d — 1)*(A — 1)].

(iii) For A > A., the self-consistency function in finite systems becomes

G
Gn(O) =G(0) + N (A= Xe) = N~O=2/0-D), (47)
Therefore,
(9 —ne) ~ N0, (48)

The inverse of the correlation size exponent is 1/v = (A —2)/(A = 1).

https://doi.org/10.1088/1742-5468 /ab5367 11
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108 10-8
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(a) (b)
10—12 . . = 10712 . . .

10° 10! 10? 10° 10t 10° 10! 10° 10 10t
k k

Figure 1. Degree distribution of the static model of (a) 2-uniform (graph) and (b)

3-uniform hypergraph generated with the fitness exponent 1/u = 1.3. The system

size N is given as N = 10°,10°, and 107. As the system size is increased, the tail

part of the degree distribution is extended, and power-law behavior with exponent

A=1+1/p =23 is confirmed.

(@) (b) () (d) Q Suscepti
ptible
@ @ o ® @ Infected
“ /84
B4 O @ O @
/
O O O @ (] @

Figure 2. Schematic illustration of the simplicial contagion process through
hyperedges of size 3 in (a) and (b), and 4 in (c) and (d). The susceptible and
infected nodes are depicted as white open circles and red filled circles, respectively.
When d — 1 of d nodes in a hyperedge are infected, the infection spreads to the
remaining susceptible node through the hyperedge at a rate ;.

In this section, we obtained the critical exponents thorough the heterogeneous
mean-field theory. The results are summarized in table 1. Continuous (discontinu-
ous) transition occurs for A < A. (A > A.). At A = A, this is the boundary point where
transition type and universality class are changed. Thus, A = A\, can be regarded as the
tricritical point.

6. Numerical simulations

6.1. Numerical methods

We perform numerical simulations using the sequential updating algorithm. The s-SIS
model is simulated on an SF uniform hypergraph with N nodes. Initially, all the nodes
are assigned to fully infected states. At each time step ¢, the following processes are
applied:
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0.2

1n=0.01
7n=0.02
7n=0.03]
n=0.04

G(©)

0.8 1

0.2
n=0.25
n=0.41
0.1Ff n=0.5
1n=0.75

G(©)

G(©)

"0 0.2 0.4 06 08 1
S}
Figure 3. Self-consistency function G(0©) of SF 3-uniform hypergraphs with degree
exponent (a) A = 2.2, (b) 2.5, and (c¢) 2.8, corresponding to cases (i) A < \., (i)
A = )., and (iii) A > A. in the main text. The derivative of the function with respect
to © at © = 0 (a) diverges, (b) is positive, and (c) is negative as © approaches zero.

(i) With probability x =n/(1 +n), we attempt the contagion process. We select a
random hyperedge, and if the hyperedge satisfies the contagion condition, i.e. if
all but one node of the hyperedge is in the infected state, the susceptible node in
the hyperedge enters the infected state.
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Figure 4. Density of infected nodes versus control parameter A for various degree
exponent values A for (a) d = 3 and (c) d = 4. Susceptibility versus control parameter
A for various A values for (b) d=3 and (d) d=4. For A =2.2 and A = 2.4, the
transition point is A, = 0, and for A = 2.5,2.6, and 2.8, . is finite. For A = 2.2,2.4,
and 2.8, the transition is second-order, and for A = 2.6 and 2.8, the transition is
hybrid. For A < )., the susceptibility converges to a finite value 1 + d(d — 2). For
A > )\, the susceptibility diverges as A — A}.
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0.4
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0.2

Figure 5. (a) Self-consistency function Gx(©) in finite systems versus © for
3-uniform hypergraphs with A = 2.8. (b) Deviation \.(IV) — A.(c0) versus system
size N for various degree exponents A. Red dotted lines denote A < A, = 2.5; black
solid lines denote A = \.; and blue dashed lines denote A > A..
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Table 1. Analytic solutions of the critical exponents for the s-SIS model.

N S 1-(d-1)(A—2)
A 0 0 @02 0 —a
A=A Finite 0 d—1 0 _d-2
c = 2
2>\, Finite Finite g 2 : iifl) oD

(i) With the remaining probability 1 — x = 1/(1 + ), by contrast, we attempt the
recovery process. A node is chosen at random, and if the chosen node is in the
infected state, we change it to the susceptible state.

(iii) If the number of active sites is zero, the simulation ends. Otherwise, the time ¢
is updated as t — ¢t + 1/N in each step. Hereafter, we use the rescaled control
parameter x instead of 7.

A Markov process with an absorbing state in a finite-size system will ultimately reach
the absorbing state. If the system has a nonzero probability of reaching the absorb-
ing state after some time, the probability that the system remains active decreases
exponentially and therefore converges to zero. To investigate the stationary state in a
finite-size system in an absorbing state, samples surviving after a sufficiently long time
are often taken as averages [52]. This method is not computationally efficient, because
the samples that have reached the absorbing state cannot be used to calculate the sta-
tistical properties of the stationary state. An alternative method is the quasistationary
method [53, 54]. In this method, if the system reaches an absorbing state, it reverts to
an active configuration selected randomly from the history of the simulation. After a
sufficiently long time, the system and the history simultaneously reach the stationary
ensemble. In simulations, a list of 100 previously visited configurations, is tracked and
updated at each time step.

We performed the simulations in annealed hypergraphs. An annealed hypergraph
is a mean-field theoretical treatment of an ensemble of hypergraphs. We replaced the
adjacency tensor with its ensemble average:

Qo = Qo = fi1---id' (49)

The probability of a particular hyperedge f;,..;,, in the static model of a uniform
hypergraph was introduced in section 2. For the probability of a hyperedge, we used
NKp;, ---p;,, which is a valid approximation, even in the thermodynamic limit, as
long as it is finite. This is a generalization of an annealed network. The annealed net-
work, which was introduced as a randomly selected neighboring network [51], has been
widely used to study dynamical processes because heterogeneous mean-field theory and
other mean-field theoretical approaches are exact in annealed networks [53, 55-57].

6.2. Numerical results

6.2.1. Static exponents. From section 5, the order parameter behaves as

() 0 for k < K,
KR) =
p pe +1(k —kK.)?  for k > ke, (50)
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where p. is zero (finite) for A < A\, (> A.) and k. is zero (finite) for A < A. (= A.) in the
thermodynamic limit. Moreover, two types of susceptibilities are defined as follows:
X1 = 0p/Oh ~ (k — ko)™ and xo = N ((p?) — (p)*)/{p) ~ (kK — k.)772. The correlation
size exponent 7 is defined as k.(N) — k.(00) ~ N7V/7,

We performed simulations on a hypergraph with d=3 and the characteristic
degree \. = 2.5. Because the simulation results should be sensitive near \., we chose
A € {2.1,2.9,3.5}. We note that for the static model, a degree-degree correlation exists
for 2 < XA < 3. Thus, the exponent v is expected to be different for A = 2.9 and 3.5,
whereas the other critical exponents, 5 and «, would be similar. Using finite-size scaling
(F'SS) analysis, we obtain the following;:

(i) For A = 2.1 < \., we plot pN?/7 versus Kk N'/7 for different system sizes but a fixed
d= 3 in figure 6(a). We find that the data points for different system sizes col-
lapse onto a single curve for § = 1.25 + 0.02 and v = 1.59 + 0.01. 5 corresponds to
the analytical result of equation (23), but v is different with the analytical result
of equation (44). This discrepancy will be discussed in section 7. For ys(k), we
plot xoN™72/7 versus (k — k.)N'/7 for 75 = 0.15 £ 0.01 and # = 1.59 in figure 6(b).
Data points for systems of different sizes collapse well onto a single curve.

(i) For A =2.9 > \., the transition point k. and p. are numerically estimated to
be ~0.49462 and ~0.53877, respectively, by solving the self-consistency equa-
tion (equation (15)) and using equation (19). On the basis of these values, we
plot (p — pc) N?/7 versus (k — k.)NY? for f=0.52 £0.02 and & ~ 2.11 + 0.01 for
different system sizes N in figure 6(c). Thus, we confirm that the numerically
estimated values are marginally consistent with the theoretical values from
equations (29) and (48). In figure 6(d), we plot the rescaled quantity y2/N —2/P
versus (k — k.)N'/7 for different system sizes. We estimated 72 = 0.62 & 0.01 and
7 = 2.11 using FSS analysis. Using the plot of x; N~"/7 versus (k — k.)N*/? for
different system sizes in figure 7, we estimated ~y; = 0.48 £ 0.02.

(iii) For A = 3.5, we plot (p — p.) N?/7 versus (k — k.)N'/7 for different system sizes N
for 8= 0.50 & 0.01 and 7 = 1.63 £ 0.01 in figure 6(e). For y2(k), we plot xo N 2/7
versus (k — ko) N7 for 79 =0.62+0.01 and 7 = 1.63. The data collapse well
onto a single curve, as shown in figure 6(f). We plot x; N /7 versus (k — k) N'/”
in figure 7. We estimated ~y; = 0.50 £ 0.02. The obtained values, § = 0.5 £ 0.01,
v2 = 0.62 £ 0.01, and 7 = 1.63 &+ 0.01, marginally satisfy the hyperscaling relation
V= Qﬂ + Y2.

The correlation size exponent is measured directly as k.(N) — k.(00) ~ N~Y7 with
1/v =0.63, 0.47, and 0.61 in figure 8, which correspond to 7 ~ 1.59, 2.13, and 1.64 for
A =2.1, 29, and 3.5, respectively. These values are in reasonably good agreement with
the values v =1,59+0.01,2.11 +0.01, and 1.63 4+ 0.01 obtained by FSS analysis in
figure 6. We summarize the numerical values in table 2.

6.2.2. Dynamic exponents. Next, we also performed dynamical FSS analysis to obtain
the dynamic exponents. We consider the temporal dynamics of the density of infec-
tion starting from a fully infected state. The average density of infection at time ¢ over
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Figure 6. Finite-size scaling analysis of the s-SIS model on SF 3-uniform hypergraphs
with three degree exponents: A =2.1 < A, (a) and (b), A =2.9 > A\, (¢) and (d),
and A = 3.5 > ). (e) and (f). Scaling plots of (p — p.)N?/7 versus (x — k,)N'/7 are
drawn, with (a) §=1.25 and 7 =1.59, (¢) 5§ =0.52 and v = 2.11, and (e) 5 =0.5
and 7 = 1.63. Scaling plots of xoN~72/” versus (k — r,)N'/” are drawn, with (b)
Yo =0.15 and 7 = 1.59, (d) 72 = 0.62 and v = 2.11, and (f) 72 = 0.62 and 7 = 1.63.

many realizations, p(t), shows critical behavior when the contagion rate is equal to
the critical value k.. We choose A\ € {2.9,3.5} because for A < \., the critical point &,
becomes zero, and only a decay process remains. In this section, we change the notation
of U to v, as a counterpart of the mean survival time exponent V-

(i) For A =29, we plot (p— p.)t° versus tN~7 for different system sizes N in
figure 9(a). Here, the dynamical critical exponents are defined conventionally
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Figure 7. Scaling plots of x; N~"/7 versus (k — x.)N'/” with degree exponents (a)
A =29 and (b) A = 3.5, with (a) 71 = 0.48 and 7 = 2.11, (b) 71 = 0.50 and 7 = 1.63.
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Figure 8. Plots of k.(IN) — k.(0c0) versus N on double-logarithmic scale for (a)
A=21, (b) A =209, and (c) A = 3.5. Slope of each plot represents —1/v.
Table 2. Numerical list of critical exponents of the s-SIS model obtained by the
FSS method. Theoretical values calculated in section 5 are presented in parentheses.
A Re Pe /6 T V2 v
2.1 0 0 1.254+0.02 0 0.15+0.01 1.59 +£0.01
(1.25) (0) (1.35)
2.9 0.494 62 0.268 306 0.52 +£0.02 0.48 +0.02 0.62 £ 0.01 2.11£0.01
(0.50) (0.50) (2.11)
3.5 0.53877 0.395 602 0.50 £0.01 0.50 £ 0.02 0.62 +0.01 1.63 +0.01
(0.50) (0.50) (1.67)

as 0 = f/yjand z = v /v = vy /dv,. In figure 9(b), we plot the rescaled quantity
(p — pe)t® versus t(k — k)Nl v is the mean survival time exponent associated
with the relaxation time. We estimated the dynamical critical exponents as

§=0.89+0.02, = 0.26 = 0.01, and v = 0.56 £+ 0.01.

(ii) For A = 3.5, we used a method similar to that used in (i). We estimated the dynam-
ical critical exponents as ¢ = 0.93 +0.02, z = 0.32 £ 0.01, and v = 0.53 £ 0.01.

The critical exponents {0, 2, v|} obtained using dynamical FSS and the {3, 7, 72}
values obtained using steady-state FSS are comparable.
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Figure 9. Scaling plots of the density of infection p(t) starting from the fully
infected state versus tN~7 (a) and (c) and ¢(k — k)" (b) and (d) for A = 2.9 (a) and
(b) and A = 3.5 (¢) and (d). The dynamical critical exponents ¢ = 0.89, z = 0.26,
and 1| = 0.56 are obtained from (a) and (b), and ¢ = 0.86, z = 0.32, and v = 0.53
are obtained from (c) and (d).

Table 3. Dynamic critical exponents of s-SIS model obtained using the dynamical

FSS method.

A 1) z Al

2.9 0.89 4 0.02 0.26 £ 0.01 0.56 4+ 0.01
3.5 0.93 +0.02 0.32+0.01 0.53 4+ 0.01

7. Summary

In summary, we investigated the phase transitions and critical phenomena of the s-SIS
model in SF uniform hypergraphs. We proposed a static model of the uniform hyper-
graph, which is a generalization of the static model of a complex network. We showed
that the model indeed exhibits a degree distribution with a power-law tail.

Using the heterogeneous mean-field theory, we analytically studied the s-SIS model.
We showed that the system exhibits rich phase transition and critical phenomena when
the exponent of the degree distribution A is larger than two. There exists a characteris-
tic degree A\, =2+ 1/(d — 2). For A < )\, the epidemic threshold vanishes. Thus, there
exists a stationary state for an arbitrarily small contagion rate in the thermodynamic
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limit. The susceptibility x2, the fluctuations of the order parameter, diverges as k — 0.
Thus, a second-order contagion transition occurs at k. = 0. For A = )., the epidemic
threshold becomes finite and the susceptibility xo diverges as k — k.. Thus, a second-
order contagion transition occurs. For A > A., the system undergoes a hybrid phase
transition at a finite transition point x.. The susceptibility diverges at the transition
point. We note that in a previous study [24], a discontinuous contagion transition was
observed owing to higher-order interactions in a different model; however, we observed
a hybrid phase transition, which exhibits a discontinuous transition with criticality at
the same transition point. We also notice that for the static model, when the degree
exponent is 2 < A < 3, a degree-degree correlation exists. Consequently, the correlation
size exponent 7, differs from that for A > 3. Accordingly, whereas the measured criti-
cal exponents [ and v are close to each other for A\, < A < 3 and A > 3, the dynamic
exponents 0 and Z associated with 7, and v are different.

We performed numerical simulations of annealed SF 3-uniform hypergraphs with
Ae = 2.5 and the degree exponents A = 2.1, 2.9, and 3.5. Using dynamical FSS and
steady-state FSS, the critical exponents {4, z, v} and {f, U1, 71, 72} are listed in
tables 2 and 3, respectively. The two methods are consistent within the error bars.
Finally, the numerical values of the critical exponents {/3, 7, , 72} are consistent with
the theoretical values based on the heterogeneous mean-field theory in section 5. They
are listed in table 1.
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Appendix A. Degree distribution of static model

Throughout this construction algorithm, a node is selected with probability
1 — (1 — p;) ¢ ~ dp;. Therefore, the probability that a node i has degree k follows the

Poisson distribution: Pi(R)(k) = (k;)* exp (— (k;)) /k!. The degree distribution is then

Fimax N—

P(R)(k) = %sz(k) ~ /k | d(k;) P ({k;)) (k) %( (ki) (A1)
_ (ki) max

= <k>-AS->1\ - <1]Z.>—)\+1 % /( V- d <l€l> <k}i>—>\+k exp (— <k’2>) . (A.2)

In the thermodynamic limit, (k;) . — oo and (k;)mm — == (k). Further,

A—1
. T(=A+Ek+1,ky)
lim PU(k) = () — 1) kX1 m
i PE(R) = (A= D ke T(k+1)

max

~ k™ (A.3)

for sufficiently large k. Therefore, the tail of the degree distribution of a static model of
a uniform hypergraph follows a power law.
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Appendix B. Asymptotic behavior of G'(©)

Using the identity
2 T(e)L'(b— a) by (CL7 a—c+1lja—b+1; —%)

2F1(a,bi6 —2) = T (c —a)
2T (e)(a = b)oFy (bb—c+1;—a+b+1;-1)
- T(@)T(c —b) . (B.D

we can obtain the asymptotic behavior of the hypergeometric function oF; (a, b; ¢; —z)
as z — 00:

LT (b-a) —a
T 2 a<b

2Fy (a, by ¢;—2) ~ {?EQEEZ:Z% oy (B.2)

N~ &~
The formula also allows us to calculate the next dominant terms proportional to 2z %1,
7% 2 woand 27071 702 ... As © = 0,
7r(d—.1)(/\—2)2 (km)\)A_Q EOUd-DA=(d-1)-d _ 1 )\ < 3
(—3)  m - =

Then we obtain equation (18).

Appendix C. Susceptibility

To calculate equation (35), we first take the derivatives and then set h =0 and © = O:

Ip 1
— =1—-5Fl (A=-1,1;\,—————

—1 1 1

A knn©g kmm©g
| _(@d-DA-1) 1 I
2al .= FAN2 A+ ———
00 In,n A kmn@g2 L{AsATE kemnOd=t )’ (C.2)
oG A—2 1
a7 = FlA-1,1L\N——
Ohlne N =Tkunof ' |* ( o kmn@é“l)

1
—oFi A =1, 2  ————— | |, .
o < kmn@gl) (C.3)

oG d-—1HA=2) 1 1
20!, = F 1,20 ———) -1
00 ln,n A—1 k‘mn@gz (A V2 kmn@gfl (C4)

https://doi.org/10.1088/1742-5468 /ab5367 21


https://doi.org/10.1088/1742-5468/ab5367

Simplicial SIS model in scale-free uniform hypergraph
Using equation (20), we obtain the following;:
(i) For A < A., equation (C.1) becomes 1, and all other terms vanish in the limit

B9 — 0 and n — 0. Therefore, x; = 1 near the critical point, and the critical
exponent of the susceptibility, v, is zero.

(i) For A = A., equations (C.1)—-(C.4) in the limit ©®y — 0 and n — 7. are given as

8p 8p n—"Tec

= LI~ -2

oh 1,00 ’ 00 n,h ( ) e ’ (05)
oG oG d—2 =17

ah 77790 ’ a@ 'I],h d — ]_ T]C (C-6)

The susceptibility is given by x1 ~ 1+ d(d — 1).

(iii) For A > \., equation (C.4) exhibits singular behavior, and equations (C.1)—(C.3)
are finite. Hence, the susceptibility diverges near the critical point. Equation (C.4)
is calculated as

oG _#G,
00 002

Inserting equation (28) into equation (C.7) yields xi ~ (n —n.)""/?, and therefore

ABy). (C.7)
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