Seoul National University - School of Physics

Spring Semester 2004

Solid State Physics II Chapter 4 Second Quantization

Jaejun Yu
jyu@snu.ac.kr
http://phya.snu.ac.kr/~jyu/

Second Quantization

- What is it?
- Why do we need it? What for?
- How to represent the first-quantization form of observables in terms of second quantization operators?
- How to calculate the expectation values of (a function of) operators in a secondquantization form?
- How do we take account of the statistics: Boson vs. Fermion?

Observables

- Single-Particle Systems: 1st quantization picture The observables are position and momentum, i.e., $\{\mathbf{X}, \mathbf{P}\}$.

According to the uncertainty principle, measurements of a (conjugate) pair of observables (e.g., \mathbf{X} and \mathbf{P}) in different sequences give different results:

$$
\mathbf{X P}|\psi\rangle \neq \mathbf{P X}|\psi\rangle
$$

Therefore, in general, we can write

$$
[\mathbf{X}, \mathbf{P}]=i \hbar \neq 0
$$

(Note that \mathbf{P} and \mathbf{X} are hermitian.)

- Many-Particle Systems: 2nd quantization picture
\Rightarrow The observables are "amplitudes" in a certain normal mode.
- What is the "normal mode"?
* eigenstate or eigenmode
* often described as a decoupled/independent motion with a fixed frequency, e.g.,

$$
\eta_{k}(t) \sim \eta_{o} e^{i \omega_{k} t}
$$

For examples, such normal modes are determined by the equation-ofmotion with boundary conditions:

$$
\begin{gathered}
\left(\mathcal{H}-i \frac{\partial}{\partial t}\right) \psi(\mathbf{x}, t)=0 \\
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \mathbf{A}(\mathbf{x}, t)=0
\end{gathered}
$$

- How is the "amplitude" represented in quantum mechanics?
- Consider a normal mode oscillation in classical mechanics, which is nothing but a simple harmonic oscillator.

$$
\frac{\partial^{2}}{\partial t^{2}} u_{k}(t)+\omega_{k}^{2} u_{k}(t)=0
$$

- By replacing $u_{k}(t) \rightarrow \hat{X}$ and $m \dot{u}_{k}(t) \rightarrow \hat{P}$, we can write down a quantum mechanical Hamiltonian \mathcal{H}

$$
\mathcal{H}=\frac{\hat{P}^{2}}{2 m}+\frac{1}{2} m \omega_{k}^{2} \hat{X}^{2}
$$

where the amplitude of oscillator can be measured by the observables \hat{X} and \hat{P}.

- Alternatively, the quantum mechanical harmonic oscillator can be represented by the creation and annihilation operators a^{+}and a satisfying the relation

$$
\left[a, a^{+}\right]=1
$$

so that the Hamiltonian can be rewritten as

$$
\mathcal{H}=\hbar \omega_{k}\left(a^{+} a+\frac{1}{2}\right)
$$

(Please refer to the quantum mechanics textbook for the detailed descriptions of a and a^{+}operators.)

- Thus, the "amplitude" of the k-th normal mode can be measured by the nonhermitian observable a_{k}. Indeed the so-called number operator $\hat{n_{k}}=a_{k}^{+} a_{k}$ is a measure of the number of quanta in the k-th normal mode, which corresponds to the number state $\left|n_{k}\right\rangle$.

One may adopt a set of coherent states as basis for the representation of manyparticle states. The coherent state $|\alpha\rangle$ is defined by

$$
a_{k}|\alpha\rangle=\alpha|\alpha\rangle,
$$

i.e., an eigenstate of the annihilation operator a_{k}.

$$
\begin{aligned}
|\alpha\rangle & =\exp \left(\alpha a_{k}^{+}\right)|0\rangle \\
& =\sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle
\end{aligned}
$$

Please note that $|\alpha\rangle$ has a semi-classical limit with the classical state $\{X, P\}$:

$$
\alpha=\frac{1}{\sqrt{2}}\left(\sqrt{\frac{m \omega}{\hbar}} X+i \frac{1}{\sqrt{m \hbar \omega}} P\right)
$$

N-particle quantum states

- Suppose that we have N (non-interacting) particles in a system with a set of available (single-particle) quantum states $\left\{\psi_{n}\right\}$. Then, the N-particle state can be specified by the "amplitudes" of each quantum state, i.e., normal mode $\left|\psi_{n}\right\rangle$ such as

$$
\left|\Psi_{N}\right\rangle=\left|n_{k=1}, n_{k=2}, n_{k=3}, \ldots\right\rangle
$$

so that the expectation value of \hat{n}_{k} becomes

$$
\left\langle\Psi_{N}\right| \hat{n}_{k}\left|\Psi_{N}\right\rangle=n_{k}
$$

In general, an arbitrary N-particle state can be represented by

$$
|\Psi\rangle=\sum_{\left\{n_{k}\right\}} c\left(\left\{n_{k}\right\}\right)\left|\Psi_{N}\left(\left\{n_{k}\right\}\right)\right\rangle
$$

- Therefore all the observables of the N-particle system can be represented by the operators $\left\{a_{k}\right\}$ and $\left\{a_{k}^{+}\right\}$:

$$
\hat{O}_{N}=O\left(\left\{a_{k}^{+}, a_{k}\right\}\right)
$$

- Note: Uncertainty principle in N-particle system can be regarded as an uncertainty in measuring numbers:

$$
a a^{+}|\psi\rangle \neq a^{+} a|\psi\rangle
$$

That is, $\left[a, a^{+}\right]=1 \neq 0$ (real).

Why do we need it?

\Rightarrow For the sake of convenience. In Fermion systems, for example, each $\left|\Psi_{N}\right\rangle$ basis state corresponds to a Slater's determinant of N-orbital states $\left\{\left|\psi_{n}\right\rangle \mid n=1,2, \ldots, N\right\}$, which contains N !-terms in it. Thus, to represent an arbitrary state $|\Psi\rangle$, we have to make a linear combination of such Slater's determinants.

$$
|\Psi\rangle=\sum_{\left\{n_{k}\right\}} c\left(\left\{n_{k}\right\}\right)\left|\Psi_{N}\left(\left\{n_{k}\right\}\right)\right\rangle
$$

\Rightarrow Too complicated to deal with!

Observables in 2nd Quantization Form

- Consider an operator, e.g., momentum operator $\hat{p}=-i \nabla$, in the 1 st quantization picture such that

$$
\hat{p}\left|\phi_{k}\right\rangle=k\left|\phi_{k}\right\rangle
$$

Then the total momentum P can be found by

$$
P=\sum_{k} k n_{k}
$$

That is, the total momentum operator \hat{P} in the 2 nd quantization form becomes

$$
\hat{P}=\sum_{k} k a_{k}^{+} a_{k}
$$

This is obvious because all we need to do is just counting number of particles in the k-th mode and add them up.

- What if we have a set of normal modes which are not the eigenstates of \hat{p} ?
- Consider an operator $\hat{\alpha}$ such that

$$
\hat{\alpha}\left|\phi_{\alpha}\right\rangle=\alpha\left|\phi_{\alpha}\right\rangle
$$

- One-particle state and the vacuum:

$$
\begin{aligned}
& \left|\phi_{k}\right\rangle=a_{k}^{+}|0\rangle \\
& \left|\phi_{\alpha}\right\rangle=a_{\alpha}^{+}|0\rangle
\end{aligned}
$$

From the closure relation

$$
1=\sum_{k}\left|\phi_{k}\right\rangle\left\langle\phi_{k}\right|=\sum_{\alpha}\left|\phi_{\alpha}\right\rangle\left\langle\phi_{\alpha}\right|,
$$

we know $\left|\phi_{k}\right\rangle=\sum_{\alpha}|\alpha\rangle\left\langle\alpha \mid \phi_{k}\right\rangle$, that is,

$$
\begin{aligned}
a_{k}^{+} & =\sum_{\alpha} a_{\alpha}^{+}\langle\alpha \mid k\rangle \\
a_{k} & =\sum_{\alpha}\langle k \mid \alpha\rangle a_{\alpha}
\end{aligned}
$$

- The total momentum operator \hat{P} :

$$
\begin{aligned}
\hat{P} & =\sum_{k} k a_{k}^{+} a_{k} \\
& =\sum_{k} k \sum_{\alpha \alpha^{\prime}} a_{\alpha}^{+}\langle\alpha \mid k\rangle a_{\alpha^{\prime}}\left\langle k \mid \alpha^{\prime}\right\rangle \\
& =\sum_{\alpha \alpha^{\prime}} a_{\alpha}^{+}\langle\alpha \mid k\rangle k\left\langle k \mid \alpha^{\prime}\right\rangle a_{\alpha} \\
& =\sum_{\alpha \alpha^{\prime}} a_{\alpha}^{+}\langle\alpha| \hat{p}\left|\alpha^{\prime}\right\rangle a_{\alpha}
\end{aligned}
$$

- When substituting $\alpha \rightarrow \mathbf{x}$,

$$
\begin{gathered}
\hat{\psi}(\mathbf{x})=a_{\mathbf{x}} \\
\hat{P}=\int d \mathbf{x} \hat{\psi}^{+}(\mathbf{x})\left(\frac{\nabla}{i}\right) \hat{\psi}(\mathbf{x})
\end{gathered}
$$

Note that $\hat{\psi}(\mathbf{x})$ is a so-called field operator:

$$
\hat{\psi}(\mathbf{x})=\sum_{k}\left\langle\mathbf{x} \mid \phi_{k}\right\rangle a_{k}=\sum_{k} \phi_{k}(\mathbf{x}) a_{k}
$$

- One-particle operator \hat{O}_{1} : In the 1st quantization representation, we write

$$
\hat{O}_{1}=\sum_{i} \hat{o}_{i}
$$

In the 2nd quantization form,

$$
\begin{aligned}
\hat{O}_{1} & =\int d \mathbf{x} \hat{\psi}^{+}(\mathbf{x}) o(\mathbf{x}) \hat{\psi}(\mathbf{x}) \\
& =\sum_{\alpha \alpha^{\prime}}\langle\alpha| \hat{o}\left|\alpha^{\prime}\right\rangle a_{\alpha}^{+} a_{\alpha^{\prime}}
\end{aligned}
$$

- Two-particle operator \hat{O}_{2} : In the 1st quantization representation,

$$
\hat{O}_{2}=\frac{1}{2} \sum_{i j} \hat{o}_{i j}
$$

In the 2nd quantization form,

$$
\begin{aligned}
\hat{O}_{2} & =\frac{1}{2} \int d \mathbf{x}_{1} d \mathbf{x}_{2} \hat{\psi}^{+}\left(\mathbf{x}_{1}\right) \hat{\psi}^{+}\left(\mathbf{x}_{2}\right) o\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \hat{\psi}\left(\mathbf{x}_{2}\right) \hat{\psi}\left(\mathbf{x}_{1}\right) \\
& =\sum_{\alpha \alpha^{\prime} \beta \beta^{\prime}}\langle\alpha \beta| \hat{o}\left|\alpha^{\prime} \beta^{\prime}\right\rangle a_{\alpha}^{+} a_{\beta}^{+} a_{\beta^{\prime}} a_{\alpha^{\prime}}
\end{aligned}
$$

N-electron system

$$
\begin{gathered}
\mathcal{H}=\sum_{i}-\frac{\hbar^{2}}{2 m} \nabla_{i}^{2}+\sum_{i} v\left(\mathbf{x}_{i}\right)+\frac{1}{2} \sum_{i j}^{1} \frac{e^{2}}{\left|\mathbf{x}_{i}-\mathbf{x}_{j}\right|} \\
\mathcal{H}=\sum_{k \sigma} \frac{\hbar^{2} k^{2}}{2 m} c_{k \sigma}^{+} c_{k \sigma}+\sum_{k k^{\prime} \sigma} v_{k k^{\prime}} c_{k \sigma}^{+} c_{k^{\prime} \sigma}+\frac{1}{2} \sum_{k k^{\prime} k^{\prime \prime} k^{\prime \prime \prime} \sigma \sigma^{\prime}} V^{C}{ }_{k k^{\prime} k^{\prime \prime} k^{\prime \prime \prime}} c_{k \sigma}^{+} c_{k^{\prime} \sigma^{\prime}}^{+} c_{k^{\prime \prime \prime} \sigma^{\prime}} c_{k^{\prime \prime} \sigma} \\
v_{k k^{\prime}}=\langle k| v(\mathbf{x})\left|k^{\prime}\right\rangle \\
V_{k k^{\prime} k^{\prime \prime \prime} k^{\prime \prime \prime}}^{C}=\left\langle k k^{\prime}\right| \frac{e^{2}}{\left|\mathbf{x}_{1}-\mathbf{x}_{2}\right|}\left|k^{\prime \prime} k^{\prime \prime \prime}\right\rangle
\end{gathered}
$$

Statistics

Pauli Exclusion Principle

$$
a_{k}^{+}\left|n_{k}=1\right\rangle=0
$$

Since $\left|n_{k}=1\right\rangle=a_{k}^{+}|0\rangle$, the Pauli principle states that

$$
\left(a_{k}^{+}\right)^{2}=0
$$

Accordingly, we can generalize the commutation rule for Fermions:

$$
\begin{gathered}
{\left[a_{k}, a_{k^{\prime}}\right]_{+}=0} \\
{\left[a_{k}^{+}, a_{k^{\prime}}^{+}\right]_{+}=0} \\
{\left[a_{k}, a_{k^{\prime}}^{+}\right]_{+}=\delta_{k k^{\prime}}}
\end{gathered}
$$

Note that $[A, B] \equiv[A, B]_{-}=A B-B A$ and $[A, B]_{+}=A B+B A$.

An Example: Hartree Fock Theory

Consider an electron gas in a homogeneous, positively charged medium (jellium model).

$$
\begin{gathered}
\mathcal{H}=\mathcal{H}_{o}+\mathcal{H}_{1} \\
\mathcal{H}_{o}=\sum_{i} h_{i}=\sum_{i}\left[-\frac{\hbar^{2}}{2 m} \nabla_{i}^{2}+v\left(\mathbf{x}_{i}\right)\right] \\
\mathcal{H}_{1}=\frac{1}{2} \sum_{i j}^{\prime} \frac{e^{2}}{\left|\mathbf{x}_{i}-\mathbf{x}_{j}\right|}
\end{gathered}
$$

where the external potential $v(\mathbf{x})$ is given by

$$
v(\mathbf{x})=-e^{2} \int d \mathbf{x}^{\prime} \frac{n_{b}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}
$$

with n_{b} is a positive charge density equal to the average electron density.

First Quantization Method: Slater's Determinant

Hartree Approximation

- Solving the one-particle Hamiltonian:

$$
\begin{gathered}
\mathbf{H}_{o}|\Phi\rangle=E_{o}|\Phi\rangle \\
\Phi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)=\varphi_{1}\left(\mathbf{x}_{1}\right) \ldots \varphi_{N}\left(\mathbf{x}_{N}\right)=\prod_{i} \varphi_{k}\left(\mathbf{x}_{k}\right) \\
h_{i} \varphi_{k}\left(\mathbf{x}_{i}\right)=\epsilon_{k} \varphi_{k}\left(\mathbf{x}_{i}\right)
\end{gathered}
$$

(Note that Φ has no permutation symmetry.)

- With the orthogonality constraint $\left\langle\varphi_{k} \mid \varphi_{l}\right\rangle=\delta_{k l}$, obtain a variational equation for φ for the total energy $E=\langle\Phi| \mathcal{H}|\Phi\rangle$:

$$
\begin{gathered}
\delta\left[\langle\Phi| \mathcal{H}|\Phi\rangle-\sum_{k} \lambda_{k}\left(\left\langle\varphi_{k} \mid \varphi_{k}\right\rangle-1\right)\right] \\
{\left[-\frac{1}{2} \nabla^{2}+\sum_{l}^{\prime} \int d \mathbf{x}^{\prime} \frac{\left|\varphi_{l}\left(\mathbf{x}^{\prime}\right)\right|^{2}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}-\int d \mathbf{x}^{\prime} \frac{n_{b}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}\right] \varphi_{k}(\mathbf{x})=\epsilon_{k} \varphi_{k}(\mathbf{x})}
\end{gathered}
$$

- If we look for a homogeneous solution, i.e.,

$$
\sum_{l}\left|\varphi_{l}\left(\mathbf{x}^{\prime}\right)\right|^{2}=n_{b}
$$

then the Hartree equation becomes a simple plane wave equation:

$$
\left[-\frac{1}{2} \nabla^{2}\right] \varphi_{k}(\mathrm{x})=\epsilon_{k} \varphi_{k}(\mathrm{x})
$$

Hartree-Fock Approximation

- Since the electrons are "indistinguishable" particles obeying the Pauli exclusion principle,

$$
\begin{aligned}
\Phi & =\frac{1}{\sqrt{N!}}\left|\begin{array}{ccc}
\varphi_{1}\left(\mathbf{x}_{1}\right) & \ldots & \varphi_{N}\left(\mathbf{x}_{1}\right) \\
\vdots & & \vdots \\
\varphi_{1}\left(\mathbf{x}_{N}\right) & \ldots & \varphi_{N}\left(\mathbf{x}_{N}\right)
\end{array}\right| \\
& =\frac{1}{\sqrt{N!}} \sum_{P(1, \ldots, N)}(-)^{P} \prod_{i=1}^{N} \varphi_{i}\left(\mathbf{x}_{P i}\right)
\end{aligned}
$$

(Here we assume that all the particles have the same spin!)

- Hartree-Fock equation:

$$
\begin{aligned}
-\frac{1}{2} \nabla^{2} \varphi_{k}(\mathbf{x}) & \left.+\sum_{l}^{\prime} \int d \mathbf{x}^{\prime} \frac{\left(\left|\varphi_{l}\left(\mathbf{x}^{\prime}\right)\right|^{2}-n_{b}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}\right] \varphi_{k}(\mathbf{x}) \\
& -\sum_{l\left(\sigma_{l}=\sigma_{k}\right)} \int d \mathbf{x}^{\prime} \frac{\varphi_{l}^{*}\left(\mathbf{x}^{\prime} \varphi_{k}\left(\mathbf{x}^{\prime}\right)\right.}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \varphi_{l}(\mathbf{x})=\epsilon_{k} \varphi_{k}(\mathbf{x})
\end{aligned}
$$

(It is noted that, when looking for a homogeneous solution, $\varphi_{k}(\mathbf{x})=e^{i \mathbf{k} \cdot \mathbf{x}}$ becomes a solution!)

2nd Quantization Method

$$
\begin{gathered}
\mathcal{H}=\mathcal{H}_{o}+\mathcal{H}_{1} \\
\mathcal{H}_{o}=\sum_{k \sigma} \epsilon_{o k} c_{k \sigma}^{+} c_{k \sigma} \\
\mathcal{H}_{1}=\frac{1}{2} \sum_{k p, q \neq 0}{ }^{\prime} \sum_{\sigma \sigma^{\prime}} V_{q} c_{k+q \sigma}^{+} c_{p-q \sigma^{\prime}}^{+} c_{p \sigma^{\prime}} c_{k \sigma} \\
\epsilon_{o k}=\frac{k^{2}}{2} \\
V_{q}=\frac{4 \pi e^{2}}{q^{2}}
\end{gathered}
$$

From the Hartree-Fock solution of the 1st quantization calculation, we know that $\varphi_{k}=e^{i \mathbf{k} \cdot \mathbf{x}}$ is a good candidate of normal modes and can assume the ground state:

$$
\left|\Phi_{o}\right\rangle=\prod_{k \sigma} \theta\left(k_{F}-k\right) c_{k \sigma}^{+}|0\rangle
$$

Note that the cut-off in momentum space is different from the energy cut-off $\theta\left(\epsilon_{F}-\right.$ $\left.\epsilon_{k}\right)$. This is valid when we assume the translation and rotation symmetry of the ground state.

Perturbation Expansion

- Oth order:

$$
\begin{aligned}
E^{(0)} & =\left\langle\Phi_{o}\right| \mathcal{H}_{o}\left|\Phi_{o}\right\rangle \\
& =\sum_{k \sigma} \epsilon_{o k}\left\langle\Phi_{o}\right| c_{k \sigma}^{+} c_{k \sigma}\left|\Phi_{o}\right\rangle \\
& =\sum_{k \sigma} \epsilon_{o k} \theta\left(k_{F}-k\right)
\end{aligned}
$$

- 1st order correction: (Hartree-Fock term)

$$
\begin{aligned}
E^{(1)} & =\left\langle\Phi_{o}\right| \mathcal{H}_{1}\left|\Phi_{o}\right\rangle \\
& =\frac{1}{2} \sum_{k p, q \neq 0} \sum_{\sigma \sigma^{\prime}}{ }^{\prime} V_{q}\left\langle\Phi_{o}\right| c_{k+q \sigma}^{+} c_{p-q \sigma^{\prime}}^{+} c_{p \sigma^{\prime}} c_{k \sigma}\left|\Phi_{o}\right\rangle \\
& =-\frac{1}{2} \sum_{\sigma} \sum_{k q}{ }^{\prime} V_{q} \theta\left(k_{F}-|\mathbf{k}+\mathbf{q}|\right) \theta\left(k_{F}-|\mathbf{k}|\right)
\end{aligned}
$$

$\mathbf{k}+\mathbf{q} \sigma_{1}=\mathbf{k} \sigma_{1}, \quad \mathbf{p}-\mathbf{q} \sigma_{2}=\mathbf{p} \sigma_{2} \quad(\times)$
$\mathbf{k}+\mathbf{q} \sigma_{1}=\mathbf{p} \sigma_{2}, \quad \mathbf{p}-\mathbf{q} \sigma_{2}=\mathbf{k} \sigma_{1} \quad(\mathrm{O})$

$$
\begin{aligned}
|i\rangle & =c_{\mathbf{p} \sigma_{2}} c_{\mathbf{k} \sigma_{1}}\left|\Phi_{0}\right\rangle, \quad|f\rangle=c_{\mathbf{p}-\mathbf{q} \sigma_{2}} c_{\mathbf{k}+\mathbf{q} \sigma_{1}}\left|\Phi_{0}\right\rangle \\
\rightarrow\langle f \mid i\rangle & =\delta_{\mathbf{k}+\mathbf{q}, \mathbf{p}} \delta_{\sigma_{1}, \sigma_{2}}\left\langle\Phi_{0}\right| c_{\mathbf{k}+\mathbf{q} \sigma_{1}}^{+} c_{\mathbf{k} \sigma_{1}}^{+} c_{\mathbf{k}+\mathbf{q} \sigma_{1}} c_{\mathbf{k} \sigma_{1}}\left|\Phi_{0}\right\rangle \\
& =\delta_{\mathbf{k}+\mathbf{q}, \mathbf{p}} \delta_{\sigma_{1}, \sigma_{2}}\left\langle\Phi_{0}\right| \hat{n}_{\mathbf{k}+\mathbf{q} \sigma_{1}} \cdot\left(-\hat{n}_{\mathbf{k}+\mathbf{q} \sigma_{1}}\right)\left|\Phi_{0}\right\rangle \\
& =-\delta_{\mathbf{k}+\mathbf{q}, \mathbf{p}} \delta_{\sigma_{1}, \sigma_{2}} \Theta\left(k_{F}-|\mathbf{k}+\mathbf{q}|\right) \Theta\left(k_{F}-|\mathbf{k}|\right)
\end{aligned}
$$

