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Second Quantization

• What is it?

• Why do we need it? What for?

• How to represent the first-quantization form of observables in terms of second

quantization operators?

• How to calculate the expectation values of (a function of) operators in a second-

quantization form?

• How do we take account of the statistics: Boson vs. Fermion?



Observables

• Single-Particle Systems: 1st quantization picture

The observables are position and momentum, i.e., {X,P}.
According to the uncertainty principle, measurements of a (conjugate) pair of
observables (e.g., X and P) in different sequences give different results:

XP|ψ〉 6= PX|ψ〉

Therefore, in general, we can write

[X,P] = i~ 6= 0

(Note that P and X are hermitian.)



• Many-Particle Systems: 2nd quantization picture

⇒ The observables are “amplitudes” in a certain normal mode.

– What is the “normal mode” ?

∗ eigenstate or eigenmode

∗ often described as a decoupled/independent motion with a fixed frequency,

e.g.,

ηk(t) ∼ ηoe
iωkt

For examples, such normal modes are determined by the equation-of-

motion with boundary conditions:(
H− i

∂

∂t

)
ψ(x, t) = 0

(
∇2 − 1

c2
∂2

∂t2

)
A(x, t) = 0





• How is the “amplitude” represented in quantum mechanics?

– Consider a normal mode oscillation in classical mechanics, which is nothing

but a simple harmonic oscillator.

∂2

∂t2
uk(t) + ω2

kuk(t) = 0

– By replacing uk(t) → X̂ and mu̇k(t) → P̂ , we can write down a quantum

mechanical Hamiltonian H

H =
P̂ 2

2m
+

1
2
mω2

kX̂
2

where the amplitude of oscillator can be measured by the observables X̂ and

P̂ .



• Alternatively, the quantum mechanical harmonic oscillator can be represented

by the creation and annihilation operators a+ and a satisfying the relation

[a, a+] = 1

so that the Hamiltonian can be rewritten as

H = ~ωk(a+a+
1
2
)

(Please refer to the quantum mechanics textbook for the detailed descriptions of a and

a+ operators.)

• Thus , the “amplitude” of the k-th normal mode can be measured by the non-

hermitian observable ak. Indeed the so-called number operator n̂k = a+
k ak is a

measure of the number of quanta in the k-th normal mode, which corresponds

to the number state |nk〉.



One may adopt a set of coherent states as basis for the representation of many-
particle states. The coherent state |α〉 is defined by

ak|α〉 = α|α〉,

i.e., an eigenstate of the annihilation operator ak.

|α〉 = exp(αa+
k )|0〉

=
∞∑

n=0

αn

√
n!
|n〉

Please note that |α〉 has a semi-classical limit with the classical state {X,P}:

α =
1√
2

(√
mω

~
X + i

1√
m~ω

P

)



N -particle quantum states

• Suppose that we have N (non-interacting) particles in a system with a set of

available (single-particle) quantum states {ψn}. Then, the N -particle state can

be specified by the “amplitudes” of each quantum state, i.e., normal mode |ψn〉
such as

|ΨN 〉 = |nk=1, nk=2, nk=3, ....〉

so that the expectation value of n̂k becomes

〈ΨN |n̂k|ΨN 〉 = nk.

In general, an arbitrary N -particle state can be represented by

|Ψ〉 =
∑
{nk}

c({nk})|ΨN ({nk})〉



• Therefore all the observables of the N -particle system can be represented by

the operators {ak} and {a+
k }:

ÔN = O({a+
k , ak})

• Note: Uncertainty principle in N -particle system can be regarded as an uncer-

tainty in measuring numbers:

aa+|ψ〉 6= a+a|ψ〉

That is, [a, a+] = 1 6= 0 (real).



Why do we need it?

⇒ For the sake of convenience. In Fermion systems, for example, each |ΨN 〉 basis

state corresponds to a Slater’s determinant of N -orbital states {|ψn〉|n = 1, 2, ..., N},
which contains N !-terms in it. Thus, to represent an arbitrary state |Ψ〉, we have to

make a linear combination of such Slater’s determinants.

|Ψ〉 =
∑
{nk}

c({nk})|ΨN ({nk})〉

⇒ Too complicated to deal with!



Observables in 2nd Quantization Form

• Consider an operator, e.g., momentum operator p̂ = −i∇, in the 1st quantization

picture such that

p̂|φk〉 = k|φk〉

Then the total momentum P can be found by

P =
∑

k

knk.

That is, the total momentum operator P̂ in the 2nd quantization form becomes

P̂ =
∑

k

ka+
k ak

This is obvious because all we need to do is just counting number of particles
in the k-th mode and add them up.



• What if we have a set of normal modes which are not the eigenstates of p̂?

– Consider an operator α̂ such that

α̂|φα〉 = α|φα〉

– One-particle state and the vacuum:

|φk〉 = a+
k |0〉

|φα〉 = a+
α |0〉

From the closure relation

1 =
∑

k

|φk〉〈φk| =
∑
α

|φα〉〈φα|,

we know |φk〉 =
∑

α |α〉〈α|φk〉, that is,

a+
k =

∑
α

a+
α 〈α|k〉

ak =
∑
α

〈k|α〉aα



• The total momentum operator P̂ :

P̂ =
∑

k

ka+
k ak

=
∑

k

k
∑
αα′

a+
α 〈α|k〉aα′〈k|α′〉

=
∑
αα′

a+
α 〈α|k〉k〈k|α′〉aα

=
∑
αα′

a+
α 〈α|p̂|α′〉aα

• When substituting α→ x,
ψ̂(x) = ax

P̂ =
∫
dxψ̂+(x)

(
∇
i

)
ψ̂(x)

Note that ψ̂(x) is a so-called field operator:

ψ̂(x) =
∑

k

〈x|φk〉ak =
∑

k

φk(x)ak



• One-particle operator Ô1: In the 1st quantization representation, we write

Ô1 =
∑

i

ôi

In the 2nd quantization form,

Ô1 =
∫
dxψ̂+(x)o(x)ψ̂(x)

=
∑
αα′

〈α|ô|α′〉a+
αaα′



• Two-particle operator Ô2: In the 1st quantization representation,

Ô2 =
1
2

∑
ij

ôij

In the 2nd quantization form,

Ô2 =
1
2

∫
dx1dx2ψ̂

+(x1)ψ̂+(x2)o(x1,x2)ψ̂(x2)ψ̂(x1)

=
∑

αα′ββ′

〈αβ|ô|α′β′〉a+
αa

+
β aβ′aα′



N -electron system

H =
∑

i

− ~2

2m
∇2

i +
∑

i

v(xi) +
1
2

′∑
ij

e2

|xi − xj |

H =
∑
kσ

~2k2

2m
c+kσckσ +

∑
kk′σ

vkk′c
+
kσck′σ +

1
2

∑
kk′k′′k′′′σσ′

V C
kk′k′′k′′′c

+
kσc

+
k′σ′ck′′′σ′ck′′σ

vkk′ = 〈k|v(x)|k′〉

V C
kk′k′′k′′′ = 〈kk′| e2

|x1 − x2|
|k′′k′′′〉



Statistics

Pauli Exclusion Principle

a+
k |nk = 1〉 = 0

Since |nk = 1〉 = a+
k |0〉, the Pauli principle states that

(a+
k )2 = 0

Accordingly, we can generalize the commutation rule for Fermions:

[ak, ak′ ]+ = 0

[a+
k , a

+
k′ ]+ = 0

[ak, a
+
k′ ]+ = δkk′

Note that [A,B] ≡ [A,B]− = AB −BA and [A,B]+ = AB +BA.



An Example: Hartree Fock Theory

Consider an electron gas in a homogeneous, positively charged medium (jellium

model).

H = Ho +H1

Ho =
∑

i

hi =
∑

i

[
− ~2

2m
∇2

i + v(xi)
]

H1 =
1
2

∑
ij

′ e2

|xi − xj |

where the external potential v(x) is given by

v(x) = −e2
∫
dx′ nb

|x− x′|

with nb is a positive charge density equal to the average electron density.



First Quantization Method: Slater’s Determinant

Hartree Approximation

• Solving the one-particle Hamiltonian:

Ho|Φ〉 = Eo|Φ〉

Φ(x1, ...,xN ) = ϕ1(x1) . . . ϕN (xN ) =
∏

i

ϕk(xk)

hiϕk(xi) = εkϕk(xi)

(Note that Φ has no permutation symmetry.)



• With the orthogonality constraint 〈ϕk|ϕl〉 = δkl, obtain a variational equation for

ϕ for the total energy E = 〈Φ|H|Φ〉 :

δ

[
〈Φ|H|Φ〉 −

∑
k

λk(〈ϕk|ϕk〉 − 1)

]
[
−1

2
∇2 +

∑
l

′
∫
dx′ |ϕl(x′)|2

|x− x′|
−

∫
dx′ nb

|x− x′|

]
ϕk(x) = εkϕk(x)

• If we look for a homogeneous solution, i.e.,∑
l

|ϕl(x′)|2 = nb,

then the Hartree equation becomes a simple plane wave equation:[
−1

2
∇2

]
ϕk(x) = εkϕk(x)



Hartree-Fock Approximation

• Since the electrons are “indistinguishable” particles obeying the Pauli exclusion

principle,

Φ =
1√
N !

∣∣∣∣∣∣∣∣∣
ϕ1(x1) . . . ϕN (x1)

...
...

ϕ1(xN ) . . . ϕN (xN )

∣∣∣∣∣∣∣∣∣
=

1√
N !

∑
P (1,...,N)

(−)P
N∏

i=1

ϕi(xPi)

(Here we assume that all the particles have the same spin!)



• Hartree-Fock equation:

−1
2
∇2ϕk(x) +

∑
l

′
∫
dx′

(
|ϕl(x′)|2 − nb

)
|x− x′|

]ϕk(x)

−
∑

l(σl=σk)

∫
dx′ϕ

∗
l (x

′ϕk(x′)
|x− x′|

ϕl(x) = εkϕk(x)

(It is noted that, when looking for a homogeneous solution, ϕk(x) = eik·x becomes a

solution!)



2nd Quantization Method

H = Ho +H1

Ho =
∑
kσ

εokc
+
kσckσ

H1 =
1
2

∑
kp,q 6=0

′
∑
σσ′

Vqc
+
k+qσc

+
p−qσ′cpσ′ckσ

εok =
k2

2

Vq =
4πe2

q2



From the Hartree-Fock solution of the 1st quantization calculation, we know that

ϕk = eik·x is a good candidate of normal modes and can assume the ground state:

|Φo〉 =
∏
kσ

θ(kF − k)c+kσ|0〉

Note that the cut-off in momentum space is different from the energy cut-off θ(εF −
εk). This is valid when we assume the translation and rotation symmetry of the
ground state.



Perturbation Expansion

• 0th order:

E(0) = 〈Φo|Ho|Φo〉

=
∑
kσ

εok〈Φo|c+kσckσ|Φo〉

=
∑
kσ

εokθ(kF − k)

• 1st order correction: (Hartree-Fock term)

E(1) = 〈Φo|H1|Φo〉

=
1
2

∑
kp,q 6=0

∑
σσ′

′Vq〈Φo|c+k+qσc
+
p−qσ′cpσ′ckσ|Φo〉

= −1
2

∑
σ

∑
kq

′Vqθ(kF − |k + q|)θ(kF − |k|)



σ1k+q

σ1p-q

σ1k

σ2p

kF kF

k + qσ1 = kσ1, p− qσ2 = pσ2 (×)

k + qσ1 = pσ2, p− qσ2 = kσ1 (O)

|i〉 = cpσ2ckσ1 |Φ0〉, |f〉 = cp−qσ2ck+qσ1 |Φ0〉

→ 〈f |i〉 = δk+q,pδσ1,σ2〈Φ0|c+k+qσ1
c+kσ1

ck+qσ1ckσ1 |Φ0〉

= δk+q,pδσ1,σ2〈Φ0|n̂k+qσ1 · (−n̂k+qσ1)|Φ0〉

= −δk+q,pδσ1,σ2Θ(kF − |k + q|)Θ(kF − |k|)
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