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Second Quantization
e Whatis it?
e Why do we need it? What for?

e How to represent the first-quantization form of observables in terms of second
guantization operators?

e How to calculate the expectation values of (a function of) operators in a second-
guantization form?

e How do we take account of the statistics: Boson vs. Fermion?
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Observables

e Single-Particle Systems: 1st quantization picture
The observables are position and momentum, i.e., {X, P}.

According to the uncertainty principle, measurements of a (conjugate) pair of
observables (e.g., X and P) in different sequences give different results:

XPly) # PXy)

Therefore, in general, we can write
X, P]|=ih #0

(Note that P and X are hermitian.)
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e Many-Particle Systems: 2nd quantization picture
=- The observables are “amplitudes” in a certain normal mode.
— What is the “normal mode” ?
x elgenstate or eigenmode
x often described as a decoupled/independent motion with a fixed frequency,
€.9.,
iwit

Nk (t) ~ To€

For examples, such normal modes are determined by the equation-of-
motion with boundary conditions:

(H - i%) b(x,t) =0
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e How is the “amplitude” represented in quantum mechanics?

— Consider a normal mode oscillation in classical mechanics, which is nothing
but a simple harmonic oscillator.
o up(t) + wiug(t) =0
otz " RER
— By replacing u(t) — X and may(t) — P, we can write down a quantum
mechanical Hamiltonian ‘H
P2 1

M=ot gmenX’

where the amplitude of oscillator can be measured by the observables X and
P.
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e Alternatively, the quantum mechanical harmonic oscillator can be represented
by the creation and annihilation operators ™ and a satisfying the relation

la,a™] =1

so that the Hamiltonian can be rewritten as

1
H — hwk(a+a + 5)

(Please refer to the quantum mechanics textbook for the detailed descriptions of ¢ and
a™ operators.)

e Thus , the “amplitude” of the k-th normal mode can be measured by the non-
hermitian observable a;. Indeed the so-called number operator 7 = a,jak IS a
measure of the number of quanta in the k-th normal mode, which corresponds
to the number state |ny).
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One may adopt a set of coherent states as basis for the representation of many-
particle states. The coherent state |«) is defined by

ag|a) = ala),
l.e., an eigenstate of the annihilation operator ay.

) = exp(aq))[0)

= ngojm\m

Please note that |«) has a semi-classical limit with the classical state { X, P}:

1 mw 1
o= —— —X +1 P
\/§< h Vmhw )
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N-particle guantum states

e Suppose that we have N (non-interacting) particles in a system with a set of
available (single-particle) quantum states {«,}. Then, the N-particle state can
be specified by the “amplitudes” of each quantum state, i.e., normal mode |v,,)
such as

(UN) = [ng=1, np=2, N3, -..)

so that the expectation value of n;,, becomes
<\I/N|’flk‘\11]\[> = Ng.
In general, an arbitrary N-particle state can be represented by

W) = > c({m D)V n({ne}))
{nK}
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e Therefore all the observables of the N-particle system can be represented by
the operators {ax} and {a; }:

On = O({a},a1})

e Note: Uncertainty principle in N-particle system can be regarded as an uncer-
tainty in measuring numbers:

aa™|Y) # aaly)

That is, [a,a™] =1 # 0 (real).
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Why do we need it?

= For the sake of convenience. In Fermion systems, for example, each |V ) basis
state corresponds to a Slater’s determinant of N-orbital states {|¢/,)|n =1,2,..., N},
which contains N!-terms in it. Thus, to represent an arbitrary state |¥), we have to
make a linear combination of such Slater’s determinants.

@) = c{me ) Wn({ne}))
{nk}

= Too complicated to deal with!
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Observables in 2nd Quantization Form

e Consider an operator, e.g., momentum operator p = —:V, in the 1st quantization
picture such that

plow) = k|ok)

Then the total momentum P can be found by
P = Z kny,.
k
That is, the total momentum operator P in the 2nd quantization form becomes
P = Z kazak
k

This is obvious because all we need to do is just counting number of particles
in the k-th mode and add them up.
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e What if we have a set of normal modes which are not the eigenstates of p?

— Consider an operator & such that

&|¢a) = af¢a)
— One-particle state and the vacuum:
[é1) = aj10)
[ba) = ag |0)

From the closure relation
1= ; 01) (D] = D |¢a) (Pal,
we know |¢;) = 37 |a) (a|éy), that is,
ay =) ag{alk)

(6

ap = Z(k\a>aa

(8%
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e The total momentum operator P:

P = Zka;ak
= Z Za (alk)ay (k|a')

ao’

= Zaa (alk)k(k|a Yaq
= Za alpla’

e When substituting o — x,

h(x) = ax
P [ axit o) (T ) b

Note that ¢)(x) is a so-called field operator:

P(x) =D (Xlor)ar = Y dr(x)ax
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e One-particle operator O;: In the 1st quantization representation, we write
01 =30,
)

In the 2nd quantization form,

A A

O = [ dxi* o)
= ) (alolo’)afay

aa’
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e Two-particle operator Os: In the 1st quantization representation,
0:= 5 0y
2 — 9 _ O34
Y]

In the 2nd quantization form,

Os % /dxldxﬂﬁ(xl)iﬁﬂxz)o(xla X2 ) (x2) P (x1)

= Z <aﬁ\6\a’ﬁ’>a;§a§aﬁ/aa/
aa’ B
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N-electron system

/ 2
SO 2 SUATES i
i ij v

h2k? 1
H E Ckacko' —|— E Ukklck Ck'o —|— 5 E Vckk/k//k///C;JCZ,O_,C]{:///U/C]{;//G
kk'o LE' K" K" 50!

vk = (k[o(x)|k')

62

chk/k”k”’ — <k‘]€" |k'//k‘///>

X1 — X2
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Statistics

Pauli Exclusion Principle
aflnk=1)=0

Since |ny = 1) = a;"|0), the Pauli principle states that
(a;)2 =0
Accordingly, we can generalize the commutation rule for Fermions:
lag, ap]+ =0

[a_];a a’]_{t—/]_*_ =0

lak, a;]+ = O

Note that [A, B] = [A,B]- = AB— BAand [A, B], = AB + BA.
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An Example: Hartree Fock Theory

Consider an electron gas in a homogeneous, positively charged medium (jellium
model).

Ho = Zh = Z [—h—2v2 + v(xz)]

where the external potential v(x) is given by

2 b
v(x) = —e /dx’ p—

with ny Is a positive charge density equal to the average electron density.
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First Quantization Method: Slater’s Determinant

Hartree Approximation

e Solving the one-particle Hamiltonian:

Holq)> — EO‘CI)>
(I)(Xl, ...,XN> = gOl(Xl) ce @N(XN) = Hgok(xk)

hipr (%) = erxpr(X)

(Note that ® has no permutation symmetry.)
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e With the orthogonality constraint {px|¢;) = g, Obtain a variational equation for
¢ for the total energy E = (®|H|P) :

[‘PH@ ZM (klpr) —1>]

__v2+z /d "f{l_x /dx’ L ]SOk(X) = xpr(X)

[x — x|

¢ If we look for a homogeneous solution, i.e.,
D e =,
l

then the Hartree equation becomes a simple plane wave equation:

[—%VQI Pr(X) = erpr(x)
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Hartree-Fock Approximation

e Since the electrons are “indistinguishable” particles obeying the Pauli exclusion

principle,
p1(x1) ... on(x1)
& — 1 . .
v N
p1(xn) .- pn(xXN)
1 N
= — Y 7] eixp)
N P(1,...,.N) i=1

(Here we assume that all the particles have the same spin!)
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e Hartree-Fock equation:

(It is noted that, when looking for a homogeneous solution, ¢, (x) = e** becomes a
solution!)

T
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2nd Quantization Method

H:Ho—'_H]_

_ +
Ho = €okCr,Cko
ko

1 /
_ § : § : + +
= 2 VaCht g0 Cp—gor Cpo’ Cho
kp,q#0 oo’

]{2
€ok —

2
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From the Hartree-Fock solution of the 1st quantization calculation, we know that
¢, = €% is a good candidate of normal modes and can assume the ground state:

He kr — k)c; |0)

Note that the cut-off in momentum space is different from the energy cut-off (ex —
€x). This is valid when we assume the translation and rotation symmetry of the
ground state.
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Perturbation Expansion

e Oth order:

e 1st order correction:

1)

E(O) — <(I)0’H0‘(I)0>
— Zeok<q)o|cz;acka’q)o>
ko
= ) eorb(kp — k)
ko

(Hartree-Fock term)
— <(I)0’H1 ‘(I)0>

1
§ : § :/ + o+
2 Vg (®o] Ck+qo Cp—qo’ Cpo’ Cko Do)
kp,q#0 oo’

1
= -3 > Veb(kr — |k + af)0(kr — |K|)
o kg




k+qoy =koy, p—qos=po2 (X)
k +qo1 =po2, p—qox=kor (O)

1) = CposCior|Po)s  |f) = Cp—qosCletaor [ Po)

— (fli) = Ok +q,p001,09 <¢O|Ci*{——|—qo'1 Ciigl Ck+qo1Ckoy Ky

— 5k+q,p501,02<q)0mk+q01 ' (_ﬁk+q01)‘q)0>
= —Oktqplo,e.O(kr — [k +q|)O(kr — [K|)
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