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Lattice Dynamics in One Dimension

We may consider crystalline solids as a periodic array of atoms or molecules

at fixed positions, i.e., lattice points. However, since, at finite temperature,

the atoms in a solid are in constant motion induced by the thermal energy,

we need to device a picture or model for the description of such thermal

motion of atoms.



Lattice Dynamics in One Dimension

We may consider crystalline solids as a periodic array of atoms or molecules

at fixed positions, i.e., lattice points. However, since, at finite temperature,

the atoms in a solid are in constant motion induced by the thermal energy,

we need to device a picture or model for the description of such thermal

motion of atoms.

The basic ideas behind this picture are:

• Harmonic motions of atoms about their equilibrium positions

• Normal modes of lattice waves



Dynamics of a string — continuous medium
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What do we measure in the motion of continuum string?

How do we observe in the vibrational motion?

In particle dynamics, we are interested in the dynamic variables {xi,pi} of each

individual particles. When the number of particle N → ∞, it becomes no longer

possible to observe them all. Then, what do we do?



What do we measure in the motion of continuum string?

How do we observe in the vibrational motion?

In particle dynamics, we are interested in the dynamic variables {xi,pi} of each

individual particles. When the number of particle N → ∞, it becomes no longer

possible to observe them all. Then, what do we do?

When hearing sounds, how do we distinguish tone, pitch, tune, rhythm, and

so on? Could we take an analogy between hearing sounds and measuring

the wave motion?



Infinite chain of atoms

1D linear chain of coupled harmonic oscillators



• mass: Ml = m

• position: xl = la+ ul

• velocity: vl = ẋl = u̇l

• force: Fl = C(ul+1 − ul)− C(ul − ul−1) = C(ul+1 + ul−1 − 2ul)

• classical equation of motion: (coupled harmonic oscillators)

mül = Fl

ül = ω2
o(ul+1 + ul−1 − 2ul) with ω2

o =
C

m



Looking for a solution? Use Symmetry!



Looking for a solution? Use Symmetry!

(i) mirror symmetry for N = 2: (x1 ↔ x2)

⇒ normal modes  xs = 1√
2
(x1 + x2)

xa = 1√
2
(x1 − x2)

P (1 ↔ 2)xs,a = ±xs,a = (einπ)xs,a (n = 0, 1)

where xs stands for the center-of-mass motion and xa for the relative motion.



(ii) cyclic symmetry for N > 2: (... → x1 → x2 → x3 → ... → xN → x1...) In

group theory, this symmetry belongs to the Abelian group with 1-dimensional

representation:

Taψk = λkψk with ψk = ψk(x)

(Ta)Nψk = λN
k ψk = ψk

λk = eika and kaN = 2πn

k =
(

2π
aN

)
n =

(
2π
L

)
n

For an example, we can consider

ψk(x) = uk(x = xl) = uo(k)eikxl

with xl = la



Nomal modes and dispersion relation

Looking for a normal mode: ul(t) ∼ e−iωt

All the particles in the chain move coherently, i.e., with the same time-dependence
e−iωt.

For the k-th normal mode with ωk:

ul(k, t) = ūl(k)e−iωkt

where Taūl(k) = ūl+1(k) = eikaūl(k).



In quantum mechanics, we know that ψk satisfies

Hψk = εkψk

when TaHT
−1
a = H and Taψk = λkψk.

−ω2
kūo(k) = ω2

o(e
ika + e−ika − 2)ūo(k) = −ω2

o

(
2 sin

ka

2

)2

ūo(k)

ωk = 2ωo

∣∣∣∣sin ka2
∣∣∣∣

Long wavelength limit:
When ka� 1, we can approximate the dispersion as

ωk =
(
C

m

)1/2

ka = vsk

where vs = (Ca2/m)1/2 : sound velocity.





Phonon dispersion curves for fcc Pb



Group velocity:

vg =
dωk

dk
=

(
Ca2

m

)1/2

cos
ka

2



Group velocity:

vg =
dωk

dk
=

(
Ca2

m

)1/2

cos
ka

2

It is noted that vg = 0 at k = π
a . Could you explain this result in terms of

Bragg reflection at the zone boundary?



Two atoms per unit cell

When there are two atoms per unit cell, we can assign two variables u1 and u2 such

that:

• u1,l → atom 1 in the l-th unit cell

• u2,l → atom 2 in the l-th unit cell

The equation of motion:

m1ü1,l = C(u2,l + u2,l−1 − 2u1,l)

m2ü2,l = C(u1,l+1 + u1,l − 2u2,l)



Looking for a normal mode solution with:

u1,l(k, t) = u1(k)ei(kal−ωkt)

u2,l(k, t) = u2(k)ei(kal−ωkt)

 −ω2
km1 0

0 −ω2
km2

  u1(k)

u2(k)

 =

 −2C C(1 + e−ika)

C(1 + eika) −2C

  u1(k)

u2(k)





m1m2ω
4
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k + 2C2(1− cos ka) = 0

ω2
k =

C(m1 +m2)
m1m2

±

√[
C(m1 +m2)

m1m2

]2

− 4C2(1− cos ka)2



m1m2ω
4
k − 2C(m1 +m2)ω2

k + 2C2(1− cos ka) = 0

ω2
k =

C(m1 +m2)
m1m2

±

√[
C(m1 +m2)

m1m2

]2

− 4C2(1− cos ka)2

Long wavelength limit:
When ka� 1,

ωa,k =

√
Ca2

2(m1 +m2)
k acoustic branch

ωo,k =

√
2C(m1 +m2)

m1m2
optic branch





Homework #2

(due: Tuesday, 16 March 2004)

Impurity Problem: What if there is an impurity in the system? Suppose

that the mass of the impurity atom is much heavier or lighter than that of the

lattice atoms, describe the motion of the impurity atom. What is the normal

mode for the motion of such impurity atom?



Phonons — quantum of elastic waves

Instead of {xi,pi}, the amplitude ul(t) and its velocity u̇l(t) should be considered as

dynamic variables.

From the equation of motion for the k-th normal modes:

¨̄uo(k, t) = −ω2
kūo(k, t),

the Hamiltonian for the elastic waves can be written by

H =
∑

k

π2
k

2m
+

1
2
mω2

ku
2
k

with the conjugate momentum πk = mu̇k and uk ≡ ūo(k, t).



In quantum mechanics, the Hamiltonian for the harmonic oscillators can be described

by

H =
∑

k

~ωk(a+
k ak +

1
2
)

and the quantum states are

H|Ψ(n1, n2, ..., nN )〉 = En1,n2,...,nN |Ψ(n1, n2, ..., nN )〉

|Ψ(n1, n2, ..., nN )〉 = |nk=1〉 ⊗ |nk=2〉 ⊗ ...⊗ |nk=N 〉



Anharmonicity

When there are anharmonic coupling between atoms, it appears as

V (u1, u2, ..., uN ) = ...+Ai(ul − ul+1)3 + ...

Which then induce the phonon-phonon scattering such as

H1 = ...+
∑

k1,k2,k3

Vk1,k2,k3a
+
k1
a+

k2
ak3 + ...



Energy and momentum

Phonon energy:

εk = ~ωk where the energy is determined by the factor

ωo =

√
C

m



Energy and momentum

Phonon energy:

εk = ~ωk where the energy is determined by the factor

ωo =

√
C

m

Question: Try to make an order-of-magnitude estimate of ωo in solids.

Here it is a key to make a reasonable guess on the scale of C, the effective

force constant? Any good idea?



Often the force constant is give as a function of k. In some cases, it

becomes negative, i.e., C(ko) < 0 for some values of ko. In other words,

ωo < 0! What will happen if ω2
o < 0, i.e., ω2

k < 0?
If ω2

k < 0, thenωk ∼ ±i|ωk|.

ψk ∼ e−iωkt = e±|ωk|t

: Unstable−→ lattice distortion for the modek.



Phonon momentum:

The crystal momentum of the k-th normal mode

Pk = m
d

dt

∑
l

ul(k, t) = m
duo(k, t)

dt

N−1∑
l=0

eikal

Pk = m
duo(k, t)

dt

1− eikaN

1− eika

(i) k 6= 0 and k 6= Gn = (2π/a)n
Pk = 0

Why? Because relative coordinates do not carry the total momentum.

(ii) k = 0 or Gn

Pk = Nm
duo(k, t)

dt

(iii) Two crystal momenta k and k +Gn are equivalent!



Umklapp Process: phonon scattering

k + G = k′ + G′



Electron-phonon or neutron-phonon scattering:
• momentum conservation:

k = k′ + K + G

• energy conservation:
k2

2m
=
k′

2

2m
± ωK



Neutron Scattering for Cu



phonon-photon scattering:
• momentum conservation:

k = k′ + K + G

• energy conservation:
kc = k′c± ωK



Characteristic structure of Brillouin spectrum
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