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Preface

The purpose of this lecture is to help students to understand various phys-

ical phenomena in condensed matter systems based on the fundamental

physical principles. As a second part of the two-semester course on the

solid state physics, we will focus on the fundamental phenomena and re-

lated physical concepts in condensed matter physics. Topics to be covered

include superconductivity, magnetism, ferroelectricity, impurities and defects,

and surface/interfaces. Based on the basic physics concepts discussed in

the previous semester, I will try to introduce basic physical concepts and

relevant physical models, which I hope help you to understand the subjects.



What is all about condensed matter physics?

... How do we understand the physical properties of single particle systems in a

classical or quantum sense? In other words, what do we measure or observe?
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... How do we understand the physical properties of single particle systems in a

classical or quantum sense? In other words, what do we measure or observe?

O

x

p

Ψ ?

... In classical dynamics, the state of a single particle is determined by the observables{x(t),p(t)}. It can be extended to the system with many particles where
the state of the system is described by the set of observables{xi(t),pi(t)|i = 1, 2, ..., N}. However, whenN ∼ 1025, it is practically impossible
to trace the orbits of all, even the part of, the particles. Here it is the point where the statistical physics comes into playing a role. Instead of following each
individual particles, we measure a quantity by an (ensemble or time) average of the given quantities adopted in classical dynamics. In addition, now we have to
deal with new observables such as entropy, temperature, ....

The same thing applies for the case of quantum systems. The only difference is the dynamics state of the quantum system is determined by a state vector

|ψ(x, t)〉 for a single particle and|Ψ(x1,x2, ...,xN , t)〉.



Macroscopic vs. microscopic objects

• Observables for the macro object consisting of more than ∼ 1020 particles:



Macroscopic vs. microscopic objects

• Observables for the macro object consisting of more than ∼ 1020 particles:

– specific heat cv ←− entropy, temperature

– bulk modulus or compressibility κ←− pressure P

– polarization P, magnetization M←− electro-magnetic field E, B

– reflectivity, color, conductivity, ... etc.



For an example, what physical property of the cube (or disk) makes this happen, i.e.,

a cube float over a magnet against gravitation?



For an example, what physical property of the cube (or disk) makes this happen, i.e.,

a cube float over a magnet against gravitation?

(Hint: This is the phenomenon called magnetic levitation, which is mainly

attributed to the “Meisner effect” of superconductors.)
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Observables for the micro or nano object of order ∼ 102 particles:

• conductance G / electron tunneling current I

• force F

• magnetic Flux Φ

• charge density distribution, electron cloud (bonding), ... etc.
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an AFM image an STM image a LEED image

What do we really see in these images?

What physical quantities do they represent?

An example of the SEM System:



MRI Image: What do we really see in this image?

What physical quantity does it represent?



MRI Image: What do we really see in this image?

What physical quantity does it represent?

(This is an image of our brain probed by using the technique of the nuclear magnetic

resonance.)
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Most condensed matter systems are quantum me-
chanical by nature!

λ ∼ ~
p
∼ d

• Unfortunately, however, there is no quantum mechanical solution available ex-

cept for free (i.e., non-interacting) particle systems.

• An example of exactly solvable models:

H = ~ω(a+a +
1
2
)

a+a|n〉 = n|n〉

a|O〉 = 0
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tem in order to understand the physics of a “black

box” ?
• Experimental Methods:

By disturbing the black box by phtons, phonons, electrons, and/or neutrons, try

to get a hint on elementary excitations in the system.

• Theoretical Methods:

By guessing possible elementary excitations and working out the QM equation

of motions, see if we can predict the physics of the system. If wrong, correct the

model for the elementary excitations for the better description.

• How to disturb the “black box”?



Question: Measuring the dc resistance is a way of disturbing the system? What
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Question: Measuring the dc resistance is a way of disturbing the system? What

really happens inside the black box when we apply a bias voltage?

♠ Current-Voltage curve of a YBCO high Tc superconductor



Question: What happens when we shine a light on the matter?



Question: What happens when we shine a light on the matter?

Light scattering experiment: (Photoemission / IR spectroscopy)



Particle zoo in the condensed matter systems



Particle zoo in the condensed matter systems

“elementary excitations in solids”



Particle zoo in the condensed matter systems

“elementary excitations in solids”

• quasi-particles: electrons, holes, polarons, excitons, Cooper pairs, ...

• collective excitations: phonons, magnons, zero-sound, plasmons, ...



Energy scale

The condensed matter system is merely a collection of atoms, where each

atom consists of electrons and a nucleus (me � mN ).

From the uncertainty principle ∆x∆p ∼ ~,

∆p =
√

2meE ≈
√

3mkBT

Thus, practically, the size of atom ≈ the size of electrons.



Energy scale
The condensed matter system is merely a collection of atoms, where each
atom consists of electrons and a nucleus (me � mN ).

From the uncertainty principle ∆x∆p ∼ ~,

∆p =
√

2meE ≈
√

3mkBT

Thus, practically, the size of atom ≈ the size of electrons.

• atomic unit: ~ = e2 = me = 1

∆x ≈ aB =
~2

me2
= 0.529177Å (Bohr radius)

EB = −1
2

e2

aB
= −me4

2~2
= −13.6058eV = −1Ry

In atomic unit, aB = 1, EB = −1/2, c = 1/α ≈ 137,
kB ≈ 3× 10−6 , ...
(α = e2/~c: fine structure constant)
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• energy of an electron in a box of size L:

∆x ∼ L −→ ∆p ≈ ~
L

Eo =
p2

2m
≈ 1

2L2

• speed of electrons in a box:

ve ∼
1
L
∼ αc

L

• electrons in solid

– Fermions: Pauli exclusion principle

– Degenerate Electrons: lowest possible excitations near the Fermi energy



Homework #1

(due: Tuesday, 9 March 2004)

Estimate the scale in atomic unit:

(a) ground state energy of an electron in a cube of length 1 nm.

(b) energy and momentum of a photon with λ = 104 Å.

(c) energy of an electron in a magnetic field of 1 T.

(d) thermal wave length of an electron and a neutron in a thermal bath of 300 K.

(e) Fermi energy of a degenerate electron (neutron) gas with its density 1022 cm−3

respectively.
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