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Microscopic Theory of Superconductivity

BCS Trial Wavefunction

As we discussed in the previous chapter, the superconducting ground state needs

to be described in terms of the Cooper pair states, which can have two accessible

states, i.e., {|o〉, |k ↑,k ↓〉. A possible choice of the ground state is

|ψBCS〉 =
∏
k

(uk + vkc
+
k↑c

+
−k↓)|0〉

where the parameters uk and vk are to be determined by the variational principles.
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to be described in terms of the Cooper pair states, which can have two accessible

states, i.e., {|o〉, |k ↑,k ↓〉. A possible choice of the ground state is

|ψBCS〉 =
∏
k

(uk + vkc
+
k↑c

+
−k↓)|0〉

where the parameters uk and vk are to be determined by the variational principles.

Note the difference between the BCS trial state |ψBCS〉 and the Hartree-Fock trial
state |ψHF〉 =

∏
k<kF ,σ c

+
kσ|0〉.



Mean Field Theory

Basic Idea: Heisenberg Model as an example

H = −
∑
〈ij〉

JijSi · Sj + gµBH ·
∑

i

Si

For free spins in an external field H,

H0 = gµBH ·
∑

i

Si

we can obtain an exact solution for the thermodynamic quantities from the partition
function Z0:

Z0 = tre−βH0 .

(For more details, please refer the standard textbook on Statistical Mechanics.)
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In general, there is no exact solution for the interacting spins. To understand
the ground (or finite-temperature) state of such interacting spin systems, one can
introduce an idea of “mean field” , or an effective field acting on a spin at each site.



Introducing a Mean field 〈Si〉, which is a c-number, we can describe the quantum
operator as follows:

Si = 〈Si〉+ (Si − 〈Si〉) = 〈Si〉+ δSi

By the definition, we know

〈δSi〉 = 0,

but in general

〈δSi · δSj〉 6= 0.

However, if we can assume that the fluctuation in the system is much smaller than
the average, i.e., √

〈(δSi)2〉 � 〈Si〉,

then we can approximate the interacting spins by the free spins interacting with an
effective external field.

Si · Sj ≈ Si · 〈Sj〉+ 〈Si〉 · Sj − 〈Si〉 · 〈Sj〉



Note that the effective “mean” field can be defined

(i) either by an average expectation for the zero-temperature ground state

〈S〉 = 〈ψS |S|ψS〉

(ii) or by an ensemble average for the finite-temperature state.

〈S〉 = tr (ρS)

with the density matrix ρ = e−βH =
∑

m e−βEm |m〉〈m|.



Mean field solution:
Introducing an effective field Heff ,

H = −
∑
〈ij〉

JijSi · Sj + gµBH ·
∑

i

Si = gµB

∑
i

Si ·Heff

where the effective mean field

Heff = H− 1
gµB

∑
j

JijSj

and the average magnetization

〈Si〉 =
V

N

M
gµB

Heff = H + λM

λ =
V

N

Jo

(gµB)2

M = −N
V

∂F

∂H
= Mo(

Heff

T
)



• For the case of H = 0,
one can fine the magnetization M by solving the equation:

M(T ) = Mo(
λM

T
)

χo(T ) =
(
∂Mo

∂H

)
H=0

=
M ′

o(0)
T

where the Curie’s constant is determined to be Co = M ′
o(0).

• For the case of H 6= 0,

χ =
∂M

∂H
=

∂Mo

∂Heff

∂Heff

∂H
= χo(1 + λχ)

χ =
χo

1− λχo
=

Co

T − Tc

where the critical temperature Tc becomes

Tc =
N

V

(gµB)2

3kB
S(S + 1)λ =

S(S + 1)
3kB

Jo



Mean Field Theory for the interacting electron systems

• Mean field for the Hartree-Fock (normal state) trial solution:

〈ψHF|c+k↑ck↑|ψHF〉 = nk↑ 6= 0

〈ψHF|ckσck′σ|ψHF〉 = 0

• Mean field for the BCS (superconducting state) trial solution:

〈ψBCS|c+k↑ck↑|ψBCS〉 = nk↑ 6= 0

〈ψBCS|c−k↓ck↑|ψBCS〉 = Ak 6= 0



The BCS Hamiltonian:

H =
∑
kσ

ξkc
+
kσckσ − V0

∑
kk′

c+k↑c
+
−k↓c−k′↓ck′↑

Following the mean-field procedure, we can introduce

c−k↓ck↑ = Ak + (c−k↓ck↑ −Ak)

Neglecting the fluctuation term,

〈(c+k↑c
+
−k↓ −A∗

k)(c−k′↓ck′↑ −Ak′)〉 ≈ 0

the original interacting Hamiltonian can be reduced to a mean-field Hamiltonian

HMF =
∑
kσ

ξkc
+
kσckσ − V0

∑
kk′

(A∗
kc−k′↓ck′↑ + c+k↑c

+
−k↓Ak′) + V0

∑
kk′

A∗
kAk′



Variational Method

Since the trial BCS wave function is given as a function of variational parameters

{uk, vk}, we can apply the minimum energy principle to find the solution.

E({uk, vk}) = 〈ψBCS|H|ψBCS〉/〈ψBCS|ψBCS〉

∂E

∂uk
= 0,

∂E

∂vk
= 0



• Normalization:

〈ψBCS|ψBCS〉 =
∏
k

(|uk|2 + |vk|2) = 1

|uk| = cos(θk/2), |vk| = sin(θk/2)

• Pairing order parameter Ak:

Ak = 〈ψBCS|c−k↓ck↑|ψBCS〉 = u∗kvk =
1
2

sin θk

〈0|

{∏
k1

(u∗k1
+ v∗k1

c−k1↓ck1↑)

}
(c−k↓ck↑)

{∏
k2

(uk2 + vk2c
+
k2↑c

+
−k2↓)

}
|0〉 = u∗kvk

• In a normal (HF) state, we have uk = θ(ξk) and vk = θ(−ξk), or, alternatively,

θk = 0 for ξk > 0 and π for ξk < 0. Consequently, the anomalous pairing order

parameter becomes zero for all k, i.e., sin(2θk) = 0,

Ak = 0.



Canonical Transformation
There is another way of treating the minimum energy principle. Reminding that the
operator approach to the solution of quantum harmonic oscillator requires a lower
bound in energy such that

a|G〉 = 0.

Since the mean-field BCS Hamiltonian is quadratic in ck and c+k , one should be able
to find a canonical transformation to a new set of operator γk and γ+

k , satisfying the
same commutation rule as ck and c+k ,

[γk, γ
+
k′ ]+ = δkk′

γk = cos(θk/2)ck − sin(θk/2)c+−k

and

ck = cos(θk/2)γk + sin(θk/2)γ+
−k



Through the canonical transformation, the mean-field Hamiltonian can be repre-

sented by

HMF =
∑
ka

Ekγ
+
kaγka + EG

where the quasi-particle energy Ek is determined to be

Ek =
√
ξ2k + |∆|2

HMF =
1
2

∑
k

(c+k↑c−k↓ck↓c
+
−k↑)


ξk −∆ 0 0

−∆∗ −ξ−k 0 0

0 0 ξk −∆

0 0 −∆∗ −ξ−k




ck↑

c+−k↓

c+k↓

c−k↑


with the pairing potential ∆:

∆ = V0

∑
k

Ak



It is noted that one can view the BCS ground state in terms of the quasi-particle
operators:

|ψBCS〉 =
∏
k

γ−kγk|0〉,

which is equivalent to:

|ψBCS〉 =
∏
k

(uk + vkc
+
k↑c

+
−k↓)|0〉



Thermodynamic Derivation of London Equation

Consider a metal with a free-electron-like band,

F =
∫
fsdr + EK + Emag

where

• fs = energy of SC electrons with js = 0

• EK = kinetic energy due to the supercurrent js(r)

• Emag = electromagnetic energy.

Note that the SC (superconducting) state can be characterized by (i) the

macroscopic quantum state of the pairs and (ii) the quasi-particle (excitation)

states of electrons.



Defining v(r)= drift velocity of superconducting electrons (i.e., pairs) at r,

js(r) = nsev(r)

where ns refers to the no. of SC electrons.

EK =
∫
dr

1
2
mv2ns

assuming v(r) be a slowly-varying function of r compared to ns(r).

Emag =
∫
dr

h2

8π



From the Maxwell’s equation,

∇× h =
4π
c

js =
(

4πens

c

)
v

we can rewrite the free energy by

F = Fo +
1
8π

∫
dr

[
h2 + λ2

L(∇× h)2
]

where

Fo =
∫
dr fs

λL =
(

mc2

4πnse2

)
; London penetration depth



Minimizing F w.r.t. h,

δF =
1
4π

∫
dr

[
h · δh + λ2

L(∇× h) · (∇× δh)
]

Therefore, we have the London equation:

h + λ2
L∇× (∇× h) = 0



Physical Implication of the London Equation

Considering SC electrons as “an incompressible non-viscous charge fluid”, we can

apply a standard classical fluid dynamic model with the relation:

js(r, t) = nsev(r, t)

Simple charge fluid model

• Continuity Eq.:

∇ · j = ∇ · v = 0

• Newton’s Eq.:
dv
dt

= +
e

m

(
E +

1
c
v × h

)



Define: Q ≡ ∇× v + eh/mc,

∂Q
∂t

= ∇× (v ×Q)

→ dv
dt

=
∂v
∂t

+ (v · ∇)v =
∂v
∂t

+∇(v2/2)− v × (∇× v)

→ ∂v
∂t

− e

m
E +∇(v2/2) = v × (∇× v +

e

mc
h)

Consider a bulk superconductor in zero field so that Q = 0. Then, the above equa-
tion implies that Q = 0 for the rest of the time sequence, even if h 6= 0, independent
of how the final state is reached.



The fundamental assumption for superconductors under all
circumstances:

Q ≡ ∇× v +
eh
mc

= 0

Now the question is why !



For superconductor as an imcompressible charge fluid, we have two equations (Lon-

don equations):

Q ≡ ∇× v +
eh
mc

= 0

∂v
∂t

+∇
(
v2

2

)
=
eE
m

Using js = nsev and ∇× h = 4π
c js,

h = − mc

nse2
∇× js

→ h = − mc2

4πnse2
∇× (∇× h) = +

1
λ2

L

∇2h



London Penetration Depth λL

• h = hz ẑ,
∂hz

∂z
= 0 → hz = const., jz = 0

∴ hz = 0

• h = hxx̂,

∴ hx(z) = hoe
−z/λL



Quantization of Fluxoid

Suppose that ∇(v2/2) = 0, then

eE
m

=
∂v
∂t

=
1
nse

∂js
∂t

From the Maxwell’s Eq.,

∇×E = −1
c

∂h
∂t∫

ds · ∂h
∂t

= −c
∫
ds · ∇ ×E = −c

∮
C
dl ·E

∴
∂

∂t

(∫
ds · h +

mc

nse2

∮
C
dl · js

)
= 0

Since ∇×A = h, we can rewrite Q = 0 by

mQ = ∇×
(
mv +

e

c
A

)
= ∇× p = 0



Magnetic Flux

Φ =
c

e

∫
ds · (∇× p) =

c

e

∮
C
dl · p =

hc

e
n

Note that the Sommerfeld quantization rule:∮
C

dl · p = nh

Quantization of the magnetic flux inside superconductor:

φo =
hc

e∗

For Cooper pairs, we should put e→ e∗ → 2e !!





London equation

Using the London gauge,

∇ ·A = 0

A · n̂ = 0on boundaries

the London’s equation h = −(mc/nse
2)∇× js becomes

js(r) = −nse
2

mc
A(r)

In this picture, the penetration depth should depend only on fundamental constants
and ns. This solution is valid when h and v are “slowly varying function of r” in the
scale of coherence length ξo, that is,

ξo � λL



Coherence Length ξo

The Cooper pairs are formed by the electrons within the energy range:

EF −∆ <
p2

2m
< EF + ∆

δp ∼ 2∆
vF

δx→ ξo =
~
δp

≈ ~vF

π∆

Two kinds of superconductors

• Type I: λL < ξo

• Type II: λL > ξo



Free Energy of Superconductors

Remind that the free energy of a system under the external field h can be expressed

by

F = Fo +
1
8π

∫ [
h2 + λ2

L(∇× h)2
]

where Fo = Fn for the normal state and Fo = Fs for the superconduting state.



• Fa: a free energy with h > Hc (i.e., normal state)

Fa = Fn + V · h
2

8π

• Fb: a free energy with h < Hc (i.e., superconducting state)

Fb = Fs + 0

(Here we neglect the surface region of λ.)

Here note that external WORK is needed to apply the field from 0 to Hc or above,

Wba = Fa −Fb =
∫ a

b
I
dΦ
dt
dt = V · h

2

4π



Superconducting Condensation Energy:

∴ Fn − Fs =
H2

c

8π

• Entropy:

From the relation S = −(∂F/∂T ),

Sn − Ss = − 1
4π
Hc

Hc

dT

Latent heat:

L = T (Sn − Ss) = − T

4π
Hc

Hc

dT
> 0

Since Hc(Tc) = 0 at T = Tc, L = 0, i.e., 2nd order phase transition.



• At zero field,

Cn − Cs = T
d

dT
(Sn − Ss)|T=Tc = − Tc

4π

(
dHc

dT

)2

T=Tc

< 0



Thermodynamics

So far we discussed the free energy of electrons by

Fe = Ue − TS

where the internal energy Ue is given by

Ue =
∑

i

[
1

2m
(pi − eAi/c)2 + vi

]
+

∑
i>j

vij

Thus, including the free energy of h-field, the total free energy becomes

F = Fe +
∫
dr

h2

8π

Fe =
∫
fs(r)dr



Induction B

From the local field h(r),

B =

 〈h(r)〉∆v inside SC

h(r) outside



Thermodynamic Field H

δF =
∫
dr

H(r)
4π

· δB(r)

(i) Outside SC,

h = B

δF =
h · δh

4π
=

H · δB
4π

∴ h = H = B

(ii) Inside SC, we expect js 6= 0 so that

〈j〉 = 〈js〉+ jext

∇×H =
4π
c

jext



Thermodynamic Potential G

at fixed T and jext:

δF =
1
4π

∫
drH · δB− SδT

Define:

G = F−
∫
dr

B ·H
4π

δG = −
∫

B · δH
4π

dr− SδT

Using ∇ ·B and B = ∇×A,

SδT + δG = − 1
4π

∫
(∇×A · δH)dr =

1
c

∫
drA · δjext

∴ δG = 0

at constant T and jext, minimum of G.



Origin of the Surface Energy

• Type I SC, i.e., λ� ξo,

∆Gs = γ ≈ −H
2
c

8π
λAS +

H2
c

8π
ξoAS ≈

H2
c

8π
ξoAS



• Type II SC, i.e., λ � ξo, Contrary to the case of Type I, here the condensation

energy is negligible compared to the magnetic energy:

h =

 Hc (x < 0,Normal region)

Hce
−x/λ (x > 0,SCregion)

Gs =
∫

x>0
dx

(
Fn −

H2
c

8π
+
h2

8π
− Hh

4π
+ λ2 (dh/dx)2

8π

)
=

∫
dx(Fn −

H2
c

8π
) + γAS

Negative surface energy for the Type II SC:

γ =
∫ ∞

0
dx

[
h2 + λ2(dh/dx)2

8π
− hHc

4π

]
= −H

2
c

8π
λ < 0



Magnetic Propreties of Type II Superconductors

Phase diagram of a type II SC



Magnetization of the SC

M =
B −H

4π

At a give T < Tc,



Reversal Magnetization

Remark: ∫ Hc

0

MIdH =
∫ Hc2

0

MIIdH = −H
2
c

8π

if both SC’s have the same thermodynamic field Hc.





Vortex State

For λ� ξ, the vortex line arises from “negative surface energy”.

• Flux quantization with n = 1:

φ =
∫

h · ds = nφo

where φo = ch/2e = 2× 10−7 G·cm2.

• String of singularity analogously to the mono-pole field.
⇒ “Solition” of a complex field with U(1) gauge symmetry.

• Analog to the superfluid:

∇× v = 0

But, the range of v in He4 is ∼ 1/r while that of j in SC ∼ e−r/λ.





Distribution of h(r) near the vortex
For r > ξ, minimizing F leads to the London equation,

h + λ2∇× (∇× h) = 0 (r > ξ)

Substituting a small core by a delta function,

h + λ2∇× (∇× h) = ~φoδ2(r)

where φ̂o = φoẑ represent the total flux carried by the line.∫
h · ds + λ2

∮
C

∇× h · dl = φo



(i) When r � λ, j(r) = (c/4π)∇× h → 0,∫
h · ds = φo

(ii) When ξ � r � λ, we can neglect∫
h · ds ≈

(
r2

λ2

)2

φo → 0

λ2|∇ × h|2πr ≈ φo

∴ |∇ × h| = φo

2πλ2

1
r

(ξ < r � λ)

For h = hẑ, |∇ × h| = −dh/dr.

h(r) =
φo

2πλ2

[
ln

(
λ

r

)
+ const.

]
(ξ < r � λ)

Complete solution:

h(r) =
φo

2πλ2
Ko(r/λ)ẑ

j(r) =
φoc

8π2λ3
K1(r/λ)θ̂



Vortex Line Energy:

Fv =
(
φo

4πλ

)2

ln
(
λ

ξ

)
• F = F (ξ)

• F ∝ φ2 → ensures the minimum flux value φo.



Josephson Effect

S-N-S Junction

When A = 0, the boundary values are related by

ψ+ = M11ψ− +M12
∂ψ−

∂x

∂ψ+

∂x
= M21ψ− +M22

∂ψ−

∂x

where M11M22 −M12M21 = 1 (Mij : real).
The supercurrent Ix / unit-area,

Ix =
−ie~
m

[
ψ
∗ ∂ψ

∂x
− c.c.

]



Josephson Current:

Ix =
−ie~
m

[
ψ∗−

(
1

M12
ψ+ −

M11

M12
ψ−

)
− c.c.

]
= Ix =

−ie~
M12m

(ψ∗−ψ+ − ψ−ψ
∗
+)

Since the phase factors can be modified by the presence of A,

ψ = |ψ|eiφ

Ix =
2e~
M12m

|ψ+||ψ−| sin(φ+ − φ−) = Im sin(φ+ − φ−)

Similar discussion can be made by using a tunneling model Hamiltonian:

i~
∂ψ1

∂t
= H11ψ1 +H12ψ2

i~
∂ψ2

∂t
= H12ψ2 +H22ψ2



SQUID

Superconducting Quantum Interferometer Device

I = Im [sin(φ2A − φ1A) + sin(φ2B − φ1B)]

Inside the wire, js = 0,

φ1B − φ1A =
∫

C1

2e
~c

A · dl



φ2A − φ2B =
∫

C2

2e
~c

A · dl

(φ1B − φ2B + φ2A − φ1A) =
2e
~c

∮
A · dl = 2π

Φ
φo

(φ2A − φ1A) = −(φ2B − φ1B) = π
Φ
φo

∴ I[Φ] = 2Im

∣∣∣∣sin (
π

Φ
φo

)∣∣∣∣
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