HOME WORK #5 (due date: Monday, 19 November 2007)

1. In analogy with the 1D chain system discussed in the class, let us consider a linear 1D chain with lattice constant a and two different atoms of masses m_1 and m_2 within the unit cell. Suppose all spring constants of the springs connecting two neighboring atoms are the same, i.e., k_0 .

(a) Show that the Hamiltonian of this two-atoms-per-unit-cell chain can be represented by

$$\mathscr{H} = \sum_{n=0}^{N} \sum_{\alpha=1}^{2} \left[\frac{p_{n,\alpha}^{2}}{2m_{\alpha}} \right] + \sum_{n=0}^{N} \left[\frac{1}{2} k_{0} (u_{n,1} - u_{n,2})^{2} + \frac{1}{2} k_{0} (u_{n,2} - u_{n+1,1})^{2} \right].$$

- (b) Obtain the equation of motion for $u_{n,\alpha}(t)$.
- (c) Assuming a normal mode solution for $u_{n,\alpha}(t) = u_{k\alpha}^{0} \exp[i(kn\alpha \omega_k t)]$, find the eigen-modes $\xi_k(t)$ and the corresponding eigen-frequencies ω_k .
- (d) What happens to ω_k when $k \to 0$? Also discuss whether this result is equivalent to the oneatom-per-unit-cell results when we take $m_1 = m_2$.

Ref.: QM, Cohen-Tannoudji, Chap. V; Solid State Physics, Kittel, Chap. 4.