Home Work \#5
(due date: Monday, 19 November 2007)

1. In analogy with the 1 D chain system discussed in the class, let us consider a linear 1D chain with lattice constant a and two different atoms of masses m_{1} and m_{2} within the unit cell. Suppose all spring constants of the springs connecting two neighboring atoms are the same, i.e., k_{0}.
(a) Show that the Hamiltonian of this two-atoms-per-unit-cell chain can be represented by

$$
\mathscr{H}=\sum_{n=0}^{N} \sum_{\alpha=1}^{2}\left[\frac{p_{n, \alpha}^{2}}{2 m_{\alpha}}\right]+\sum_{n=0}^{N}\left[\frac{1}{2} k_{0}\left(u_{n, 1}-u_{n, 2}\right)^{2}+\frac{1}{2} k_{0}\left(u_{n, 2}-u_{n+1,1}\right)^{2}\right] .
$$

(b) Obtain the equation of motion for $u_{n, \alpha}(t)$.
(c) Assuming a normal mode solution for $u_{n, \alpha}(t)=u_{k \alpha}^{0} \exp \left[i\left(k n a-\omega_{k} t\right)\right]$, find the eigen-modes $\xi_{k}(t)$ and the corresponding eigen-frequencies ω_{k}.
(d) What happens to ω_{k} when $k \rightarrow 0$? Also discuss whether this result is equivalent to the one-atom-per-unit-cell results when we take $m_{1}=m_{2}$.

Ref.: QM, Cohen-Tannoudji, Chap. V; Solid State Physics, Kittel, Chap. 4.

