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Flipped SU(5) from Z12−I orbifold with Wilson line
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Abstract

We construct a three family flipped SU(5) model from the heterotic string theory compactified on the
Z12−I orbifold with one Wilson line. The gauge group is SU(5) × U(1)X × U(1)3 × [SU(2) × SO(10) ×
U(1)2]′. This model does not derive any non-Abelian group except SU(5) from E8, which is possible
only for two cases in case of one shift V , one in Z12−I and the other in Z12−II. We present all possible
Yukawa couplings. We place the third quark family in the twisted sectors and two light quark families
in the untwisted sector. From the Yukawa couplings, the model provides the R-parity, the doublet–triplet
splitting, and one pair of Higgs doublets. It is also shown that quark and lepton mixings are possible. So far
we have not encountered a serious phenomenological problem. There exist vector-like flavor SU(5) exotics
(including Qem = ± 1

6 color exotics and Qem = ± 1
2 electromagnetic exotics) and SU(5) vector-like singlet

exotics with Qem = ± 1
2 which can be removed near the GUT scale. In this model, sin2 θ0

W
= 3

8 at the full
unification scale.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

At present, it is of utmost importance to connect the high energy string theory with the low
energy standard model, in particular with the minimal supersymmetric standard model (MSSM).
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The initial attempt of the Calabi–Yau space compactification, which is geometrical, has been
very attractive [1]. But the orbifold compactification, also being a geometrical device, got more
interest due to its simplicity in model buildings [2,3]. Initially, the standard-like models were
looked for [4], in an attempt to obtain minimal supersymmetric standard models (MSSMs), but
it became clear that the standard-like models have a serious problem on sin2 θW to arrive at
MSSMs [5]. All ZN models without Wilson lines were tabulated a long time ago [6] and recently
all Z3 models with Wilson lines are tabulated in a book [7].

The sin2 θW problem is that it is better for the bare value of sin2 θ0
W at the unification or

string scale to be close to 3
8 [5] so that it reproduces the fact of the convergence of three gauge

couplings at one point near the unification scale [8]. The so-called flipped SU(5) does not fulfill
this requirement automatically due to the leakage of U(1)Y beyond SU(5).1 Thus, the sin2 θW

problem directs toward grand unified theories (GUTs) from superstring without the electroweak
hypercharge Y leaking outside the GUT group. In this regard, one may consider simple GUT
groups SU(5) [12], SO(10) [13], E6 [14] and trinification SU(3)3 [15]. The simplest orbifold
without matter representations beyond the fundamentals require the Kac–Moody level K = 1.
With K = 1, one cannot obtain adjoint representations [7]; thus among the above GUT groups
the trinification group is the allowed one. Also, the Pati–Salam SU(4)× SU(2)× SU(2) [16] can
be broken to the standard model without an adjoint matter representation; above the GUT scale
however three gauge couplings of the Pati–Salam model diverge rather than evolving in unison.
Thus, trinification GUT seems to be the most attractive solution regarding the sin2 θW problem.
The trinification is possible only in Z3 orbifolds [17].

Another interesting GUT group, though not giving sin2 θW = 3
8 necessarily, is the flipped

SU(5) [9,10] where the exchanges dc ↔ uc and ec ↔ (neutral singlet νc) in the representations
of SU(5) are adopted. The matter representation of the flipped SU(5) is, under SU(5)×U(1)X ,2

(1)16flip ≡ 101 + 5−3 + 15.

The electroweak hypercharge is given by

(2)Y = 1
5 (X + Y5)

where Y5 = diag( 1
3

1
3

1
3 − 1

2 − 1
2 ) and X = diag(x x x x x). Then, the electroweak hypercharges

of 15 and 5−3 are +1, − 2
3 , and − 1

2 , which are ec, uc, and electron doublet. There are some nice
features of flipped SU(5) [18].

From the string context, flipped SU(5) was considered before in the fermionic construction
scheme [11] and recently in orbifold construction also [19], Calabi–Yau compactification [20],
and intersecting D-brane models [21]. Let us call flipped SU(5) from string construction ‘string
flipped’ SU(5). In string flipped SU(5), it does not necessarily predict sin2 θW = 3

8 at the unifi-
cation scale [5]. However, if we introduce more parameters intrinsic in flipped SU(5), we may fit
parameters so that the gauge couplings meet at one point at the string scale Ms , the unification
scale of SU(5) and U(1)X couplings. These parameters include the symmetry breaking scale
MGUT for SU(5) × U(1)X → SM breaking and intermediate scales of vector-like representa-
tions. Above MGUT the RG evolutions of SU(5) and U(1)X couplings are different, and we do
not expect a string scale around 0.7 × 1018 GeV [22] but can be determined by the unification

1 The terminology flipped SU(5) was used as an SU(5) × U(1)X subgroup of SO(10) [9–11]. In this paper, we still
use the same terminology if there appear 16s having the same quantum numbers as in the flipped SU(5).

2 The quantum number X of U(1)X in the flipped SU(5) is highlighted.
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ansatz at Ms and mass scales of vector-like representations [23]. In our string orbifold model,
sin2 θW turns out to be 3

8 at the full unification scale due to the possibility of the electroweak hy-
percharge embedding in SO(10). Thus such vector-like fields should be removed near the GUT
scale.

String models in general include exotics. Electromagnetic exotics (E-exotics) are fraction-
ally charged particles which are non-Abelian gauge group singlets. Color exotics (C-exotics) are
quarks with non-standard charges, i.e. color triplet quarks not having Qem = 2

3 or − 1
3 and color

anti-triplet quarks not having Qem = − 2
3 or 1

3 . Flipped SU(5) GUT exotics (G-exotics) are SU(5)

representations, not having the X charges of 101,10−1,53,5−3,5−2,52,1±5,10. G-exotics con-
tain C-exotics and fractionally charged leptons.

The fermionic construction of flipped SU(5) has shown the existence of E-exotics with
Qem = ± 1

2 and integer charged ‘cryptons’ where cryptons are defined to be the composites
of the hidden sector confining group SU(4)′ [24]. Cosmological effect of cryptons was given
in [25]. Because of the possibility that fractionally charged particles exist in most string vacua,
discovery of fractionally charged particles may strongly hint the correctness of the idea of string
compactification.

In this paper, we present the orbifold compactification with Z12−I twist. This contains a de-
tailed account of Ref. [19]. In addition, we present another orbifold model having a hidden sector
SU(4)′. We succeeded in constructing a phenomenologically desirable flipped SU(5) model
from Z12−I.

We need three families of 16flip, where

(3)16flip ≡ 101 + 5−3 + 15 = (
dc, q, νc

) + (
uc, l

) + ec.

For spontaneous symmetry breaking, we need also the Higgs fields,

(4)(101 + 10−1) + (5−2 + 52).

Sometimes, it is useful to represent the components in terms of

101:

(
dc q

q νc

)
, 5−3:

(
uc

l

)
, 15: ec,

(5)5−2:

(
D

hd

)
, 52:

(
D̄

hu

)
,

where q and l are lepton and quark doublets, D is Qem = − 1
3 quark, and hd,u are Higgs doublets

giving mass to d,u quarks. Spontaneous symmetry breaking of flipped SU(5) proceeds via VEVs
of 101 and 10−1 (components 〈νc〉, 〈ν̄c〉) and 5−2 and 52 (components in 〈hd〉, 〈hu〉).

In this model, there appear two light families from the untwisted sector and the third heavy
family from twisted sectors. This is dictated from the Yukawa coupling structure. It also leads to
(i) the doublet–triplet splitting, (ii) one pair of Higgs doublets, and (iii) the existence of R-parity.

Some standard models from fermionic construction are worthwhile to note since they may be
free from some problems of GUTs [26]. But these models use Z2 × Z2 which may have a very
different phenomenology from the one we discuss here with Z12−I.

In Section 2, we present a review on orbifold construction with order N = 12. Here we include
formulae with Wilson lines also. In Sections 3 and 4, the untwisted and twisted sector spectra are
calculated in detail. In Section 5, we collect all observable sector fields. In Section 6, we present
the Yukawa coupling structure and derive some phenomenological consequences. In Section 7
we show sin2 θ0

W = 3
8 . Section 8 is a conclusion. In Appendix A, we provide another model

having SU(4)′.
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Fig. 1. Simplified showing of fixed points of the Z12−I orbifold.

2. Orbifold method

An orbifold is constructed from a manifold by identifying points under a discrete symmetry
group. The six internal space is orbifolded by a twist vector φs . With three complexified compo-
nents, φs has three components φs1, φs2 and φs3. The twist of Z12−I orbifold is [7]

(6)φs =
(

5

12
,

4

12
,

1

12

)
with φ2

s = 1

12
· 7

2
.

Torus corresponding to φsi is twisted by φsi . Hence the first and third tori have one fixed point
while the second torus being modded by Z3 has three fixed points as schematically shown in
Fig. 1. Multiplicity due to fixed points are three. These can be distinguished by Wilson lines.

In ten-dimensional (10D) heterotic string, left and right movers are treated as gauge group
degrees and N = 1 supersymmetry, respectively. The embedding possibility is in the gauge group
space of left movers, NS sector of left and right movers, and R sector of right movers. So we focus
on the embedding in the group space for left movers and in the R sector for right movers. In 10D,
the R sector embedding is given by φs . The group space embedding is given by sixteen numbers,
V I (I = 1,2, . . . ,16) ≡ {v(I = 1, . . . ,8), v′(I = 9, . . . ,16)}. Factoring out 1

12 by defining φsa =
1

12φa , va = 1
12wa , v′

a = 1
12w′

a , we must satisfy for a Z12−I orbifold [27]

3∑
a=1

φ2
a −

8∑
a=1

w2
a −

8∑
a=1

w′2
a = 0 mod 24,

(7)3a3 = 3a4 = 0, a1 = a2 = a5 = a6 = 0.

2.1. Dynkin diagram technique for finding gauge group

Just for finding out a gauge group structure, the Dynkin diagram technique is extremely use-
ful [28]. In the Dynkin diagram, each simple root is endowed with a Coxeter label. A Dynkin
diagram technique of obtaining maximal subgroups is to strike out a simple root from the ex-
tended Dynkin diagram. In orbifold, this is generalized to strike out some roots where sum of the
eliminated Coxeter labels add up to order N of ZN . To have SU(5) only without a Wilson line,
there must remain four linearly connected simple roots. So, for N � 8 orbifold, it is impossible.3

For Z12, there is only possibility. Suppose
∑

i ci = N where ci is the Coxeter label of simple
root αi . There is only one possibility which is c0 + c1 + c2 + c6 + c7 = 12. See Fig. 2. Thus,
from orbifold compactification, there are only two possibilities for constructing flipped SU(5)

3 By a two step process using Wilson lines, it is possible to obtain SU(5) in other ZN orbifolds.
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Fig. 2. The SU(5) subgroup of E8. The Coxeter labels are shown inside circles.

models, one in Z12−I and another in Z12−II. For N = ∑
i ci = N , the shift vector V is given

by V = ∑
i Λi where Λi are fundamental weights [27]. Thus, for Z12 orbifolds V is given by

V1 = Λ0 + Λ1 + Λ2 + Λ6 + Λ7 with Λ0 = 0. Thus, the shift vector for flipped SU(5) is

V1 = 1

12

(
17

2

5

2

3

2

1

2

1

2

1

2

1

2
−1

2

)
(· · ·).

Now we shift the origin by − 5
24 , to obtain

(8)V2 = 1

12
(11 5 4 3 3 3 3 2)(· · ·).

Both V1 and V2 give an unbroken SU(5). But the entries of V1 and V2 do not have five common
entries. So, we try to add an integer times Z12−I shift φs so that the resulting entries manifestly
show five common entries. In this way, of course the SU(5) non-Abelian group is kept. Usually,
if one adds φs to three entries of E8, some non-Abelian groups are broken. So our strategy is to
add a multiple of φs such that an SU(5) survives. For this, we add ( 4

12 0 8
12 0 0 0 0 4

12 ) to obtain
1
12 (15 5 12 3 3 3 3 6). Subtracting torus lattice and rearranging entries, we obtain

(9)V3 = 1

12
(3 3 3 3 3 5 6 0)

which has five common entries. This form is perfectly simple enough in obtaining SU(5) weights
since there are five common entries. Otherwise, i.e. with V1 or V2, it is cumbersome to work out
all the SU(5) weights as tried out in [7].

Since the five entries are common, the simple roots for SU(5) take the following standard
form,

α1 = (1 −1 0 0 0; 0 0 0),

α2 = (0 1 −1 0 0; 0 0 0),

α3 = (0 0 1 −1 0; 0 0 0),

(10)α4 = (0 0 0 1 −1; 0 0 0).

Then, the highest weights of some representations we use are

(11)5:

{
(1 0 0 0 0; 0 0 0),

(+ 1
2 − 1

2 − 1
2 − 1

2 − 1
2 ; 0 0 0),

(12)5:

{
(−1 0 0 0 0; 0 0 0),

(− 1
2 + 1

2 + 1
2 + 1

2 + 1
2 ; 0 0 0),

(13)10:

{
(1 1 0 0 0; 0 0 0),

(+ 1 + 1 − 1 − 1 − 1 ; 0 0 0),
2 2 2 2 2
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(14)10:

{
(−1 −1 0 0 0; 0 0 0),

(− 1
2 − 1

2 + 1
2 + 1

2 + 1
2 ; 0 0 0).

For the E′
8, we find roots and weights in a similar way.

2.2. Choosing shift vector and Wilson lines

Embedding of the orbifold action can be found by satisfying the modular invariance con-
ditions (7). If one tries to have a specific gauge group, the Dynkin diagram technique is very
helpful as we have discussed in Section 2.1. Or one can study the components of (· · ·)(· · ·)′ to
guess the gauge group, but this method of finding gauge group is completed only after one ob-
tains all nonzero roots of the gauge multiplet. For example, if one tries V2 of (8) and V3 of (9)
then in both cases he will obtain SU(5). But guessing SU(5) from (8) is not straightforward. In
this sense, the Dynkin diagram technique is superior. On the other hand, a computer search of
gauge groups will cover all these cases. In the computer search, the identical shift vector is given
by several different forms as done in V2 and V3. Usually, it is very difficult to identify all the
same shift vectors [7].

Choosing the shift vector (V ) and Wilson lines (a1, . . . , a6) fixes the embedding of the orbifold
action in the group space. So gauge groups and representations are fixed by the shift vector and
Wilson lines, consistently with the modular invariance condition (7).

In summary, the compactification is specified by twisting represented by a shift form in the
six internal space φs , shift V , and Wilson lines a1, . . . , a6,

internal space: φs = (φs1, φs2, φs3),

(15)group space: V, ai (i = 1,2, . . . ,6).

Here, s0 determines the chirality and s̃ encodes the orbifolding information of the R sector.

2.3. Massless modes

Finding out all the massless modes below the compactification scale is the key problem in the
compactification process. The left movers and right movers have different relations for the Ein-
stein mass-shell condition, even though the form has a similarity. In the symmetric orbifold [2],
let us bosonize the Ramond sector of right movers, which is represented by four half integers
in s. The orbifold action is modding out the 6D torus, and s contains the orbifold information of
right movers under translation in the internal space. For left movers, momenta P corresponding
to translation in the group space have the orbifold information. All these satisfy the level match-
ing condition, M2

L = M2
R . Thus, left moving and right moving states on torus have the following

vanishing vacuum energy for massless states,

left movers:
(P + kV )2

2
+

∑
j

NL
j φ̃j − c̃k = 0,

(16)right movers:
(s + kφs)

2

2
+

∑
j

NR
j φ̃j − ck = 0,

where j runs over {1,2,3, 1̄, 2̄, 3̄}. Here φ̃i ≡ kφi modZ such that 0 < φ̃i � 1, φ̃ī ≡ −kφi modZ

such that 0 < φ̃ī � 1. (If kφi is an integer, φ̃j = 1 [29,30].) For k = 0, conditions for massless
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left and right movers are given by

P 2 = 2 − 2
∑
j

NL
j φ̃j ,

(17)s2 = 1 − 2
∑
j

NR
j φ̃j ,

where c̃0 = c0 + 1
2 .

The massless modes include graviton gμν , antisymmetric tensor field Bμν , dilaton, gravitino,
gauge bosons, gauginos, and chiral matter. So the matter states (P, s) must satisfy

(P + kV )2 = 2c̃k − 2
∑
j

NL
j φ̃j ,

(18)(s + kφs)
2 = 2ck − 2

∑
j

NR
j φ̃j .

Among these massless modes, we are interested in a resulting N = 1 SUSY gauge theory.
The SUSY condition for orbifold compactification is given by right movers, which are given
by four component s, including three component s̃. When we compactify six dimensions, ten-
dimensional supersymmetry generators can be decomposed into Q(10) = Q(4) ⊗ Q(6). The six-
dimensional internal space part Q(6) transforms as 4 of SO(6) ∼ SU(4). Because the remaining
part Q(4) becomes the four-dimensional generator, the dimension 4 counts the number of super-
symmetries. Its spinorial representation is given by |s̃〉 = |s1 s2 s3〉 = |± 1

2 ,± 1
2 ,± 1

2 〉 with even
number of minus signs. Under point group, it transforms as

Q(6) → exp(2πis · φ)Q(6).

The invariant component corresponds to the unbroken supersymmetry generator. For N � 1
supersymmetry, we need at least one solution, say if we choose s = (+ 1

2 ,− 1
2 ,− 1

2 ), the argument
of exponent vanishes for

φ1 − φ2 − φ3 = 0 modZ.

The number of solutions, N , counts the number of unbroken supersymmetry generators from
orbifold compactification. Note that for our choice φs = ( 5

12 , 4
12 , 1

12 ) the above condition is satis-
fied only for s̃ = (+ 1

2 ,− 1
2 ,− 1

2 ). We can introduce another set, r̃ , of half integers so that entries
of s̃ + r̃ become integers,

(19)r̃ = (r1, r2, r3).

Namely, the SUSY condition for orbifolded spectrum is φs · r̃ = 0 [7].

2.3.1. Gauge multiplet
Gauge boson multiplets appear in the untwisted sector U , satisfying

(20)gauge group: P 2 = 2, P · V = 0, P · ai = 0 for all i,

where the first one is the masslessness condition and the second and the third ones are the orbifold
conditions. The corresponding right movers, satisfying the mass-shell and orbifold conditions
chooses two s’s with s2 = 1, which are always CPT conjugates of each other. In this way, we
obtain the gauge multiplet. As expected, the multiplicity (P) of gauge bosons is 1.
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2.3.2. Matter multiplets
Other massless states can appear in U also, for

(21)

untwisted matter: P 2 = 2, P · V = k

N
for k �= 0 modN, P · ai = 0 for all i.

We combine s̃ and r̃ to distinguish untwisted matter so that they appear in three categories under
orbifolding, i.e. differing in sub-lattice shifts,4

(22)U1: s̃ + r̃ = (−1,0,0), U2: s̃ + r̃ = (0,1,0), U3: s̃ + r̃ = (0,0,1).

There are fixed points in field theory orbifolds. In string orbifolds also, we must consider
physics related to fixed points. Massless strings can sit at fixed points, which is found by the
mass-shell condition at fixed point. But noting that some linear combinations of strings sitting at
several fixed points may be taken to satisfy the orbifold condition, we consider twisted sectors.
For ZN orbifold, we consider k = 1, . . . ,N − 1 twisted sectors, Tk . The CPT conjugates of Tk

appear in TN−k . Thus, in non-prime orbifolds Z4, Z6, Z8, Z12, the sector TN/2 contains CPT
conjugates also.

For untwisted matter, multiplicity (P) is given just by counting all possible states. Multiplicity
in the twisted sector is more involved. The method of linear combination can come with complex
numbers. This is taken into account in the (generalized) GSO projector, which projects out non-
physical states. It can be read off from the one loop partition function of string [7,31];

(23)Pk = 1

N

N−1∑
l=0

χ̃
(
θk, θ l

)
e2πilΘ0 ≡ 1

N

N−1∑
l=0

χ̃
(
θk, θ l

)
Δl,

where N is the order of ZN orbifolds, and

(24)Θ0 =
∑
j

(
NL

j − NR
j

)
φ̂j − k

2

(
V 2 − φ2

s

) + (P + kV ) · V − (s̃ + kφs) · φs + integer,

where j denotes the coordinates of the 6-dimensional compactified space running over
{1,2,3, 1̄, 2̄, 3̄} in complexified coordinates, and φ̂i = φsi sgn(φ̃i ) where sgn(φ̃ī ) = −sgn(φ̃i)

[29]. It turns out that NR
j = 0 generically for the massless right mover states in our Z12−I orb-

ifold compactification. The χ̃ (θm, θk) in Eq. (23) denotes the degenerate factor tabulated in
Table 1 [7,32]. For the sectors wound by Wilson lines, the Wilson line modified shift vector Vf

is used instead of V .

Table 1
Degeneracy factor χ̃ (θk, θ l ) in the Z12−I orbifold
k�l 0 1 2 3 4 5 6 7 8 9 10 11
1 3 3 3 3 3 3 3 3 3 3 3 3
2 3 3 3 3 3 3 3 3 3 3 3 3
3 4 1 1 4 1 1 4 1 1 4 1 1
4 27 3 3 3 27 3 3 3 27 3 3 3
5 3 3 3 3 3 3 3 3 3 3 3 3
6 16 1 1 4 1 1 16 1 1 4 1 1

4 For the same chirality, i.e. L, we use (−−−) instead of (+++). So, we take U1 = (−1,0,0).
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In the presence of a Wilson lines (≡ aI ), the GSO projector Eq. (23) needs to be modified
as [29]

(25)e2πilΘ0 → 1

NW

NW −1∑
f =0

e2πilΘf ,

where NW = 3 for Wilson line of order three in case of Z12−I, and Θ in Eq. (24) should also be
modified as

(26)

Θf =
∑
j

(
NL

j − NR
j

)
φ̂j − k

2

(
V 2

f − φ2
s

) + (P + kVf ) · Vf − (s̃ + kφs) · φs + integer,

where Vf ≡ (V + mf a3), and Eq. (23) can be rewritten as Pk = ∑NW −1
f =0 Pk(f ) where

(27)Pk(f ) = 1

NNW

N−1∑
l=0

χ̃
(
θk, θ l

)
e2πilΘf .

Note that in the Z12−I model, f = {0,1,2} ≡ {f0, f+, f−} and Pk(f0) = Pk(f+) = Pk(f−) for
k = 3,6,9.

3. Z12−I model

We choose the following shift vector and Wilson lines

(28)V =
(

1

4

1

4

1

4

1

4

1

4

5

12

6

12
0

)(
2

12

2

12
0 0 0 0 0 0

)
,

(29)a3 = a4 =
(

05 0
−1

3

1

3

)(
0 0

2

3
05

)
,

a1 = a2 = a5 = a6 = 0,

which satisfies Eq. (7): it gives V 2 − φ2
s = 1

2 modular 2 · (integer)/12. Since the Wilson line is a
Z3 shift, it distinguishes three cases. These satisfy the following conditions [31,33]:

12
(|V |2 − |φs |2

) = 0 mod even integer,

12(V · a3) = 0 mod integer,

(30)12|a3|2 = 0 mod even integer.

Thus, we consider the following effective shifts distinguishing twisted sector Tk to T 0
k , T +

k , and
T −

k (k �= 0,3,6,9) by

(31)V0 ≡ V,

(32)V+ ≡ V + a3 =
(

1

4

1

4

1

4

1

4

1

4

5

12

2

12

4

12

)(
2

12

2

12

8

12
05

)
,

(33)V− ≡ V − a3 =
(

1

4

1

4

1

4

1

4

1

4

5

12

10

12

−4

12

)(
2

12

2

12

−8

12
05

)
.
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For future convenience, we list

V 2
0 − φ2

s = 1

2
,

V 2+ − φ2
s = 5

6
,

(34)V 2− − φ2
s = 3

2
.

3.1. Gauge group from untwisted sector

For the gauge multiplet, we search for roots satisfying P 2 = 2, P · V = 0 and P · a3 = 0, and
obtain the following unbroken gauge group

(35)
[
SU(5) × U(1)X × U(1)3] × [

SU(2) × SO(10) × U(1)2]′
where we choose the U(1)X of flipped SU(5) as

(36)QX = (−2,−2,−2,−2,−2;0,0,0)
(
08)′

.

For example, one can see that the following is the roots of SU(5):

(37)(1 −1 0 0 0; 0 0 0) nonzero roots among 24 of SU(5),

where the underlined entries allow permutations.

3.2. Matter from untwisted sector

3.2.1. Chirality
The chirality is determined by the 8 component SO(8) spinor of the Ramond sector of right

movers. It is labeled by s = (s0, s̃) = {± 1
2 ,± 1

2 ,± 1
2 ,± 1

2 } with an even number of minus signs.
We define the 4D chirality χ as the one originating from the first entry of s denoted by ⊕ or ,
i.e.

(38)s =
{
⊕ or ,±1

2
,±1

2
,±1

2

}
≡

{
1

2
χ, s̃

}
,

(39)χ = 2s0 = 2 ⊕ or 2.

Let us call χ = 1 (−1) as ‘right- (left-)handed’, and s̃ has three components in terms of ± 1
2 .

In the untwisted sector U , we have U1, U2 and U3 as defined in Eq. (22). These Ui correspond
to the untwisted s̃ = (−−−), (++−), (+−+), respectively [or to (+++), (−−+), (−+−),
respectively, since antiparticles can be used also].

The chirality in the twisted sector can be similarly defined by the 8 component SO(8) spinor
of the Ramond sector of right movers.

3.2.2. Spectrum
The massless matter fields are those with P · V �= 0 and satisfy the masslessness condition.

P must satisfy P 2 = 2, P ·a3 = integer and P ·V = k
12 where k = 1,2, . . . ,11. We will consider

k = 1,2, . . . ,6 only, since the rest will provide their CT P conjugates. Here, it is sufficient to
look at 3 cases only, k = 1,4,5, to keep the GSO allowed states.
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Table 2
Visible sector chiral fields from the U sector

P · V s̃, Ui Visible states SU(5) × U(1)X

1
12 (+−+), U3 (+−−−−;+++) 5L

3

(+++−−;+−−) 10L−1

(+++++;+++) 1L−5

4
12 (++−), U2 (−1,0,0,0,0;−1,0,0) 5L

2

5
12 (+++), U1 (+++ + −;−++) 5R−3

(++−−−;−−−) 10R
1

(−−−−−;−++) 1R
5

Table 3
Hidden sector chiral fields from the U sector

P · V s̃, Ui Hidden states [SU(2) × SO(10)]′ Label
4
12 (++−), U2 (1,1;0,0,0,0,0,0)′ 10 su

We have the convention that the highest weight of the complex conjugated representation is in
fact the lowest one so that all the weights of the complex conjugated representation are obtained
by adding simple roots.

Let α denote the phase e2πi/12. For k = 1 or P · V = 1
12 , the left movers obtain a phase α. We

need an extra phase α−1 from the right movers, which is accomplished by e−2πis·φs where φs =
1
12 (5 4 1) and s = (+−+). It is left-handed and allows U3. For k = 4, s = (++−) provides
the needed α−4; thus it is left-handed and provides U2. For k = 5, s = (⊕+++) provides α−5;
thus it right-handed and provides U1. α from the right movers is provided by s = (⊕−+−)

which thus will couple to k = 11. It is right-handed. α4 from the right movers is provided by
s = (⊕−−+) which will couple to k = 8. It is right-handed. α5 from the right movers is provided
by s = (+−−) which will couple to k = 7. It is left-handed. These particles for k > 6 give the
antiparticle spectra. The chiralities and Uis are shown in Tables 2 and 3.

Thus, the vectors for p · V = 1
12 , 4

12 , and 7
12 give

(40)(1−5 + 53 + 10−1)
L
U3

, (52)
L
U2

, (1−5 + 53 + 10−1)
L
U1

, (10)
L
U2

and their CT P conjugates appear in p · V = 11
12 , 8

12 , and 5
12 . Here we listed only U(1)X charges

as boldfaced subscripts. Note that for the untwisted k = 6 sector there is no way to provide an
additional α6 at the massless level from the right movers.

4. Twisted sectors with Wilson line

The Z12−I with the twist vector φ = 1
12 (5,4,1) has three fixed points in the second torus for

the prime order θ1 and θ5 twists. This is because it is the same as Z3. For the first and the third
torus the origin is the only fixed point, viz. Fig. 1. For the other twists such as k = 4 and 6,
counting the number of massless states involves a more complicated nonvanishing projection
operator Pθk . But addition of Wilson lines can distinguish some fixed points. In fact, for Z12−I
possible Wilson lines must satisfy 3a3 = 0,3a4 = 0 and ai = 0 (i �= 3,4) so that any combination
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of k(V + mf ai) is another shift vector. Since Z12−I allows 3a3 = 0 modular integer, the Wilson
line is a Z3 shift.

In the second torus, Wilson lines must be symmetric, a3 = a4. Then, the kth twisted sector is
distinguished by kV , k(V + a3), and k(V − a3), which is denoted as Ṽ ,

(41)Ṽ = k(V + mf a3), mf = 0,±1,

or

(42)Ṽ = k{V0,V+,V−}.
Since 3a3 = 6a3 = 0, 2V± and 5V± in the T2 and T5 sectors are equivalent to 2V ∓ a3 and
5V ∓ a3, respectively. On the other hand, 4V± in the T4 sector is equivalent to 4V ± a3.

The masslessness condition is

(43)(P + Ṽ )2 = 2c̃k − 2
∑
j

NL
j φ̃j .

For the θk twist (k = 1,2, . . . ,6), we have

(44)2c̃k =

⎧⎪⎨
⎪⎩

210
144 , k = 1; 192

144 , k = 4;
216
144 , k = 2; 210

144 , k = 5;
234
144 , k = 3; 216

144 , k = 6,

for the left movers, and

(45)2ck =

⎧⎪⎨
⎪⎩

11
24 , k = 1; 1

3 , k = 4;
1
2 , k = 2; 11

24 , k = 5;
5
8 , k = 3; 1

2 , k = 6,

for the right movers.
For the sectors wound by Wilson lines, V± are used instead of V0. The untwisted sector k = 0

and twisted sectors for k = 3,6,9 are not affected by Wilson lines since the Wilson line condition,
3a3 = 0, makes it trivial. So, for k = 3,6,9, there is the additional condition, (P + kV ) · ai = 0,
which is applicable to T6 only in our case. For k �= 3,6,9, the multiplicity for each twisted sector
k(V + mf a3) is P = 1

3Pk .
The formula for multiplicity, Eq. (23), is the GSO allowed number of states.5 For non-prime

orbifolds such as Z12, the multiplicity (23) is nonvanishing even if Δ were not 1. Only for those
with pure Z12 twists, i.e. k = 1,2 and 5, the multiplicity is counted by those with the vanishing
phase.

The twisted sectors for k = 3,6,9 are not affected by the additional Wilson lines since
3a3 = 0. Note that the untwisted sector also is not distinguished by Wilson lines, but Wilson
lines give the modular invariance condition P ·ai = 0 in the untwisted sector. By the same token,
in the sectors where 3a3 = 0 (k = 0,3,6,9, with 0 corresponding to the untwisted sector), the
modular invariance condition restricts Wilson lines [34],

(46)(P + kV ) · a3 = 0 modZ, k = 0,3,6,9.

5 For the prime orbifold Z3, the multiplicity is just 1
3 (1 + Δ + Δ2) which can be either 1 for Δ = 1 or 0 for Δ =

e±2πi/3. So in Z3 it is sufficient to count those with the vanishing phase, i.e. (P + V ) · V − (s + φ) · φ = 0. It is so also
in the kth twisted sector of Z12−I if χ̃(θk, θ l ) are the same for all l.
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Table 4
Left-handed massless states satisfying (P + 6V ) · a3 = 0 mod Z in T6

P + 6V (NL)j Θ0 P6 χ Labels

(53; 1
2 ,0,0)(08)′ 0 1

2 2 L T 65

(10−1; 1
2 ,0,0)(08)′ 0 0 4 L T 610

(1−5; 1
2 ,0,0)(08)′ 0 1

2 2 L T 61I

(5−3; −1
2 ,0,0)(08)′ 0 −1

6 2 L T 65

(101; −1
2 ,0,0)(08)′ 0 1

3 3 L T 610

(15; −1
2 ,0,0)(08)′ 0 −1

6 2 L T 61J

(10;0, 1
2 , 1

2 )(08)′ 13 0 4 L h1

13̄
−1
6 2 L h2

11̄
1
2 2 L h3

11
1
3 3 L h4

(10;0, −1
2 , −1

2 )(08)′ 13
1
2 2 L h̄1

13̄
1
3 3 L h̄2

11̄ 0 4 L h̄3

11
−1
6 2 L h̄4

But other twisted sectors are not affected, in particular the k = 1,2,4,5 sectors. For these sectors,
the multiplicity for each of k(V + mf a3) is 1

3Pθk where Pθk is given in Eq. (23).
Let us present twisted sectors for k = 6,1,2,3,4,5 in order. The k = 6 twisted sector T6 con-

tains the CT P conjugates in T6 again. The spectra in the k = 1, . . . ,5 twisted sectors accompany
their CT P conjugates in k = 11, . . . ,7.

4.1. Twisted sector T6

The massless condition for the left mover is 1
2 |P +6V |2 +∑

j (N
L)j (φ̃)j = 3

4 , where P is the
E8 × E′

8 weight vectors. The left mover states satisfying the massless condition always appear
vector-like in the T6 sector. In general, however, they carry different phases from those of the
counterpart states with opposite quantum numbers. Thus, chiral matter spectrum is possible even
in T6 after imposing the GSO projection by Eq. (23). In view of (46), we additionally require

(47)(P + 6V ) · a3 = 0 modZ.

The massless states with left-handed chirality satisfying this constraint, and their multiplicity
numbers determined by P6 are listed in Table 4.

For simplicity, here we employed the following abbreviations for the SO(10) spinors and
neutral singlets under SU(5) × U(1)X ,

(48)53 ≡ (+−−−−), 10−1 ≡ (+++−−), 1−5 ≡ (+++++),

(49)5−3 ≡ (−++++), 101 ≡ (−−−++), 15 ≡ (−−−−−),

(50)10 ≡ (0,0,0,0,0).



60 J.E. Kim, B. Kyae / Nuclear Physics B 770 (2007) 47–82
From the T6 sector, thus we have the following massless states,

10L
−1 + 3

{
10L

1 ,10L
−1

} + 2
{
5L
−3,5L

3

} + 2
{
1L

5 ,1L
−5

} + 22 neutral singlets

(51)+ CT P conjugates.

While the multiplicity number for 10L
−1 is 4, the multiplicity of 10L

1 is 3. One of 10L
−1s provides

one generation of the MSSM matter, {Q,dc, νc}. The remaining vector-like pairs of {10L
1 ,10L

−1}
could be utilized to break SU(5) × U(1)X into the MSSM gauge group.

We present the calculation in detail for the first row. The θ6 twist vectors are

φ̃ = 6φs =
(

1

2
,0,

1

2

)
,

(52)Ṽ = 6V ≡
(

1

2

1

2

1

2

1

2

1

2

1

2
0 0

)
(0 0 0 0 0 0 0 0).

In the θ6 twisted sector, consider P = (08)(08). With some shifts, P can be ([−1]5;−2,−3,0)×
(−1,−1;−6,05)′. Then, from (43) and (44) we require (P + 6V )2 = 2c̃6 = 216

144 = 3
2 which is

certainly satisfied with ÑL = 0. Therefore, the state P = (08)(08) is massless. The GSO projec-
tion is given when combined with the right movers. The masslessness condition for right movers
is (s + 6φ)2 = 1

2 ,6 from which we will determine the chirality.
Let us calculate the masslessness condition of the left movers first, the multiplicity and the

chirality.
The masslessness condition for left movers becomes

(53)(P + Ṽ )2 + 2
∑
j

NL
j φ̃j = 3

2
.

Thus, the vectors satisfying Eq. (53) with Eq. (52) constitute the representation 5̄L. These weights
are

15: (0 0 0 0 0 0 0 0),

5−3: (−1 0 0 0 0 −1 0 0),

(54)101: (−1 −1 −1 0 0 −1 0 0),

where we calculated U(1)X charges as (P + Ṽ ) · QX . Their CT P conjugates are

(−1 −1 −1 −1 −1 −1 0 0),

(−1 −1 −1 −1 0 0 0 0),

(55)(−1 −1 0 0 0 0 0 0).

Note that for P = (08)(08),

(56)(P + 6V ) · V = 5

6
, φ̃ · φs = 1

4
.

To obtain the chirality χ , we look at s = ( 1
2χ, s̃) allowing nonvanishing multiplicities. Then the

phase of Δθ6 is found as (P + Ṽ ) · V − (s̃ + φ̃) · φs − 1
2k(V 2 − φ2

s ). With k = 6, we have

6 See Appendix D of [7].



J.E. Kim, B. Kyae / Nuclear Physics B 770 (2007) 47–82 61
Table 5
The multiplicity for s2 = 1 and (P + 6V ) · V = 1

6 . + and − denote + 1
2 and − 1

2 , respectively, and ⊕ () is R-

(L-)handed. Note that (P + Ṽ ) · V − 1
2 k(V 2 − φ2

s ) = 1
3

1
2 χ s̃ = (r + ω̃) s̃ · φs Δ phase Multiplicity

⊕ +++ 5
12 − 4

12 · 2π 3

⊕ +−− 0 1
12 · 2π 0

⊕ −+− − 1
12

2
12 · 2π 2

⊕ − − + − 4
12

5
12 · 2π 0

 −−− − 5
12

6
12 · 2π 2

 −++ 0 1
12 · 2π 0

 +−+ 1
12 0 · 2π 4

 ++− 4
12 − 3

12 · 2π 0

1
2k(V 2 − φ2

s ) = 3
2 ∼ 1

2 , and the phase of Δ is 2π times ( 1
12 − s̃ · φs), and hence we obtain the

multiplicity listed in Table 5. Then, we read the chirality χ , or ⊕ or , from the first entry of
s = ( 1

2χ |s1 s2 s3) if that chirality is allowed by the right mover condition, which is shown in the
first column of Table 5. If the first column does not satisfy the right mover condition, we should
search for higher s0, which will be discussed shortly. The components of the vector s̃ are the last
three ± 1

2 ’s of s. The number of massless states are given by Pθ6 . For these, we use the Euler
numbers χ̃ (θk, θ l) given in Table 1 [7]. Therefore, we obtain

(57)P6 =Pθ6 = 1

12

{(
1 + Δ6)(16 + 4Δ3) + Δ(1 + Δ)

(
1 + Δ3 + Δ6 + Δ9)}

which becomes 4, 2, 2, and 3 for Δ = 1, −1, Δ3 = −1, +1, respectively, and 0 for the other cases.
We know that s · φ̃ = s · φ̃ + (integer). Now consider the right mover condition. For s2 = 1, the
masslessness condition (s + φ̃)2 = 1

2 leads to s̃ = (− 1
2 ,± 1

2 ,− 1
2 ) where we used the shifted φ̃ of

Eq. (52). The relevant ones appear in the third and fifth rows of Table 5. Among these one set is
the CT P conjugates of the other. The U(1)X charge is (P + 6V ) · QX = 5. Thus, we obtain two
singlets as shown in the third row of Table 4.

Consider P = (−1 0 0 0 0 −1 0 0)(08) and P = (−1 −1 −1 −1 0 0 0 0)(08). For P =
(−1 0 0 0 0 −1 0 0)(08),

(58)(P + 6V ) · V = 1

6
, φ̃ · φs = 1

4
.

For k = 6, the phase becomes (P + Ṽ ) · V − (s̃ + φ̃) · φs − 1
2k(V 2 − φ2

s ) = (− 7
12 − s̃ · φs). We

add − 8
12 · 2π to the fourth column entries of Table 5. The masslessness condition chooses s̃ =

(− 1
2 ,± 1

2 ,− 1
2 ), the third and fifth rows again, leading to the multiplicity 2. (−1 0 0 0 0 −1 0 0)

is 5 whose U(1)X charge is 3. For P = (−1 −1 −1 −1 0 0 0 0)(08),

(59)(P + 6V ) · V = −1

6
, φ̃ · φs = 1

4
.

Now the phase becomes (P + Ṽ ) · V − (s̃ + φ̃) · φs − 1
2k(V 2 − φ2

s ) = (− 11
12 − s̃ · φs) =

( 1
12 − s̃ · φs). Thus we obtain the fourth column entries of Table 5. The masslessness condi-

tion chooses s̃ = (− 1 ,± 1 ,− 1 ), the third and fifth rows again, leading to the multiplicity 2.
2 2 2
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(−1 −1 −1 −1 0 0 0 0) is 5 whose U(1)X charge is −3. The above four cases are shuffled to list
the CT P conjugates together,

(60)5L
−3

⎧⎨
⎩

5: (P + 6V ) = (− 1
2 − 1

2 − 1
2 − 1

2
1
2

1
2 0 0

)
, ⊕, QX = 3,

5: (P + 6V ) = (− 1
2

1
2

1
2

1
2

1
2 − 1

2 0 0
)
, , QX = −3,

(61)5L
3

⎧⎨
⎩

5: (P + 6V ) = (− 1
2

1
2

1
2

1
2

1
2 − 1

2 0 0
)
, ⊕, QX = −3,

5: (P + 6V ) = (− 1
2 − 1

2 − 1
2 − 1

2
1
2

1
2 0 0

)
, , QX = 3.

Thus we obtain the first and fourth row entries of Table 4.
Next consider 10s and 10s. So consider P = (−1 −1 0 0 0 0 0 0)(08) and P =

(−1 −1 −1 0 0 −1 0 0)(08). For P = (−1 −1 0 0 0 0 0 0)(08), we have

(62)(P + 6V ) · V = 1

3
, φ̃ · φs = 1

4
.

The phase becomes (P + Ṽ ) · V − (s̃ + φ̃) · φs − 1
2k(V 2 − φ2

s ) = (− 5
12 − s̃ · φs) = ( 7

12 − s̃ · φs).
We add 6

12 · 2π to the fourth column entries of Table 5. The masslessness condition for right
movers chooses s̃ = (− 1

2 ,± 1
2 ,− 1

2 ), the third and fifth rows again, leading to the multiplicity 3
and 4, respectively. For P = (−1 −1 −1 0 0 −1 0 0)(08), we have

(63)(P + 6V ) · V = −1

3
, φ̃ · φs = 1

4
.

The phase becomes (P + Ṽ ) · V − (s̃ + φ̃) · φs − 1
2k(V 2 − φ2

s ) = (− 1
12 − s̃ · φs) = ( 11

12 − s̃ · φs).
We add − 2

12 · 2π to the fourth column entries of Table 5. The masslessness condition chooses
s̃ = (− 1

2 ,± 1
2 ,− 1

2 ), the third and fifth rows again, leading to the multiplicity 4 and 3, respectively.
These four cases are shuffled to list the CT P conjugates together,

(64)10L
1

⎧⎨
⎩

10: (P + 6V ) = (− 1
2 − 1

2
1
2

1
2

1
2

1
2 0 0

)
, ⊕, P6 = 3, QX = −1,

10: (P + 6V ) = (− 1
2 − 1

2 − 1
2

1
2

1
2 − 1

2 0 0
)
, , P6 = 3, QX = 1,

(65)10L
−1

⎧⎨
⎩

10: (P + 6V ) = (− 1
2 − 1

2 − 1
2

1
2

1
2 − 1

2 0 0
)
, ⊕, P6 = 4, QX = 1,

10: (P + 6V ) = (− 1
2 − 1

2
1
2

1
2

1
2

1
2 0 0

)
, , P6 = 4, QX = −1.

Thus we obtain the second and fifth row entries of Table 4.
Other singlets with nonvanishing oscillators are also allowed, which are shown in Table 4.

4.2. Twisted sector T1

The massless condition for the right mover in the T1 sector is (s + φs)
2 = 11

24 . It allows only
one right-handed state s = (−−−), which gives (s̃ + φs) · φs = − 1

8 .
Since − k

2 (V 2 − φ2) = − 1
4 for k = 1, the phase in Eq. (24) is given by Θ0 = (P + V ) · V +∑

j (N
L)j (φ̂)j − 1

8 .
The T1 sector is distinguished by Wilson lines: V0 = V , V+ = V + a1, and V− = V − a1.

These sectors are denoted as T 0, T + and T −.
1 1 1
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Note the degeneracy factor χ̃ (θk, θ l) for k = 1,2,5 in Table 1. They take the same value 3
along each horizontal line, as in the prime orbifolds such as Z3 and Z7. Thus, only the states with
vanishing phase turn out to survive the projection by Eq. (23) in the T1, T2, T5 (and also in T11,
T10, T7) sectors.

The masslessness condition for the left movers (43) gives

(66)(P + kV )2 = −2
∑
j

NL
j φ̃j + 2c̃k.

For k = 1 we have 2c̃1 = 35
24 . The states satisfying the massless condition and (P + V0) · V0 +∑

j (N
L)j (φ̂)j = 1

8 for T 0
1 are listed in Table 6. The multiplicity 3 reduces to 1 due to the dis-

tinction by Wilson lines: V0, V+, and V−.
In the T +

1 sector with V+ = V + a3, only the states with (P + V+) · V++(NL)j (φ̂)j = 7
24

survives the GSO projection by Eq. (23), which are listed in the middle part of Table 6.
In the T −

1 sector with V− = V − a3, only the states with (P + V−) · V− + (NL)j (φ̂)j = 5
8

survives the GSO projection by Eq. (23), which are listed in the lower part of Table 6.
The CT P conjugates of T1 appear in T11.

Table 6
Chiral matter fields satisfying Θ0,± = 0 in the T 0

1 and T ±
1 sectors. Here, 5−1/2 ≡ (−3

4 , [ 1
4 ]4), 51/2 ≡ ( 3

4 , [−1
4 ]4), and

1±5/2 ≡ (± 1
4 ,± 1

4 ,± 1
4 ,± 1

4 ,± 1
4 ). There are two SU(2)′ doublets with (−5

6 , 1
6 ; · · ·)′

P + V (NL)j P1(f0) χ

(5−1/2; −7
12 , 6

12 ,0)( 1
6 , 1

6 ;06)′ 0 1 L

(5−1/2; 5
12 , −6

12 ,0)( 1
6 , 1

6 ;06)′ 13 1 L

(51/2; −1
12 ,0, 6

12 )( 1
6 , 1

6 ;06)′ 23 1 L

(1−5/2; −7
12 , −6

12 ,0)( 1
6 , 1

6 ;06)′ 33 1 L

(1−5/2; 5
12 , 6

12 ,0)( 1
6 , 1

6 ;06)′ 12,43 1 + 1 L

(15/2; 11
12 ,0, 6

12 )( 1
6 , 1

6 ;06)′ 0 1 L

(15/2; −1
12 ,0, −6

12 )( 1
6 , 1

6 ;06)′ 11,53, {12 + 13} 1 + 1 + 1 L

P + V+ (NL)j P1(f+) χ

(1−5/2; 5
12 , 2

12 , 4
12 )(−5

6 , 1
6 ; −1

3 ;05)′ 0 1 L

(1−5/2; 5
12 , 2

12 , 4
12 )( 1

6 , 1
6 ; 2

3 ;05)′ 23 1 L

(15/2; −1
12 , −4

12 , −2
12 )(−5

6 , 1
6 ; −1

3 ;05)′ 13 1 L

(15/2; −1
12 , −4

12 , −2
12 )( 1

6 , 1
6 ; 2

3 ;05)′ 33 1 L

P + V− (NL)j P1(f−) χ

(51/2; −1
12 , 4

12 , 2
12 )( 1

6 , 1
6 ; −2

3 ;05)′ 0 1 L

(1−5/2; 5
12 , −2

12 , 8
12 )( 1

6 , 1
6 ; −2

3 ;05)′ 0 1 L

(1−5/2; −7
12 , −2

12 , −4
12 )( 1

6 , 1
6 ; −2

3 ;05)′ 13 1 L

(15/2; −1
12 , −8

12 , 2
12 )( 1

6 , 1
6 ; −2

3 ;05)′ 13 1 L
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4.3. Twisted sector T2

The massless condition for the right mover in the T2 sector is (s + 2φs)
2 = 1

2 . It allows only
one right-handed state s = (−−−), which gives (s̃ + 2φs) · φs = 1

6 = − 5
6 .

Since − k
2 (V 2 − φ2) = − 1

2 for k = 2, the phase of Δ in Eq. (24) is given by Θ0 = (P + 2V ) ·
V + ∑

j (N
L)j (φ̂)j + 1

3 . The T2 sector is also distinguished by Wilson lines: V0 = V , V+ =
V + a3, and V− = V − a3. These sectors are denoted as T 0

2 , T +
2 and T −

2 .
Since χ̃ (θk, θ l) with k = 2 in Eq. (23) takes the same value 3 along the horizontal line,

only the states with Θ0,± = 0 survive the projection operator in the T2 sector. In the T 0
2 sec-

tor, hence, the massless states satisfying the condition (P + 2V ) · V + ∑
j (N

L)j (φ̂)j = − 1
3

are selected. Similarly, in the T +
2 and T −

2 sectors, (P + 2V+) · V++∑
j (N

L)j (φ̂)j = 0 and

(P + 2V−) · V− + ∑
j (N

L)j (φ̂)j = − 1
3 should be chosen. The massless condition for the left

mover is |P + 2V(±)|2 + 2
∑

j (N
L)j (φ̃)j = 3

2 . The allowed shifted E8 × E′
8 weight vectors

(P + 2V )s in the T2 sector are shown in Table 7.
Consider the first row of Table 7. Since

2V =
(

1

2

1

2

1

2

1

2

1

2
; 5

6
1 0

)(
1

3

1

3
06

)′
,

Table 7
Chiral matter fields satisfying Θ0 = 0, Θ+ = 0, and Θ− = 0 in the T 0

2 , T +
2 , and T −

2 sectors, respectively. Here
10 ≡ (0,0,0,0,0) and the hidden sector 16′ and 10′ are not bold-faced not to be confused with observable sector repre-
sentations. There are four SU(2)′ doublets of D±

1,2

P + 2V (NL)j P2(f0) χ Labels

(53; −1
6 ,02)( 1

3 , 1
3 ;06)′ 0 1 L T 25

(1−5; −1
6 ,02)( 1

3 , 1
3 ;06)′ 0 1 L T 21

(10; 1
3 , 1

2 , −1
2 )( 1

3 , 1
3 ;06)′ 21̄,23 1 + 1 L C0

1 ,C0
2

(10; 1
3 , −1

2 , 1
2 )( 1

3 , 1
3 ;06)′ 12̄, {11̄ + 13} 1 + 1 L C0

3 ,C0
4

(10; −2
3 , 1

2 , 1
2 )( 1

3 , 1
3 ;06)′ 11̄ 1 L C0

5

(10; −2
3 , −1

2 , −1
2 )( 1

3 , 1
3 ;06)′ 13 1 L C0

6

(10; 1
3 , −1

2 , 1
2 )(−2

3 , −2
3 ;06)′ 0 1 L C0

7

P + 2V+ (NL)j P2(f+) χ Labels

(10; 1
3 , −1

6 , 1
6 )(−1

6 , −1
6 ; −1

6 ;16)′ 0 1 L T 2+
O16

(10; 1
3 , −1

6 , 1
6 )(−2

3 , 1
3 ; 1

3 ;05)′ 12̄, {11̄ + 13} 1 + 1 L D+
1 ,D+

2

(10; 1
3 , −1

6 , 1
6 )( 1

3 , 1
3 ; −2

3 ;05)′ 21̄,23 1 + 1 L C+
1 ,C+

2

P + 2V− (NL)j P2(f−) χ Labels

(10; 1
3 , 1

6 , −1
6 )( 1

3 , 1
3 ; −1

3 ;10)′ 0 1 L T 2−
O10

(10; 1
3 , 1

6 , −1
6 )(−2

3 , 1
3 ; −1

3 ;05)′ 21̄,23 1 + 1 L D−
1 , D−

2

(10; 1
3 , 1

6 , −1
6 )( 1

3 , 1
3 ; 2

3 ;05)′ 12̄, {11̄ + 13} 1 + 1 L C−
1 , C−

2

(10; 1
3 , 1

6 , −1
6 )(−2

3 , −2
3 ; 2

3 ;05)′ 0 1 L C−
3
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P = (−1 −1 −1 −1 0; −1 −1 0)(08)′ satisfies the masslessness condition. The SU(5) repre-
sentation is 5. Then, we have

(67)P + 2V =
(

−1

2
−1

2
−1

2
−1

2
+1

2
; −1

6
0 0

)(
1

3

1

3
06

)′

which gives QX = 3. From the previous discussion on the right mover condition, we obtain the
chirality 2.

For the T ±
2 sectors, only neutral fields under SU(5) × U(1)X arise, which are tabulated in

Table 7. Thus, from T2 we obtain the following SU(5) × U(1)X representations

(68){53,1−5} + 12 neutral singlets.

The CT P conjugates are provided from T10.
There are four SU(2)′ doublets and one 16′ and one 10′ of SO(10)′.

4.4. Twisted sector T3

The shifted momenta in the T3 sector must satisfy (P + 3V ) · a3 = 0 mod Z, viz. Eq. (46). It
turns out that there is no massless states satisfying this condition.

4.5. Twisted sector T4

The massless condition for the right movers in the T4 sector is (s + 4φs)
2 = 1

3 . Taking a
shifted 4φs as ( 2

3
1
3

1
3 ), only the right-handed state s = (−−−) satisfies this condition. So it is

left-handed. Now, (s̃ + 4φs) · φs = 0.
Since − k

2 (V 2 −φ2) = (integer) for k = 4, it does not contribute to the phase. So, Δ of Eq. (24)

is given by Θf = (P + 4V(±)) · V(±) + ∑
j (N

L)j (φ̂)j . The T4 sector is again distinguished by

Wilson lines: V0 = V , V+ = V + a3 and V− = V − a3. These sectors are denoted as T 0
4 , T +

4
and T −

4 .
χ̃ (θ4, θk) of the T4 sector are (27,3,3,3)3, hence the multiplicity is

(69)P4 = 3

12

(
1 + Δ4 + Δ8)(8 + [

1 + Δ + Δ2 + Δ3]).
So, Δ = e2πi/12, e2πi/6 give P4 = 0. P4 = 9,6,6 for Δ = 1,−1, e±2πi/4. Considering Wilson
lines, the nonvanishing multiplicities are 3, 2, 2 in each T4. The massless fields of T 0

4 are listed
in Table 8.

Consider first two rows of Table 8. They are left-handed. The massless condition for the left
movers is (P + 4V )2 = 4

3 . Since

4V =
(

1 1 1 1 1; 5

3
2 0

)(
2

3

2

3
06

)′
,

the state
(
0, [−1]4;−2,−2,0

)(−1,−1;06)′

satisfies the masslessness condition. It is 5 and QX = −2 since P + 4V = (1 0 0 0 0 · · ·)( )′.
Since (P + 4V ) · V = 0, we obtain Δ = e2πi·0 from (23) and the multiplicity is 3. The state 5



66 J.E. Kim, B. Kyae / Nuclear Physics B 770 (2007) 47–82
Table 8
Chiral matter fields in the T 0

4 , T +
4 and T −

4 sectors. There are twelve SU(2)′ doublets of d±
1,2,3

P + 4V (NL)j Θ0 P4(f0) χ Labels

(5−2; −1
3 ,02)(−1

3 , −1
3 ;06)′ 0 0 3 L T 45

(52; −1
3 ,02)(−1

3 , −1
3 ;06)′ 0 1

2 2 L T 45

(10; 2
3 ,02)(−1

3 , −1
3 ;06)′ 13

1
4 2 L s0

1

12
1
2 2 L s0

2

11̄
−1
4 2 L s0

3

(10; 2
3 ,02)( 2

3 , 2
3 ;06)′ 0 1

2 2 L s0
4

(10; −1
3 ,±1,0)(−1

3 , −1
3 ;06)′ 0 1

4 2 + 2 L s0
5 , s0

6

(10; −1
3 ,0,±1)(−1

3 , −1
3 ;06)′ 0 −1

4 2 + 2 L s0
7 , s0

8

P + 4V+ (NL)j Θ+ P4(f+) χ Labels

(10; 2
3 , −1

3 , 1
3 )( 2

3 , −1
3 ; −1

3 ;05)′ 0 1
2 2 L d+

1

(10; 2
3 , −1

3 , 1
3 )(−1

3 , −1
3 ; 2

3 ;05)′ 0 0 3 L s+
1

(10; −1
3 , 2

3 , 1
3 )( 2

3 , −1
3 ; −1

3 ;05)′ 0 1
4 2 L d+

2

(10; −1
3 , 2

3 , 1
3 )(−1

3 , −1
3 ; 2

3 ;05)′ 0 −1
4 2 L s+

2

(10; −1
3 , −1

3 , −2
3 )( 2

3 , −1
3 ; −1

3 ;05)′ 0 −1
4 2 L d+

3

(10; −1
3 , −1

3 , −2
3 )(−1

3 , −1
3 ; 2

3 ;05)′ 0 1
4 2 L s+

3

P + 4V− (NL)j Θ− P4(f−) χ Labels

(10; 2
3 , 1

3 , −1
3 )( 2

3 , −1
3 ; 1

3 ;05)′ 0 1
2 2 L d−

1

(10; 2
3 , 1

3 , −1
3 )(−1

3 , −1
3 ; −2

3 ;05)′ 0 0 3 L s−
1

(10; −1
3 , −2

3 , −1
3 )( 2

3 , −1
3 ; 1

3 ;05)′ 0 1
4 2 L d−

2

(10; −1
3 , −2

3 , −1
3 )(−1

3 , −1
3 ; −2

3 ;05)′ 0 −1
4 2 L s−

2

(10; −1
3 , 1

3 , 2
3 )( 2

3 , −1
3 ; 1

3 ;05)′ 0 −1
4 2 L d−

3

(10; −1
3 , 1

3 , 2
3 )(−1

3 , −1
3 ; −2

3 ;05)′ 0 1
4 2 L s−

3

with QX = 2,
(−2, [−1]4;−2,−2,0

)(−1,−1;06)′

also satisfies the masslessness condition. Since (P + 4V ) · V = − 1
2 , we obtain Δ = e2πi·(− 1

2 )

from (23) and the multiplicity is 2.
In the T ±

4 sectors, the phases in Eq. (26) are respectively given by

(70)Θ+ = (P + 4V+) · V++
∑
j

(
NL

)
j
(φ̂)j + 1

3
,

(71)Θ− = (P + 4V−) · V− +
∑
j

(
NL

)
j
(φ̂)j ,

where “ 1 ” in Eq. (70) comes from “− 4 (V 2+ − φ2
s )”.
3 2



J.E. Kim, B. Kyae / Nuclear Physics B 770 (2007) 47–82 67
It turns out that from the 4(V ± a3) sectors, only neutral fields under SU(5) × U(1)X arise,
which are listed in Table 8.

Thus, the massless states in T4(+T8) sectors are

(72)5−2 + 2{5−2,52} + 30 neutral singlets + CT P conjugates.

There are twelve SU(2)′ doublets.

4.6. Twisted sector T5

In the T5 (and T ±
5 ) sector of the Z12−I orbifold, only the right-handed chirality states appear

as massless states from the right mover condition.
The massless condition for the right mover in the T5 sector is (s + 5φs)

2 = 11
24 . Taking a

shifted 5φs as ( 1
12 − 4

12
5
12 ), only the right mover s = (⊕−+−) satisfies this condition. So it is

right-handed. Now, (s̃ + 5φs) · φs = − 1
8 .

Note that − k
2 (V 2 −φ2) = − 1

4 for k = 5. So, the phase in Eq. (24) is given by Θ0 = (P +5V ) ·
V + ∑

j (N
L)j (φ̂)j − 1

8 . The T5 sector is again distinguished by Wilson lines: V0 = V , V+ =
V + a3, and V− = V − a3. These sectors are denoted as T 0

5 , T +
5 and T −

5 . In the T5 sectors, only
the states with Θ0,± = 0 survive the GSO projection Eqs. (23), (25) since all χ̃(5, l)s are the
same.

Only neutral and vector-like pairs of SU(5) singlets arise in T5. In the T +
5 sector, only the

states with (P + 5V+) · V++∑
j (N

L)j (φ̂)j = − 1
24 survive the GSO projection Eq. (23). In the

T −
5 sector, only the states with (P + 5V−) ·V− +∑

j (N
L)j (φ̂)j = − 3

8 survive. These are shown
in Table 9.

The CT P conjugates of T5 appear in T7.

5. Summary of matter spectra

Collecting all the flipped SU(5) model fields, we obtain the following:

(73)U : (1−5 + 53 + 10−1)
L
U3

, (52)
L
U2

, (1−5 + 53 + 10−1)
L
U1

, (10)
L
U2

,

from the untwisted sector, and

(74)T6: 10L
−1 + {

2(15 + 1−5 + 5−3 + 53) + 3(101 + 10−1)
}L + 22{10},

(75)T2: 1L
−5 + 5L

3 + 12{10},
(76)T4: 5L

−2 + 2(5−2 + 52)
L + 30{10},

from the twisted sectors. The chiral matter resulting from this spectra constitutes three families
of quarks and leptons.

In addition, we obtain G-exotics and E-exotics from T1 and T5 sectors,

(77)T1: 2(5−1/2)
L + 2(5+1/2)

L + 7(1−5/2)
L + 7(1+5/2)

L,

(78)T5: 2(5+1/2)
R + 2(5−1/2)

R + 7(1+5/2)
R + 7(1−5/2)

R.

From (2), we note that G-exotics carry Qem = ± 1
6 quarks and Qem = ± 1

2 E-exotics and E-
exotics with X = ± 5 have Qem = ± 1 . All these exotics can be removed if all U(1)s except the
2 2
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Table 9
Chiral matter fields satisfying Θ0,± = 0 in the T 0

5 and T ±
5 sectors. There are two SU(2)′ doublets with ( 5

6 , −1
6 ; · · ·)′

P + 5V (NL)j P5(f0) χ

(51/2; 7
12 ,0, 6

12 )(−1
6 , −1

6 ;06)′ 0 1 R

(51/2; −5
12 ,0, −6

12 )(−1
6 , −1

6 ;06)′ 11 1 R

(5−1/2; 1
12 , 6

12 ,0)(−1
6 , −1

6 ;06)′ 21 1 R

(15/2; 7
12 ,0, −6

12 )(−1
6 , −1

6 ;06)′ 31 1 R

(15/2; −5
12 ,0, 6

12 )(−1
6 , −1

6 ;06)′ 12̄,41 1 + 1 R

(1−5/2; −11
12 , 6

12 ,0)(−1
6 , −1

6 ;06)′ 0 1 R

(1−5/2; 1
12 , −6

12 ,0)(−1
6 , −1

6 ;06)′ 13, 51, {11 + 12̄} 1 + 1 + 1 R

P + 5V+ (NL)j P5(f+) χ

(15/2; −5
12 , 4

12 , 2
12 )( 5

6 , −1
6 ; 1

3 ;05)′ 0 1 R

(15/2; −5
12 , 4

12 , 2
12 )(−1

6 , −1
6 ; −2

3 ;05)′ 21 1 R

(1−5/2; 1
12 , −2

12 , −4
12 )( 5

6 , −1
6 ; 1

3 ;05)′ 11 1 R

(1−5/2; 1
12 , −2

12 , −4
12 )(−1

6 , −1
6 ; −2

3 ;05)′ 31 1 R

P + 5V− (NL)j P5(f−) χ

(5−1/2; 1
12 , 2

12 , 4
12 )(−1

6 , −1
6 ; 2

3 ;05)′ 0 1 R

(15/2; −5
12 , 8

12 , −2
12 )(−1

6 , −1
6 ; 2

3 ;05)′ 0 1 R

(15/2; 7
12 , −4

12 , −2
12 )(−1

6 , −1
6 ; 2

3 ;05)′ 11 1 R

(1−5/2; 1
12 , 2

12 , −8
12 )(−1

6 , −1
6 ; 2

3 ;05)′ 11 1 R

U(1)Y are broken at the GUT scale and a sufficient number of neutral singlets develop VEVs,
and hence there are not left with dangerous half-integer charged fields below the GUT scale.
It will be explained in Section 6.1. The lightest of these half-integer charged fields (LHIC) is
absolutely stable since all the light observable SM fields (including color singlet composites) are
integer charged. If the mass of LHIC is much larger than the reheating temperature after inflation,
we expect that most of LHIC are diluted away by inflation.

For the hidden sector, there appear 20 SU(2)′ doublets and one 16′ and one 10′ of the hidden
SO(10)′.

6. Yukawa couplings

Nonvanishing couplings of vertex operators are constructed by satisfying the Z12−I symme-
try [29,35,37]. It is summarized in [7]. In our notation for the shift vector, basically it amounts
for the operator OAOBOC · · · to satisfy

(79)Invariance under the group space shift V, and

(80)Invariance under the internal space shift φs.

For the shift V , it is easy to check the modular invariance: The relevant vertex operators have only
to satisfy the gauge invariance. The invariance under the shift φs belongs to a generalized Lorentz
shift and the condition is sometimes called the H -momentum conservation. The (bosonic) H -
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momentum is defined as

(81)Ri = (s̃ + kφs + r̃)i − (
NL

i − NL

ī

)
, i = {1,2,3},

where r̃ is (−1
2 , 1

2 , 1
2 ) for left-handed states (≡ r̃−) and ( 1

2 , −1
2 , −1

2 ) for right-handed states
(≡ r̃+). As discussed earlier, s̃ should satisfy the mass-shell condition, |( 1

2χ, s̃) + kφs |2 = 2ck .
Ri can be interpreted as a discrete R-charge. Thus, neglecting oscillator numbers, the H -momenta
for Z12−I twist are

U1: (−1 0 0), U2: (0 1 0), U3: (0 0 1),

T1:
(−7

12
4

12
1
12

)
, T2:

(−1
6

4
6

1
6

)
, T3:

(−3
4 0 1

4

)
,

(82)T4:
(−1

3
1
3

1
3

)
, T5:

( 1
12

−4
12

−7
12

)
, T6:

(−1
2 0 1

2

)
,

which are used to check the generalized Lorentz invariance.
As an example, consider the T6 H -momentum, (−1

2 0 1
2 ). It is derived in the following way.

The right mover mass-shell condition is

(83)
1

2
M2

R = (s + 6φs)
2 = 2c = 1

2

where 6φs = ( 30
12

24
12

6
12 ). There are two solutions of Eq. (83),

s+ =
(

⊕; −5

2
,
−3

2
,
−1

2

)
and s− =

(
; −5

2

−5

2

−1

2

)
.

For the left-handed states appearing in Table 4, let us focus on s− whose corresponding sum-to-
odd-integer solution is (−3 −2 0). So bosonization of s̃− is s̃− + r̃−. Thus, H -momentum, in
analogy with P + kV , is (s̃− + r̃−) + kφs = (−1

2 0 1
2 ) appearing in Eq. (82).

The H -momenta conservation conditions with φs = ( 5
12 , 4

12 , 1
12 ) can be reformulated only in

terms of the bosonic H -momenta as follows:

(84)
∑

z

R1(z) = −1 mod 12,
∑

z

R2(z) = 1 mod 3,
∑

z

R3(z) = 1 mod 12,

where z (≡ A,B,C, . . .) denotes the index of states participating in a vertex operator. In addition,
space group selection rules requires a vertex operator with z-states in T

mf

k sector (k = 0 for the
untwisted sector) should satisfy

(85)
∑

z

k(z) = 0 mod 12,

(86)
∑

z

[kmf ](z) = 0 mod 3.

One can easily check the following cubic couplings are allowed in Z12−I orbifold models fulfill-
ing Eqs. (84) and (85), if NL

i = NL

ī
= 0 [35,37]:

(87)U1U2U3, T6T6U2, T4T4T4, T2T4T6, T1T4T7.

Note that in considering the superpotential couplings, one should consider only the same chiral-
ity, and in our model there is no massless states from the T3 and T9 sectors.
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Table 10
H -momenta for some combinations of neutral singlets under SU(5) × U(1)X appearing in our model. All the combina-
tions are neutral under all gauge symmetries in this model, and fulfill the space group selection rules

Comb. of singlets H -momenta Comb. of singlets H -momenta

h1h̄1 (−1 0 −1) h1h̄2 (−1 0 1)

h2h̄2 (−1 0 3) h1h̄4 (−2 0 0)

h3h̄3 (1 0 1) h2h̄3 (0 0 2)

h4h̄4 (−3 0 1) h2h̄4 (−2 0 2)

Comb. of doublets H -momenta Comb. of doublets H -momenta

D+
1 d+

2 h̄1 (−1 3 0) D+
1 d+

2 h̄3 (0 3 1)

D+
1 d+

2 h̄2 (−1 3 2) D+
1 d+

2 h̄4 (−2 3 1)

Comb. of singlets H -momenta Comb. of singlets H -momenta

C+
1 s+

2 h̄1 (1 1 0) C−
1 s−

2 h1 (−1 3 0)

C+
1 s+

2 h̄2 (1 1 2) C−
1 s−

2 h2 (−1 3 2)

C+
1 s+

2 h̄3 (2 1 1) C−
1 s−

2 h3 (0 3 1)

C+
1 s+

2 h̄4 (0 1 1) C−
1 s−

2 h4 (−2 3 1)

C+
2 s+

2 h̄1 (−1 1 −2) C−
2 s−

2 h1 (0 1 −1)

C+
2 s+

2 h̄2 (−1 1 0) C−
2 s−

2 h2 (0 1 1)

C+
2 s+

2 h̄3 (0 1 −1) C−
2 s−

2 h3 (1 1 0)

C+
2 s+

2 h̄4 (−2 1 −1) C−
2 s−

2 h4 (−1 1 0)

For future convenience, we display the H -momenta for combinations of some singlets ap-
pearing in our model in Table 10.

In Ref. [30], it has been shown that one can always find a vacuum where only neutral singlets
under a symmetry of interest develop VEVs of string scale preserving the F and D flatness condi-
tions. This is possible because (a) once a superpotential term W is allowed by the selection rules,
then WN+1 is also allowed in the ZN orbifold model, and (b) there exists in general a transfor-
mation rescaling the VEVs leaving intact the above F flatness conditions but making accordingly
D flatness conditions satisfied by adjusting VEVs. In our model, there are enough superpotential
terms constructed with only neutral singlets, e.g. W = WS + W 13

S + W 25
S + · · · , where

WS = (
C+

1 s+
2 h̄1

)(
C−

1 s−
2 h4

) + (
C+

1 s+
2 h̄4

)(
C−

1 s−
2 h1

)
+ (

C−
1 s−

2 h2
)(

C−
2 s−

2 h1
) + (

C−
1 s−

2 h1
)(

C−
2 s−

2 h2
) + · · ·

where the string scale is set Mstring = 1. We assume a vacuum where only neutral singlets develop
large string scale VEVs.

6.1. Flipped SU(5) spectrum

There exist (101,10−1) whose VEV (in the SU(2) singlet direction νc) breaks the flipped
SU(5) down to the standard model. Also, there exist the needed electroweak Higgs fields
(52,5−2).

In T1 and T5, there appear G-exotics and E-exotics. These are removed by T1T4T7 couplings
of Eq. (87) via 〈10(T4)〉 and other singlet’s VEVs. For instance, (15/2; −1

12 ,0, −6
12 )( 1

6
1
6 ; 06)′ with

NL = 11 in T 0, and (1−5/2; −7 , 4 , 2 )(−1 −1 ; 2 ;05)′ with NL = 11̄ in T −
7 get a mass from
j 1 12 12 12 6 6 3 j
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the coupling with 〈s+
1 〉 in T +

4 . Similarly (1−5/2; −7
12 , −2

12 , −4
12 )( 1

6
1
6 ; −2

3 ;05)′ with NL
j = 13 in T −

1 ,

and (15/2; −1
12 , 6

12 ,0)( 1
6

1
6 ;06)′ with NL

j = 13̄ in T 0
7 achieve a mass also from s+

1 . It turns out
that the contributions of oscillator numbers carried by the other states to the H -momenta can
be always cancelled by (multi-) products of C+

1 s+
3 h3, C+

2 s+
2 h̄3, C−

1 s−
2 h3, C−

1 s−
2 h̄1, etc. When

NL
j = {12 + 13} is involved in a T1T7T4 vertex operator, for instance, one could additionally

multiply C+
1 s+

2 h̄4 to the vertex operator in order to cancel the oscillator number contribution.
When NL

j = 43 is involved, e.g. (C−
1 s−

2 h3)
4 needs to be multiplied.

In T6 and T4, there appear vector-like representations (101 + 10−1)s, (15 + 1−5)s, and
(5−2 + 52)s. These are removed by the survival hypothesis that all vector-like representations
are removed at the GUT scale [36]. Indeed, it is so in our model by allowing large VEVs to
neutral singlets. Thus, we obtain just only one 5L

−2 from T4 and 5L
2 from the untwisted sector.

One can anticipate that this may happen if the twisted sectors provide large Yukawa couplings.
Indeed, such couplings are present.

The fields 2(5−2 + 52)
L of T4 can be removed by T4T4T4 couplings where one T4 is 〈s0

4〉
in Table 8. The vector-like representations in T6 are also removed by the couplings, e.g. with
(C+

1 s+
2 h̄1)(C

−
1 s−

2 h1) and (C+
2 s+

2 h̄3)(C
−
1 s−

2 h3), etc. Thus, {2(15 + 1−5 + 5−3 + 53) + 3(101 +
10−1)}L and 2(5−2 + 52)

L are expected to be removed at the GUT scale. In all these, several
singlets with QX = 0 are expected to develop GUT scale VEVs. Then, there result the following
light fields,

(88)U : (15 + 5−3 + 101)
R
U1

+ (15 + 5−3 + 101)
R
U3

+ (5−2)
R
U2

,

(89)T6: 10R
1 ,

(90)T 0
2 : 1R

5 + 5R
−3,

(91)T4: 5R
2 .

These constitute the three families and one pair of Higgs quintets. Relabeling R to L, we can
obtain the standard form of left-handed W± interactions. In the remainder, however, we will
keep R to compare with the entries of tables.

It is interesting to note that the pair of Higgs quintets, (5−2 + 52), survives the above analysis.
Certainly, it is not allowed to write MGUT5−252 since there is no coupling of the form U2T4.
In fact, it is not easy to construct a 5−252 consistent with the H -momentum conservation. Thus
Higgs doublet mass can be far below the GUT scale, which is a good thing. But the colored
scalars in (5−2 + 52) must be removed at high energy scale toward MSSM. It is achieved by the
doublet–triplet splitting mechanism we discuss below.

6.2. GUT breaking

The GUT breaking in the flipped SU(5) model proceeds by 〈101〉 = 〈10−1〉 = MGUT, which
is a D-flat direction. This vector-like representation, 101 + 10−1, is present in the T6 sector. Note
that the H -momentum of (10110−1)

L is (−1,0,1).
The T6 sector also contains twenty two Qem = 0 singlets. Some combinations of them, e.g.

h1h̄2 in Table 10 also give the H -momentum of (−1,0,1). h3h̄4, h2h̄1, h4h̄3 also provide the
same H -momentum. The GUT scale VEV of them could induce 〈101〉 = 〈10−1〉 = MGUT along
an F-flat direction, for instance, through a non-renormalizable superpotential,

(92)W = (
D+d+h̄1

)(
C+s+h̄1

)[
10H

1 10H
−1 − h1h̄2 − h3h̄4 + · · ·]
1 2 1 2
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with 〈D+
1 〉 or 〈d+

2 〉 vanishing. Note that there are 20 SU(2)′ doublets. Thus, the gauge coupling
of SU(2)′ would not blow up at lower energies. The neutrino direction of 〈101〉, 〈10−1〉 allows
the symmetry breaking

(93)SU(5) × U(1)X → SU(3)c × SU(2) × U(1)Y .

6.3. Doublet–triplet splitting

Let us call the three vector-like ten and tenbars of Eq. (74) as Higgs fields, 10H
1 and 10H

−1.
Among the three two are purely vector-like and removed at the GUT scale. One remaining vector-
like pair joins the Higgs mechanism. Let us consider this remaining pair.

The Higgs 10H
1 and 10H

−1 contain {q, dc, νc}+{q, dc, νc} in terms of the standard model quan-
tum numbers. {νc, νc} obtain GUT scale masses from Eq. (92) when SU(5) × U(1)X is broken.
{q, q} contained in 10H

1 and 10H
−1 are absorbed by the heavy gauge sector. On the other hand,

{dc, dc} still remain light. In order to make the standard model vacuum stabilized, somehow they
should get superheavy masses.

Let us consider W = 10H
1 10H

1 5h + 10H
−110H

−15h, where 5h and 5h indicate the five-plets

inducing electroweak symmetry breaking [38,39]. When 10H
1 and 10H

−1 develop VEVs in the

〈νc〉 = 〈νc〉 = MGUT direction, {dc, dc} in 10H
1 , 10H

−1 and triplets (D,D̄) included in 5h, 5h pair
up to be superheavy [40]. This achieves the doublet–triplet splitting in flipped SU(5).

This mechanism can be realized also in our model. The [10H
−110H

−15h]L term arises from

T6T6U2, which satisfies the H -momentum conservation. The [10H
1 10H

1 5h]L is still also possible
from highly non-renormalizable interactions, e.g. [10H

1 10H
1 5h]L(s+

1 s−
1 su)(C+

2 s+
2 h̄3)(C

−
2 s−

2 h3),
which satisfies all selection rules discussed above. Thus we should assume cutoff scale VEVs for
the neutral singlets.

Thus, we obtain the so-called MSSM spectra with one pair of Higgs doublets at cubic level.
However, the Higgs doublets would obtain mass since there exist a lot of singlets. Indeed, there
exist many couplings. The simplest two terms for μ are

(94)

[
(52;−1,0,0)

(
08)′]

U2

[(
5−2; −1

3
,0,0

)(−1

3
,
−1

3
;06

)′]
T 0

4

[
su

(
s0

2

)2 + fμs0
2s0

4

]
[T 0

4 ]2

where fμ is a relative strength. Before, s0
4 was needed for charged lepton masses. On the other

hand, s0
2 was needed for mixing of charged leptons. Let us set s0

2 a free parameter. Assuming that
52 and 5−2 obtain VEVs, the F-flat direction chooses s0

2 = −fμs0
4/2su so that the μ term is of

order −f 2
μs02

4 /4su. This can be linked to the charged lepton masses. For example, if we choose

s0
4 ∼ 10−5 from electron mass and su ∼ O(1), we require fμ = O(10−2) to obtain a TeV scale

μ term. This fine tuning is a huge improvement over a fine tuning of 10−15. Since we neglected
many higher order terms, this is just an illustration of smoothing the fine tuning problem. The s0

2
mimics the axion multiplet of the μ solution [41].

6.4. Fermion masses

• There is one cubic coupling relevant for u-type quarks and Dirac neutrinos, T6T2T4, which
is interpreted as the top quark and (Dirac) tau neutrino Yukawa coupling,

(95)t quark + (Dirac) τ neutrino coupling: [1015−352]R.
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Non-renormalizable terms allow the other u-type quark (Dirac neutrino) Yukawa couplings. Most
of all, through the couplings with C0

5 , C0
6 in T 0

2 and h1, h̄3 in T6, [10−1(T6)53(U1)5−2(T
0

4 )]L,
[10−1(T6)53(U3)5−2(T

0
4 )]L, [10−1(U3)53(T

0
2 )5−2(T

0
4 )]L, and [10−1(U1)53(T

0
2 )5−2(T

0
4 )]L are

allowed. With h1C
0
5 , h̄3C

0
6 , h̄3C

0
5 , and h1C

0
6 , the masses and mixing for the first two families of

u-type quarks and Dirac neutrinos are possible.
• The bottom quark mass arises in terms of U2 Higgs doublet. Indeed, such a coupling is

present from T6T6U2. If the coupling strength of T6T2T4 and T6T6U2 are comparable, a large
tanβ is needed to obtain mt/mb ∼ 35. But the couplings depend on the location of the respective
fields and one may treat the ratio as a free parameter of order 1 [42].

In fact [101(U1)101(U3)5−2(U2)]R exists. For smallness of it we could assume a proper vol-
ume of the 6-dimensional compact space. As an alternative way, one could consider (1,1) and
(2,2) components of the d-quark mass matrix. They can be induced with 〈h1h1〉 and 〈h̄3h̄3〉. By
〈h1〉 and 〈h̄3〉, the mixing between the first two and the third families of d-type quarks are also
permitted.

• For the mass of charged lepton in the twisted sector T 0
2 , we need a coupling containing

[1−5(T
0
2 )53(T

0
2 )52(U2)]L. This coupling is possible by being supplemented with (s0

2)2. On the
other hand, cubic couplings [15(U1)5−3(U3)5−2(U2)]R [15(U3)5−3(U1)5−2(U2)]R are possible.
It may be that τ is placed in the untwisted sector. In this sense, the leptonic sector does not go
parallel to the quark sector. The b − τ unification is not achieved in this model. (1,1) and (2,2)

components of the charged lepton mass matrix are generated via, e.g. 〈h̄1h̄1〉 and 〈h3h3〉. The
mixing terms between the first two and the third families of charged leptons should be mediated
by 〈h3s

0
2 〉 and 〈h̄1s

0
2〉.

• In flipped SU(5), Majorana neutrino masses arise from [〈101〉 · 〈101〉 ·10−1 ·10−1]L. The H -
momentum of this operator is (−2,0,2). Thus this operator can be induced when supplemented,
e.g. by the coupling with (C+

1 s+
2 h̄3)(C

+
2 s+

2 h̄1)[(C−
1 s−

2 h1)(C
−
2 s−

2 h3)]2. The other components of
the Majorana neutrino mass matrix should require additional singlet VEVs such as h1, h̄3, (h1)

2,
and (h̄3)

2. If heavy Majorana neutrino masses are around 1014 GeV, thus we obtain the ντ mass
of order 0.1 eV,

(96)mντ � m2
top

(1014 GeV)
∼ 0.1 eV

for mtop = mDirac neutrino, which is valid in flipped SU(5).

6.5. R-parity

If we consider cubic couplings Eq. (87), we can define an R-parity in the standard way,
R = −1 for matter fermions and R = +1 for Higgs bosons.

Firstly, consider the coupling 101(U1)101(U3)5−2(U2). A nontrivial parity can be defined as

(97)R = −1 for 101(U1), 101(U3), 5−3(U1), 5−3(U3), 15(U1), 15(U3),

(98)R = +1 for 5−2(U2).

As discussed above, mixing between the first two families of matter in the untwisted sector
and the third family of matter in T5 and T 0

2 are always possible if VEVs of some neutral singlets
are supposed. Such neutral singlets should also be inert under all symmetries relevant at low
energies. Otherwise, symmetries must be broken at low energies by their VEVs. Even with the
mixing terms between untwisted and twisted matter fields, the R-parity relevant in low energies
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can still be defined by assigning R = 1 for the neutral singlets developing VEVs and

(99)R = −1 for 10L
−1(T6), 5L

3 (T2), 1L
−5(T2).

Then, the allowed Yukawa coupling T6T2T4 determines

(100)R = +1 for 5−2(T4).

Thus, R-parity can survive down to low energies and hence R-parity conservation for proton
longevity is fulfilled in the present model.

7. Electroweak hypercharge in flipped SU(5)

7.1. GUT value of weak mixing angle

Flipped SU(5) was originally considered as a subgroup of SO(10) [9], which can be called
SO(10)-flipped SU(5). In this case, the GUT value for sin2 θW should be 3

8 . In this case, symme-
try breaking must proceed via adjoint Higgs field. The shift vector must take a form

(101)V =
{

(0 0 0 0 0 x y z)(· · ·)′, or( 1
2

1
2

1
2

1
2

1
2 x y z

)
(· · ·)′

so that an SO(10) group is obtained.
String flipped SU(5), for example Eq. (28) with five 1

4 s, is basically different from SO(10)

flipped SU(5) even though it includes SO(10) flipped SU(5) if the shift vector takes the form
Eq. (101). If the electroweak SU(2) × U(1)Y is embedded in a simple group in a field theory
GUT, the GUT value of sin2 θW is 3

8 as calculated from

(102)sin2 θW = TrT 2
3

TrQ2
em

.

Many possibilities of sin2 θW appear because of many possibilities of embedding the electroweak
hypercharge Y in an Abelian group. In the E8 ×E′

8 heterotic string, the embedding of Y in U(1)s
is basically looked from the untwisted sector spectrum, which sets the embedding in E8. Thus, in
string compactification, sin2 θW depends on the spectrum in the untwisted sector [7]. Therefore,
if the untwisted sector spectrum includes 16flip, then sin2 θW is the same as that of SO(10). On
the other hand, if 16flip cannot be obtained from the fields in the U sector, sin2 θW = 3

8 is not
warranted. In the present model, a complete multiplet 16flip appears in the U sector, we obtain
sin2 θW = 3

8 . This is explicitly shown below.
The electroweak hypercharge Y is a combination of SU(5) and U(1)X generators, Y =

1
5 (X + Y5). As will be shown in the next section, the U(1)Y gauge coupling is

(103)g−2
Y = g−2

5

15
+ g−2

X

25u2
,

where u denotes an employed unit of U(1)X charges. So far we tacitly supposed u = 1, but
its absolute value should be determined by the string theory with g5 = gX at the compactifica-
tion scale. Along the standard model direction, Eq. (103) is still valid above the flipped SU(5)

breaking scale. Thus at the compactification scale, where SU(2) gauge coupling g2 is identified
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with g5, the Weinberg angle is given by

(104)sin2 θ0
W = 1

1 + g2
5

g2
Y

= 1

1 + ( 1
15 + 1

25u2 )
.

Including the unit factor ‘u’, the U(1)X charge operator, QA
X ≡ −2(1,1,1,1,1,0,0,0)×

(08)′ × u can be expressed in terms of a proper orthonormal basis vector q5 [43],

(105)QA
X = 1√

2
c5q5,

where

(106)c5 ≡ −2
√

10u and q5 ≡ 1√
5
(1,1,1,1,1,0,0,0)

(
08).

With this expression, g2
5/g2

X can be calculated in the string theory framework [7],

(107)
g2

5

g2
X

= c2
5 = 40u2.

Hence, the string theory determines the absolute values of U(1)X charges with u2 = 1
40 from

g5 = gX at the compactification scale. With this unit, the bare value of the Weinberg angle is also
determined from Eq. (104):

(108)sin2 θ0
W = 3

8
.

7.2. Embedding of Y in flipped SU(5)

A covariant derivative in flipped SU(5) includes the term

(109)

√
3

5
Y5g5A5 + XugXAx,

where Y5 = diag( 1
3 , 1

3 , 1
3 , −1

2 , −1
2 ) and X [= x · diag(1,1,1,1,1)] denotes the U(1)X charge

operator employed in this paper, u a unit of U(1)X charge. So far u is tacitly assumed to be

unity, but generically it is not necessarily 1.
√

3
5Y5 is one of SU(5) generator normalized with

TrTSU(5)TSU(5) = 1
2 . A5 and Ax stand for the SU(5) and U(1)X gauge fields, respectively. After

symmetry breaking, one linear combination of A5 and Ax becomes the U(1)Y gauge field Bμ of
the standard model. We introduce a mixing angle φ,

(110)

(
A5
Ax

)
=

(
cosφ − sinφ

sinφ cosφ

)(
Bμ

Cμ

)
,

Eq. (109) is recast in the following form,

(111)

[
1

5
Y5 + 1

5
X

√
5

3

gX

g5
tanφu

]√
15 cosφg5Bμ + [Cμ terms],
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where Cμ achieves a superheavy mass from the 10-dimensional Higgs VEVs 〈νc
H 〉, 〈νc

H 〉. From
this expression, one can read off the U(1)Y charges and coupling,

(112)Y = 1

5
Y5 + 1

5
X

√
5

3

gX

g5
tanφu,

(113)
gY

g5
= √

15 cosφ.

Since Y(νc) = 0 is the SM direction, Eq. (112) should be

(114)Y = 1

5
Y5 + 1

5
X, or

(115)
g5

gX

=
√

5

3
tanφu.

With Eqs. (113) and (115), the relation between g5, gX , and gY is derived:

(116)g−2
Y = g−2

5

15
+ g−2

X

25u2
.

8. Conclusion

We constructed a supersymmetric flipped SU(5) model from a Z12−I orbifold compactifica-
tion. The notable features of the model are:

• From E8, the only non-Abelian group is the needed SU(5). This is possible only for one shift
vector in Z12−I. In this sense, it is the unique Z12−I flipped SU(5) model.

• Three families are obtained. The third family is located in twisted sectors while the first two
families are in the untwisted sector. Separating the third family from the first two families
enables a mass hierarchy of fermions.

• There exists a doublet–triplet splitting from a kind of the missing partner mechanism.
• There results only one pair of Higgs doublets.
• The R-parity is present.
• Allowed Yukawa couplings can generate a GUT scale VEVs of 10H

1 and 10H
−1 for the GUT

breaking down to the standard model.
• There exist Qem = ± 1

2 particles. But these form vector-like representations and most are
removed at the GUT scale. Thus, sin2 θW is similar to that of SO(10) GUT.

In this paper, all the relevant Yukawa couplings are derived from string construction. So far,
we have not encountered any serious phenomenological problem. Successful Yukawa couplings
may be generated by appropriate GUT scale VEVs of singlet fields which are treated here as
free parameters. Finally, it is expected that a standard model can be derived from Z12 without
going through the intermediate stage of the flipped SU(5) with features discovered in the present
model [44]. In a future communication, we will tabulate all computer-searched Z12 orbifold
models.
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Appendix A. Flipped SU(5) with SU(4)′

One can eliminate some exotic particles carrying QX = ± 1
2 , ± 5

2 observed in the model dis-
cussed in the main text (Model I) by employing more complicated shift vector and Wilson line,

(A.1)V =
(

1

4
,

1

4
,

1

4
,

1

4
,

1

4
; 5

12
,

6

12
,0

)(
2

12
,

2

12
;1,0;04

)′
,

(A.2)a3 =
(

0,0,0,0,0;0,
−1

3
,

1

3

)(
0,0;0,0; 2

3
,

2

3
,
−1

3
,
−1

3

)′
,

which satisfy the modular invariance conditions. Model II, constructed with these shift vector
and Wilson line, eliminates in particular all 51/2 and 5−1/2 from the massless spectrum, leaving
intact the MSSM fields obtained in Model I. Here, the gauge group is further broken down to

(A.3)
[{

SU(5) × U(1)X
} × U(1)3] × [

SU(4) × SU(2)1 × SU(2)2 × SU(2)3 × U(1)2]′.
Model II gives the same spectrum as Model I for the T6, T 0

2 , and T 0
4 sectors and visible sector of

U in Model I. As in Model I, there is no massless states satisfying (P + 3V ) · a3 = 0 modZ in
the T3 sector. The spectrum of Model II is summarized as follows:

• Fields of flipped SU(5): 3 × 16flip + 1 × {5−2,52, } + 1 × {101,10−1}, where 16flip ≡
{101,3−3,15}.

• (Regularly charged) vector-like fields: 2 × {16flip,16flip} + 2 × 10flip, where 10flip ≡
{5−2,52}.

Table 11
Chiral fields from the U sector. + (−) denotes 1

2 ( −1
2 )

P · V s̃, Ui Visible states SU(5) × U(1)X

1
12 (+−+), U3 (+−−−−;+++) 5L

3

(+++−−;+−−) 10L−1

(+++++;+++) 1L−5

4
12 (++−), U2 (−1,0,0,0,0;−1,0,0) 5L

2

5
12 (+++), U1 (++++−;−++) 5R−3

(++−−−;−−−) 10R
1

(−−−−−;−++) 1R
5

P · V s̃, Ui Hidden states [SU(4) × SU(2)3]′
4
12 (++−), U2 (−−;++;±±∓∓)′, (−−;−−;±±∓∓)′

(−−;++;±∓±∓)′, (−−;−−;±∓±∓)′ (6,2,1,1)′
L

(−−;++;±∓∓±)′, (−−;−−;±∓∓±)′

4
12 (++−), U2 (1,1;0,0;0,0,0,0)′ singlet
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Table 12
Massless states satisfying (P + 6V ) · a3 = 0 mod Z in T6. The definitions of 53 , 5−3, 101, 10−1, and 1±5,0 are found
in the main text

P + 6V (NL)j Θ0 P6 χ

(53; 1
2 ,0,0)(08)′ 0 1

2 2 L

(10−1; 1
2 ,0,0)(08)′ 0 0 4 L

(1−5; 1
2 ,0,0)(08)′ 0 1

2 2 L

(5−3; −1
2 ,0,0)(08)′ 0 −1

6 2 L

(101; −1
2 ,0,0)(08)′ 0 1

3 3 L

(15; −1
2 ,0,0)(08)′ 0 −1

6 2 L

(10;0, 1
2 , 1

2 )(08)′ 13 0 4 L

13̄
−1
6 2 L

11̄
1
2 2 L

11
1
3 3 L

(10;0, −1
2 , −1

2 )(08)′ 13
1
2 2 L

13̄
1
3 3 L

11̄ 0 4 L

11
−1
6 2 L

Table 13
Chiral matter fields satisfying Θ0,+,− = 0 in the T

0,+,−
2 sectors

P + 2V (NL)j P2(f0) χ

(53; −1
6 ,02)( 1

3 , 1
3 ;06)′ 0 1 L

(1−5; −1
6 ,02)( 1

3 , 1
3 ;06)′ 0 1 L

(10; 1
3 , 1

2 , −1
2 )( 1

3 , 1
3 ;06)′ 21̄,23 1 + 1 L

(10; 1
3 , −1

2 , 1
2 )( 1

3 , 1
3 ;06)′ 12̄, {11̄ + 13} 1 + 1 L

(10; −2
3 , 1

2 , 1
2 )( 1

3 , 1
3 ;06)′ 11̄ 1 L

(10; −2
3 , −1

2 , −1
2 )( 1

3 , 1
3 ;06)′ 13 1 L

(10; 1
3 , −1

2 , 1
2 )(−2

3 , −2
3 ;06)′ 0 1 L

P + 2V+ (NL)j P2(f+) χ

(10; 1
3 , −1

6 , 1
6 )(4,1,1,2)′2+ 0 1 L

(10; 1
3 , −1

6 , 1
6 )(1,1,2,2)′2+ 0 1 L

(10; 1
3 , −1

6 , 1
6 )(1,2,1,1)′2+ 21̄,23 1 + 1 L

(10; 1
3 , −1

6 , 1
6 )(1,1,1,1)′2+ 21̄,23 1 + 1 L

P + 2V− (NL)j P2(f−) χ

(10; 1
3 , 1

6 , −1
6 )(6,1,1,1)′2− 0 1 L

(10; 1
3 , 1

6 , −1
6 )(4,1,2,1)′2− 0 1 L

(10; 1
3 , 1

6 , −1
6 )(1,1,1,1)′2− 0 1 L

(10; 1
3 , 1

6 , −1
6 )(1,2,1,1)′2− 12̄, {11̄ + 13} 1 + 1 L

(10; 1
3 , 1

6 , −1
6 )(1,1,1,1)′′2− 12̄, {11̄ + 13} 1 + 1 L
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• Exotic particles: 16 × {15/2,1−5/2}.
• A lot of neutral singlets under SU(5) × U(1)X .

The full massless spectrum of Model II is presented in Tables 11–15.
In Table 13, the abbreviated symbols denote

(4,1,1,2)′2+ ≡ (−2
3 , 1

3 ;0,0; −2
3 , 1

3 , 1
3 , 1

3

)′
,

(1,1,2,2)′2+ ≡ ( 5
6 , −1

6 ; 1
2 , −1

2 ; −1
6 , −1

6 , −1
6 , −1

6

)′
,

(1,2,1,1)′2+ ≡ (−1
6 , −1

6 ;± 1
2 ,± 1

2 ; −1
6 , −1

6 , −1
6 , −1

6

)′
,

(1,1,1,1)′2+ ≡ ( 1
3 , 1

3 ;0,0; 1
3 , 1

3 , 1
3 , 1

3

)′
,

Table 14
Chiral matter fields in the T 0

4 , T +
4 and T −

4 sectors. In the T +
4 and T −

4 sectors, (1,2,1,1)′4+ ≡ ( 1
6 , 1

6 ;±±; 1
6 , 1

6 , 1
6 , 1

6 )′ ,
(1,1,1,1)′4+ ≡ (−1

3 , −1
3 ;0,0; −1

3 , −1
3 , −1

3 , −1
3 )′ , (1,2,1,1)′4− = ( 1

6 , 1
6 ;±±; −1

6 , −1
6 , −1

6 , −1
6 )′ and (1,1,1,1)′4− =

(−1
3 , −1

3 ;0,0; 1
3 , 1

3 , 1
3 , 1

3 )′

P + 4V (NL)j Θ0 P4(f0) χ

(5−2; −1
3 ,02)(−1

3 , −1
3 ;06)′ 0 0 3 L

(52; −1
3 ,02)(−1

3 , −1
3 ;06)′ 0 1

2 2 L

(10; 2
3 ,02)(−1

3 , −1
3 ;06)′ 11̄

−1
4 2 L

12
1
2 2 L

13
1
4 2 L

(10; 2
3 ,02)( 2

3 , 2
3 ;06)′ 0 1

2 2 L

(10; −1
3 ,±1,0)(−1

3 , −1
3 ;06)′ 0 1

4 2 + 2 L

(10; −1
3 ,0,±1)(−1

3 , −1
3 ;06)′ 0 −1

4 2 + 2 L

P + 4V+ (NL)j Θ+ P4(f+) χ

(10; 2
3 , −1

3 , 1
3 )(1,2,1,1)′4+ 0 0 3 L

(10; 2
3 , −1

3 , 1
3 )(1,1,1,1)′4+ 0 0 3 L

(10; −1
3 , −1

3 , −2
3 )(1,2,1,1)′4+ 0 1

4 2 L

(10; −1
3 , −1

3 , −2
3 )(1,1,1,1)′4+ 0 1

4 2 L

(10; −1
3 , 2

3 , 1
3 )(1,2,1,1)′4+ 0 −1

4 2 L

(10; −1
3 , 2

3 , 1
3 )(1,1,1,1)′4+ 0 −1

4 2 L

P + 4V− (NL)j Θ− P4(f−) χ

(10; 2
3 , 1

3 , −1
3 )(1,2,1,1)′4− 0 0 3 L

(10; 2
3 , 1

3 , −1
3 )(1,1,1,1)′4− 0 0 3 L

(10; −1
3 , 1

3 , 2
3 )(1,2,1,1)′4− 0 1

4 2 L

(10; −1
3 , 1

3 , 2
3 )(1,1,1,1)′4− 0 1

4 2 L

(10; −1
3 , −2

3 , −1
3 )(1,2,1,1)′4− 0 −1

4 2 L

(10; −1
3 , −2

3 , −1
3 )(1,1,1,1)′4− 0 −1

4 2 L
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Table 15
Chiral matter fields satisfying Θ0,+ = 0 in the T 0

1 , T +
1 , T 0

5 , and T +
5 sectors. There are no massless states in

T −
1 and T −

5 . Here, 1∓5/2 ≡ (± 1
4 ,± 1

4 ,± 1
4 ,± 1

4 ,± 1
4 ). In T 0

1 and T +
1 , (4,1,1,1)′1+ ≡ ( 1

6 , 1
6 ;0,0; 2

3 , −1
3 , −1

3 , −1
3 )′ ,

(1,1,2,1)′1+ ≡ (−1
3 , −1

3 ;±∓; 1
6 , 1

6 , 1
6 , 1

6 )′ . In T 0
5 and T +

5 , (1,1,1,2)′5 = ( 5
6 , −1

6 ;0,0;0,0,0,0)′ , (4,1,1,1)′5+ =
(−1

6 , −1
6 ;0,0; −2

3 , 1
3 , 1

3 , 1
3 )′ , and (1,1,2,1)′5+ = ( 1

3 , 1
3 ;±∓; −1

6 , −1
6 , −1

6 , −1
6 )′

P + V (NL)j P1(f0) χ

(1−5/2; 5
12 , 6

12 ,0)(1,1,1,2)′1 0 1 L

(15/2; −1
12 ,0, −6

12 )(1,1,1,2)′1 13 1 L

P + V+ (NL)j P1(f+) χ

(1−5/2; 5
12 , 2

12 , 4
12 )(4,1,1,1)′1+ 0 1 L

(1−5/2; 5
12 , 2

12 , 4
12 )(1,1,2,1)′1+ 0 1 L

(15/2; −1
12 , −4

12 , −2
12 )(4,1,1,1)′1+ 13 1 L

(15/2; −1
12 , −4

12 , −2
12 )(1,1,2,1)′1+ 13 1 L

P + 5V (NL)j P5(f0) χ

(15/2; 1
12 , −6

12 ,0)(1,1,1,2)′5 11 1 R

(1−5/2; −5
12 ,0, 6

12 )(1,1,1,2)′5 0 1 R

P + 5V+ (NL)j P5(f+) χ

(15/2; 1
12 , −2

12 , −4
12 )(4,1,1,1)′5+ 11 1 R

(15/2; 1
12 , −2

12 , −4
12 )(1,1,2,1)′5+ 11 1 R

(1−5/2; −5
12 , 4

12 , 2
12 )(4,1,1,1)′5+ 0 1 R

(1−5/2; −5
12 , 4

12 , 2
12 )(1,1,2,1)′5+ 0 1 R

(6,1,1,1)′2− ≡

⎧⎪⎪⎨
⎪⎪⎩

( 1
3 , 1

3 ;0,0; 2
3 , 2

3 , −1
3 , −1

3

)′
,( 1

3 , 1
3 ;0,0; −1

3 , −1
3 , 2

3 , 2
3

)′
,( 1

3 , 1
3 ;0,0; 2

3 , −1
3 , 2

3 , −1
3

)′
,

(4,1,2,1)′2− ≡ (−1
6 , −1

6 ;±∓; −5
6 , 1

6 , 1
6 , 1

6

)′
,

(1,1,1,1)′2− ≡ (−2
3 , −2

3 ;0,0; −1
3 , −1

3 , −1
3 , −1

3

)′
,

(1,2,1,1)′2− ≡ (−1
6 , −1

6 ;±±; 1
6 , 1

6 , 1
6 , 1

6

)′
,

(1,1,1,1)′′2− ≡ ( 1
3 , 1

3 ;0,0; −1
3 , −1

3 , −1
3 , −1

3

)′
.
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