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Dynamics of nonlocality for a two-mode squeezed state in a thermal environment
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We investigate the time evolution of nonlocality for a two-mode squeezed state in a thermal environment.
The initial two-mode pure squeezed state is nonlocal with a stronger nonlocality for a larger degree of
squeezing. It is found that the larger the degree of initial squeezing, the more rapidly the squeezed state loses
its nonlocality. We explain this by the rapid destruction of quantum coherence for the strongly squeezed state.

PACS numbe(s): 03.65.Bz, 89.70:c

[. INTRODUCTION based on parity measurement and they found that the two-
mode squeezed state violates Bell's inequality, showing

Quantum nonlocality is one of the most profound featuregjuantum nonlocality15].
of quantum mechanidd.,2). It enables current developments  In this paper we study the dynamic behavior of the quan-
of quantum information theory encompassing quantum teletum nonlocality based on parity measurement for a two-
portation [3—8], quantum computatiof9], and quantum mMode squeezed state in a thermal environment. Measurement
cryptography[10]. There have been studies on tests of quanof the degree of quantum nonlocality is defined here by the
tum nonlocality versus local realism. Bell suggested an infmaximal violation of Bell's inequality. The nonlocality is
equality that any local hidden variable theory must ofly ~ stronger for a squeezed state with a larger degree of squeez-
Several types of Bell's inequalities have been derived inng. It is found that the nonlocality disappears more rapidly
terms of two-body correlation functions of two measurementn the thermal environment as the initial state is squeezed
variables at distant placd41] to test quantum nonlocality More.
for a spin-1/2 or S(P) system. This paper is organized as follows. In Sec. Il, Bell's in-

A spin-1/2 system can be utilized as a qubit for quantunequality based on parity measurement is discussed. The par-
computation. Quantum nonlocality of the spin-1/2 system igty measurement is directly related to the Wigner function. In
required as a quantum channel to teleport an unknown qubf€c. l1l, the two-mode master equation is solved for the dy-
state[3,12]. In fact, it is possible to teleport not only a two- namics of the Wigner function of the initial two-mode
dimensional spin-1/2 quantum state but also arsqueezed state. Convolution theory is utilized in the solution
N-dimensional stat4] and a continuous-variable stdtg].  [16]. We investigate the dynamic behavior of the quantum
The type of quantum channel depends on the dimension dfonlocality measured by the maximum violation of Bell's
the Hilbert space of an unknown quantum state. For teleporinequality for the two-mode squeezed state in a thermal en-
tation of a continuous-variable state, the quantum channéfironment in Sec. IV.
should be in an entangled continuous-variable state such as
the two-mode squeezed std@]. Recently, practical imple- ||, BELL'S INEQUALITY BY PARITY MEASUREMENT
mentation of quantum teleportation for a continuous-variable o ]
state has been realized experimentally using a two-mode It is important to choose the type of measurement vari-
Squeezed f|e|(ﬂ7,8] In quantum te]eportation, the most im- ables when testing nonlocality for a given state. In the Origi—
portant ingredient is the quantum nonlocality of the channeln@ gedanken experimeft], Einstein, Podolsky, and Rosen
which can easily be destroyed in nature. In this paper we ar€EPR considered the positiortsr the momentaof two par-
interested in how the thermal environment affects the quanticles as the measurement variables to discuss two-body cor-
tum nonlocality of the two-mode squeezed field. relation. Bell[2] argued that the EPR wave function does not

Quantum nonlocality of an entangled continuous-variableexhibit  nonlocality ~ because its Wigner function
state has been discussed using the Schmidt form for e?(X1,P1;X2.P2) is positive everywhere, allowing its de-
tangled nonorthogonal stat3] and quadrature-phase ho- scription by a local hidden variable theory. Munro showed
modyne measuremefit4]. A given state is nonlocal when it that various types of Bell's inequalities are not violated in
violates any Bell's inequality. In fact, a state does not have tderms of homodyne measurements of two parti¢ls17.
violate all the possible Bell's inequalities to be consideredT© the contrary, Banaszek and ‘ileewicz [15] examined
quantum nonlocal. A state is quantum nonlocal for the giverfven and odd parities as the measurement variables and
Bell's inequality that is violated by the measurement of theshowed that the EPR state and the two-mode squeezed state
state. Banaszek and \Wkiewicz defined Bell's inequality are nonlocal in the sense that they violate Bell's inequalities

such as the Clauser and Horne inequality and the Clauser-
Horne-Shimony-Holt inequality.

*Electronic address: jeonghs@quanta.sogang.ac.kr The even and odd parity Operatoéle and (50, are the
TElectronic address: hyoung@gquanta.sogang.ac.kr projection operators measuring the probabilities of the field
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having even and odd numbers of photons, respectively:  the next section, we find the evolution of the Wigner func-
. . tion for the initial two-mode squeezed state coupled with a
. A thermal environment.
Oe=2 [2n)2n|; =2 [2n+1)(2n+1|. (1)
n=0 n=0
I1l. TIME EVOLUTION OF TWO-MODE SQUEEZED

The Wigner function at the origin of phase space for a state STATES IN A THERMAL ENVIRONMENT

of density operatop is proportional to the mean parifg], A two-mode squeezed state is the correlated state of two

_ A A A field modesa andb that can be generated by a nonling&?
W(0)=(2/m)TrL(Oe = Oo)p]. @ medium [19,20. A two-mode pure squeezed state is ob-

Further, the Wigner functiohV(a) at the phase poink is  tained by applying the unitary operator on the two-mode
the mean parity for the displaced original state, vacuum,

W(a)=(2/m)Tr(0e—0,)D(@)pb'(@)], (3 |Wap(0))=exp(—oab+o*b'ah)|0,,0,), (8

whereD(a) is the displacement operatfi8]. where o=sexp(—i¢) and é(f)) is an annihilation operator

So far the argument has been confined to parity measurd?" the modea(b). The value ofs determines the degree of

ment of a single-mode field. As the quantum nonlocality carPdu€€zing. The largex the more the state is squeezed.
be discussed for two-mode fields, we thus define the quan- The Wigner function corresponding to the squeezed state

tum correlation operator based on joint parity measurementég (t?e )F[%L(‘)S'er transform of its characteristic function
W! 17] l

Cw({, ) =Trpexp(a"— *a)exp nb'— 7*b)]. (9)

For the two-mode squeezed state of density mafyix

where the superscripta and b denote the modes and the =[Wap(a) (¥ap()|, the Wigner function is written as
displaced parity operatdid ,(«) is defined as

1125 o, B) =T12(a)[18( B) — [13(a)[15(B)
~ T )E(B)+TT()15(B), (@)

4
. L Wap( o, 8) = —5 exil —2 costi2s)(|a|*+| B]?)
He,o(a):D(a)oe,oDT(a)- (5)
) ) ) . _ +2 sinh(2s)(aB+a* B*)]. (10
The displaced parity operator acts like a rotated spin projec-
tion operator in a spin measurement. We can easily deriv&he correlated nature of the two-mode squeezed state is ex-
that the local hidden variable theory imposes the followinghibited by thea cross term which vanishes wherr 0.

Bell's inequality[15]: The Fokker-Planck equatigm Born-Markov approxima-
. . tion) describing the time evolution of the Wigner function in
|B(a,B)|=|(I13% &, B) + 113°(a, B") the interaction picture can be written as
+11%%( o’ B)~112°(a’,B"))|<2,  (6) MWap(a,B,7) vy J N J
—_— = — ot
- , d 2.5 o loa * i
whereB(«,B) is the Bell function. 7 i=ab 0% Jay
By a simple extension of the relatid), the two-mode 1 ) 2
Wigner function is found to be proportional to the mean of +2{5+n moat Wap(a, B,7),
I1,, such thatW(ea,B)=(4/7%)TH papl1?°(«,B)] for the o
two-mode state of density operatpg,. The Bell function (13)

(6) can then be written in terms of the Wigner functions at

X . where we have assumed that the two modes of the environ-
different phase-space points,

ment are independent of each other and the energy decay
2 rates of the two modes are the same and denotegl e
B(a,B)= T[W(O,O) +W(a,0)+W(0,8)—W(a,B)]. two modes have the same average thermal photon number
) By solving the Fokker-Planck equatighl), we get the time
evolution of the Wigner function at timeto be given by the

The type of Bell's inequality in Eq(6) was first discussed by convolution of the original function and the thermal environ-

Clauser, Horne, Shimony, and H¢lt1]. Clauser and Horne Ment[16],

later found another type of inequality which can also be ex- 1

pressed in phasg space using the quasiprot_)gtiilﬁynction Wo(a,B,7)= T )4f dzé«dznwg‘(g)wtbh( )

[15]. TheQ function is related to the probability of the state T

having no photons. The lower and upper critical values of the a—r(n¢ B—r(n)n

Clauser-Horne Bell's inequality are1 and 0. xWab( . —
We have seen that the two-mode Wigner function is use- (7) (7)

ful to test quantum nonlocality of the given field so that, in (12

,7=0],
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FIG. 1. The time evolution of the maximal valyiB| .« of the
Bell function versus the dimensionless timgr)=/1—exp(—y7)
which is 0 at7=0 and 1 atr=«. The initial degree of squeezing
s=0.3 and the average photon numimeof the thermal environ-
ment isn=0 (solid line), n=0.5 (dotted ling, andn=2 (dashed
line). The largem, the more rapidly the nonlocality is lost. B]

max

where the parametens(7)=+1—e 7" and t(r)=+e "".
WH(¢) is the Wigner function for the thermal state of aver-
age thermal photon numbat

2
2 2[¢ ) 13

the #\ — _
W= T zm eXp( 1+2n)
FIG. 2. The time evolution of |B|n. Versus r(7)

]I:’er{ﬁrmlntg me mteg(rjatlon in E(ﬁ;.Z)i tthe W'?r.]er furlﬁtlotr;] = /1—exp(- y7) when the squeezed state is prepared with the ini-
or the initial two-mode squeezed state evolving In the thery,, degree of squeezirg= 0.1 (solid line), s= 0.5 (dotted ling, and

mal environment is obtained as s=1.0(dashed ling The two-mode squeezed state is coupled with
then=0 vacuum(a) and then=1 thermal environmen). In the
W,(a,B8,7) =N exd —E(7)(|a|?+]|8|?) vacuum, the larger the degree of squeezing, the more rapidly the
% ok nonlocality is lost. In then=1 thermal environment, we find that
+F(7)(af+a” )] 149 the nonlocality persists longer when the squeezingri.5.
where 4 2
= _ 241812y
5 5 Wab(aaﬁ) ,n_Z(l_’_mZeXF( (1+2ﬁ)(|a| |B| )
2r(7)%(1+2n)+2t(7)° coshx (16)
E(r)= o505 ,
This is the direct product of two thermal states in modes
. ndb.
( 2t(7)? sinh 25 andb
T)— ’
D(7) IV. EVOLUTION OF QUANTUM NONLOCALITY

D(7) =t(r)*+2 2t(12(142 ha Substituting Eq(14) into Eq.(7), we find the evolution of
(n=t(n "m0 njcos nonlocality for the initial two-mode squeezed state in a ther-

+r(n%1+2n)?, (15  mal environment. The Bell functioB at time 7 is given by

TN

and Vis the normalization factor. In the limit =0, the  B(4,8,7)= ——exp{1+exd —E(7)|al?]
af cross term vanishes and the state can be represented by 4

the direct product of each mode state such that 2 2 2

; . + - - - +
Wap(a,B,7) =W,(a, ) Wy(B,7). It is obvious that the exil ~ B(n)| A1) —exi ~B(n)(|al"+] 5%
Wigner function (14) exhibits local characteristics in this +2F(7)|aB|cosb]}, (17)
limit.

The system will eventually assimilate with the environ- where 6, and 6, are the phases ok and g and 6=14,
ment. This can be seen in the Wigner function, at the limit of+ 65. When co®)=—1, the Bell functionBy(|«a/,|8],7) is
described by the absolute valle$and|g|. B,, is symmetric

T— 0,
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in exchanging @ and B such that B,(|«|,|8],7) speed of destruction depends on the distance between the
=B.(|8l,|a|,7). Itis straightforward to show th&<B,,at  coherent component states and the average thermal energy of
any instant of timer. In order to find the evolution of the the environmenf23]. This is the reason why a macroscopic
nonlocality, the maximal valufB| . of the Bell functionB  quantum superposition state is not easily seen in nature. In
is calculated by the steepest descent mefldd and using the continuous superpositiq8) we find that as the degree
the properties oB,(|«|,| 8], 7). We say the field is quantum- of squeezing is larger, the superposition extends further, so
mechanically nonlocal a$B| .y iS larger than 2 and the that the quantum interference can be destroyed more easily.
nonlocality is stronger a$B| .« gets larger. Quantum nonlocality in a two-mode squeezed state also

The initial two-mode squeezed state is always nonlocal agriginates from quantum interference between the coherent
[B|max>2 for s>0. |B|max increases monotonically as the component states, which can be destroyed easily as the con-
degrees of squeezing increases. The state becomes maxiribution of the large-amplitude coherent state becomes im-
mally nonlocal with|B|p.x~2.19055 ass—« [15]. At an  portant.
intermediate time & r<, the pure squeezed state evolves In fact, the uncertainty increases to its maximum and then
to a two-mode mixed squeezed state and nonlocality is lost glecreases to the value of the environment when a single-
a certain time of evolution. Figures 1 and 2 shfB],., Mode squeezed state is influenced by a thermal environment
versus the dimensionless timér) defined in Eq(12). We  [24]. The uncertainty increases faster as the degree of
find that the nonlocality initially prepared persists until a squeezing is larger. This can be explained using the same
characteristic timer¢(s,n) depending on the temperature of argument as the loss of quantum nonlocality.
the thermal environment and the initial squeezing. In Fig. 1it In Fig. 2@), when the environment is the vacuum, it is
is found that, when the environment is the vacuyBl,,  found that the characteristic timg(s,n) to lose the quan-
decreases as time proceeds. After reaching a minimum valué&im nonlocality is shorter as the initial degree of squeezing is
|B| max inCreases to 2, which is the value [, for the  larger. In Fig. 2b), with a nonzero temperature thermal en-
vacuum. Even though it is not clearly seen in the figure dug/ironment fi#0), we find that a larger degree of squeezing
to the scale, for anyn#0 thermal environmeniB|., in-  does not necessarily result in a shorter characteristic time
creases to its value for the thermal field after decreasing to &(s,n). This clearly shows that the characteristic time is a
minimum. In Fig. 1, af gets largel B| ., decreases much function of the average number of thermal photons as well as
faster and further. the degree of squeezing. However, it is still true &t .

In Fig. 2, we identify an interesting phenomenon: thedecreases fastéthe slope of its curve is steepewhens s
larger the initial degree of squeezing the more rapjBly,,,  larger. It is also found thaB| . decreases faster for+0
decreases. We analyze the reason YBiy,., decreases more than forn=0.
rapidly for larger initial squeezing as follows. We have studied the dynamic behavior of nonlocality for

The two-mode squeezed sta® can be represented by a two-mode squeezed state in a thermal environment. A two-
the continuous superposition of two-mode coherent s{aes mode squeezed state can be used for the quantum channel in

similar analysis has been done for a single-mode squeezéantum teleportation of a continuous-variable state. The
state[22]), two-mode squeezed state is found to be a nonlocal state re-

gardless of its degree of squeezing, and a higher degree of
squeezing brings about a larger quantum nonlocality. As the
squeezed state is influenced by the thermal environment, the
nonlocality is lost. The rapidity of the loss of nonlocality

where the Gaussian weight function depends on the initial degree of squeezing and on the aver-
age thermal energy of the environment. The more strongly

|‘I’ab(0)>=f dzaG(a,O')|a,a*ei‘P>, (18

G(a,a)=(7rsinhs)‘1ex;{— Lanhs la)?]. (19 the initia_l field is squeeze_d, the more rapidly the maxi_mum
tanhs nonlocality decreases. This has been analyzed extensively.
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