
Quantum Information
Processing with Non-classical

Light

A dissertation submitted to Queen’s University, Belfast

for the degree of Doctor of Philosophy

by

Hyunseok Jeong, M.S., B.S.

School of Mathematics and Physics

Queen’s University, Belfast

November 16, 2003



Dedicated to my parents.



Abstract

The main purpose of this dissertation is to suggest and investigate various
schemes for quantum information processing utilising non-classical light. We
define a qubit basis with coherent states and develop quantum information
processing schemes based on it. Teleportation via a mixed entangled coher-
ent state was investigated with Bell-state measurement using linear optical
elements. Universal quantum computation with coherent states is suggested
based on the teleportation and Bell-measurement schemes. Proposals for en-
tanglement concentration of pure entangled coherent states and purification of
mixed entangled coherent states are found to distil highly entangled coherent
states even in a noisy environment. We briefly discuss how to generate cat states
which are used as qubits in our suggestions. A scheme to simulate quantum
random walks with classical fields is suggested using linear optical devices. The
majority of quantum information applications have been developed based on
simple two-dimensional systems while continuous-variable states are useful in
optical experiments. Our suggestions try to bridge this gap and bring quantum
information applications closer to experimental realisations in optical systems.
Our approach has merits particularly in simplicity compared with others for
practical implementations of quantum information processing.

The dissertation is also dedicated to studies on quantum entanglement,
quantum nonlocality and decoherence for various quantum states. We inves-
tigate entangled coherent states in the framework of 2 × 2 Hilbert space. It
is found that the quantum nonlocality of an entangled coherent state persists
longer when considered in 2×2 Hilbert space. When it decoheres it is found that
the entangled coherent state fails the nonlocality test, which contrasts with the
fact that the decohered entangled state is always entangled. Previous studies on
quantum non-locality for continuous variables based on dichotomic observables
are re-examined. It is shown that it does not have to be a maximally entangled
state to give the maximal violation of the Bell’s inequality. This is attributed to
a generic problem of testing the quantum non-locality of an infinite-dimensional
state using a dichotomic observable.
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Chapter 1

Introduction

The tremendous progress in the understanding of nature in the last century

owes much to the epoch-making success of quantum mechanics. Despite its in-

credible success in understanding the microscopic world and predicting exper-

imental results, quantum mechanics has puzzled scientists because it requires

a revolutionary change of their viewpoint on nature. In quantum mechanics,

a quantum system experiences two completely distinguished processes. One is

unitary evolution (U) which is a deterministic process, and the other is reduc-

tion of the state vector (R) which is a probabilistic process. It is assumed that

a closed quantum system always undergoes U processes, and R processes oc-

cur only when measurements by an observer are applied. During U processes,

the quantum system can be in a superposition of possible measured-out states

and the interference between the superposed states makes various non-classical

phenomena. This picture of nature including the intrinsic probability involved

with measurements seemed unsatisfactory to some of the pioneers of quantum

mechanics. Einstein, as one of those, expressed this dissatisfaction saying ‘God

does not play dice’. Schrödinger’s cat paradox is an illustration of how strange

this picture is: If the postulates of quantum mechanics are applied to macro-

scopic systems, there must exist, for example, a linear superposition of dead

cat and alive cat states. Another example of the oddness of quantum mechan-

ics is nonlocal correlation or quantum entanglement between distant physical

systems. Einstein, Podolsky, and Rosen argued that quantum mechanics is an

incomplete theory because it contradicts the idea of local reality, which is called

EPR paradox [1]. Bell suggested an inequality which enables experimental tests

on this paradox [2]. Ironically, it is not completeness of quantum mechanics but
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the idea of local reality that has been abandoned among scientists.

Nowadays, another remarkable innovation in science and technology is on

the move based on quantum mechanics. The recent development of quantum in-

formation theory has brought about advances in the fundamental understanding

of quantum mechanics and the possibility of wide applications for future tech-

nology. The promise of new technologies like quantum computation [3, 4, 5, 6],

quantum teleportation [7, 8, 9], and quantum cryptography [10, 11] has at-

tracted considerable attention not only among physicists but also among the

public audience. The inventors of quantum mechanics could not have dreamed,

for example, that the characteristics of U and R processes of quantum mechan-

ics or entanglement of the EPR state can be useful for factoring large integers or

secure key distribution. Furthermore, quantum information theory has led to a

deeper understanding of quantum mechanics itself. For example, fundamental

features of quantum mechanics have been intensively reconsidered in terms of

quantum entanglement. It is an important subject in quantum information the-

ory how to define, quantify and utilise quantum entanglement, which is not only

a crucial nature of quantum mechanics but also a useful resource for quantum

information processing. There has been great progress on understanding and

manipulating quantum entanglement in recent years.

Quantum information technologies are expected to overcome limitations

of classical information technologies. The idea of quantum computing originated

in the fact that computers are physical systems and computation processes are

physical processes (See Fig. 1.1). The doubling of the number of transistors

per integrated circuit every couple of years has been maintained for more than

30 years, as was predicted by Moore [12]. Even though it has recently been

slowed down and shown some sign of saturation, at some point, it will be un-

avoidable to apply the law of quantum mechanics to information processing

in computation. Feynman firstly observed, in the 1980’s, that certain quantum

mechanical effects cannot be simulated efficiently on a classical computer [3]. In

1990’s, it has been found that the quantum parallelism based on the character-

istics of U processes enables faster computation in problems like factoring large

integers [4] and database search [5]. It is worth noting that quantum mechan-

ics enables reversible gate operations in computation without heat dissipation

because of the reversibility of U processes. This can be a remarkable advan-
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tage to implement physical computation on such a small scale. Communication

and cryptography technologies have also been explored based on quantum me-

chanics. Quantum key distribution can allow for secure communication, which

can never be performed by a classical way. The nonlocal property of quan-

tum mechanics enables a striking phenomenon called quantum teleportation.

By quantum teleportation, an unknown quantum state is disintegrated in a

sending place and its perfect replica appears at a distant place. Teleportation

is not only a demonstration of quantum mechanics but also a useful tool for

quantum computation and communication. High precision measurement and

lithography utilising quantum entanglement have been studied to increase the

resolution limit beyond the standard uncertainty limit. It is quantum coherence

that plays the crucial role in all the quantum information technologies discussed

above.

In spite of the striking developments in this field over the past 10 years,

there is still a long way to go before the realisation of quantum information

processing for practical use. For quantum computation, researchers must find

a scalable physical qubit system, universal set of gate operations, and qubit

initialisation/readout methods. Furthermore, unavoidable errors occur due to

decoherence and imperfect operations during quantum computation processes:

Quantum error correcting methods [14, 15] are necessary for an implementa-

tion of a reliable quantum computer. There are several different approaches

to the implementation of a quantum computer. Nuclear magnetic resonance

(NMR), ion trap, neutral atom, optical and solid state systems have been stud-

ied as such candidates with their own particular strengths. So far, the most

advanced demonstrations of quantum computing have not gone beyond ma-

nipulating more than 7 qubits, which means they are still at the basic stage.

In 1998, Chuang et al. reported a two-qubit realisation of a simple quantum

algorithm (Deutsch-Jozsa algorithm), achieved using the bulk NMR technique

[16]. In the same year and the following year, there were several similar exper-

imental demonstrations; for example, Jones and Mosca created a liquid-based

two-qubit device, where the two qubits were stored in the nuclear spins of hy-

drogen atoms [17]. Most recently, Vandersypen et al. developed a seven-qubit

device using NMR to demonstrate Shor’s factoring algorithm in 2001 [18]. Now

in 2003, there are optimistic researchers like Stoneham who believes that he

can make a viable desktop quantum computer based on the silicon approach
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by 2010 [19]. Long-distance quantum entanglement is the key ingredient for

quantum cryptography and communication. Over the past 20 years, many op-

tical experiments have demonstrated nonlocal effects in the laboratory [20, 21]

and more recently over ranges of up to 10 km in optical fibres [22]. Most re-

cently, Aspelmeyer et al. showed that entanglement of the photon polarisation

can be maintained in free space over a separation of 600 metres [23]. Quan-

tum cryptography is known as one of the most promising quantum information

applications for successful commercialisation in the near future. Even though

limitations of real physical devices and the inclusion of noise sources may be

obstacles, remarkable experimental progress has been made since the original

quantum cryptography experiment over 32 centimetre was performed [24]. In

2003, Shields et al. were able to demonstrate quantum cryptography over op-

tical fibres longer than 100 kilometres [25], which should be enough to cover a

large metropolitan area. According to some media coverage, it is expected that

we will see commercial quantum cryptography products in the marketplace in

no more than a couple of years1. There are lots of challenging problems in this

rapidly developing field.

In this dissertation, we address quantum information theory and quan-

tum information processing via continuous variables in optical systems. Quan-

tum optics is a young field which has been developed based on quantum theory

of light and there have been endeavours to apply the knowledge of quantum op-

tics to quantum information processing. Optical systems have some remarkable

advantages as a candidate for the implementation of quantum computation [26].

For example, most of the operations may be performed at room temperature,

and coherence time of photons is long compared with operation time typically

required. In particular, we investigate quantum information processing utilis-

ing optical coherent states. In our framework, quantum computation, quantum

teleportation and entanglement purification are developed using coherent states

and their superposition and entanglement. The single-photon based approach

and continuous-variable approach based on Gaussian states have been stud-

ied for various quantum information processing applications. Recently, Knill

et al. showed that universal gate operations for quantum computation can

be implemented using only linear devices [27]. Gaussian continuous-variable

states have been studied particularly for quantum cryptography [28, 29, 30]

1A. Shields, BBC news, 5 June 2003.
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and teleportation [31, 32]. Our approach is different from those two approaches

and has its own particular merits when compared to the others. In the single-

photon approach, the requirement for resources becomes very demanding for

near-deterministic quantum computation and nonlinear effect is required for

a complete Bell-state measurement. The majority of quantum information

applications have been developed based on simple two-dimensional systems,

which cannot be directly applied to continuous-variable states. In our ap-

proach, we deal with superposition and entanglement of coherent states, which

are non-Gaussian continuous-variable states, in the framework of simple two-

dimensional systems. In this framework, Bell state measurements are simply

performed using linear optical devices so that simpler schemes can be con-

structed for quantum teleportation and quantum computation. This approach

may be powerful with pre-arranged propagating optical coherent superposition

states (so called cat states). However, it should be noted that the generation

of an optical cat state requires a strong nonlinear interaction, which is very

demanding in current technology. We therefore develop a scheme to gener-

ate a coherent superposition state with a relatively small nonlinear effect and

conditional measurements. Besides the applications for quantum information

processing, we study nonlocal properties of continuous variable states which are

used for quantum information processing, which provides deeper understanding

of Gaussian and non-Gaussian continuous-variable states.

The dissertation is organised as follows. Chapter 2 contains an introduc-

tion to basic concepts of quantum information theory and frameworks of our

work for the development of quantum information processing schemes in this

dissertation. The entangled coherent states and Bell measurement scheme with

linear optical devices are introduced. Nonlocality of continuous-variable states,

which are used as quantum channels for our approach, is studied in Chapters

3, 4 and 5. We investigate the dynamic behaviour of quantum nonlocality for

continuous-variable states and find out some interesting phenomena. Chapters

6 to 9 are devoted to the implementation of quantum information processing.

Quantum teleportation, computation and entanglement purification schemes

are investigated. A coherent state qubit is found to be a strong candidate for

quantum information applications. Quantum random walks with all-optical de-

vices are addressed in Chapter 10. We show that quantum random walks can

be simulated with classical light and linear optical devices. In Chapter 11, we
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Figure 1.2: An outline of the dissertation.

study the generation of cat states, which is a crucial requirement for most of

our schemes. We conclude with some final remarks and prospects in Chapter

12. It is assumed that readers of this dissertation have basic knowledge and

experience of quantum mechanics and quantum optics.
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Chapter 2

Basic Concepts and Frameworks

2.1 Qubit

The basic unit of classical information is the ‘bit’. A bit can take either 0 or 1

for its value and contains the smallest amount of information. A classical bit

can be realised in a simple physical system. For example, one can imagine an

electric signal which is either ‘on’ or ‘off’. Classical information processing is

concerned with how to encode, decode, store, transmit, and protect classical

information which can be expressed by bits, in efficient ways. Shannon, in his

pioneering work, dealt with how to compress and reliably transmit classical

information [33].

Quantum mechanics introduces two crucial tools to describe nature: ob-

servables and state vectors. In quantum mechanics, there exists a Hermitian

operator, called observable, for every measurable quantity and the state of a

physical system is represented by a state vector defined in a Hilbert space. Dif-

ferently from classical physics, quantum physics allows a linear superposition

(or linear combination) of two different states. It should be noted that there is

no classical analogy of a linear superposition state. Such a state must be distin-

guished from a case of a statistical mixture of two different states or any other

classical situation. Let us consider a quantum particle labelled A and suppose

that |x1〉 represents the state of the particle being around the position x1 and

|x2〉 the state of its being around x2
1. One of the possible linear superposition

1For example, we can suppose two potential wells separated each other as depicted in
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2.1 Qubit

states where particle A can be is

1√
2
(|x1〉+ eiϕ|x2〉), (2.1)

where the overall 1/
√

2 factor is for the normalisation of the total probability

and ϕ is the local phase factor. Once we measure the position of particle A to

find out where it ‘really’ is, the state (2.1) will collapse and particle A will be

found either around x1 or around x2 with the equal probability 1/2. One of

the remarkable features of the superposition state (2.1) is that the interference

between the states |x1〉 and |x2〉 can affect the probability distribution of the po-

sition measurement on the state (2.1). The interference pattern varies according

to the value of ϕ. Eq. (2.1) does not mean that particle A is either around x1 or

around x2 and their probabilities are equal (a case of the statistical mixture2),

nor that particle A is somewhere between x1 and x2. It is also dangerous to say

that particle A is both around x1 and around x2 at the same time, i.e., it is

spread, because no one can verify it by any type of direct measurement. There

have been number of paradoxical examples to demonstrate the strangeness of

this ‘principle of linear superposition’. Schrödinger’s cat paradox shows how

odd the quantum mechanical description of nature could be when it is applied

to macroscopic physical systems. The gedanken experiment of a double slit

explains the interference effect of a single quantum particle in a superposition

state [34]. Hardy’s paradox illustrates how a quantum superposition produces a

nonsensical result when it is involved with the interaction between matter and

anti-matter [35]. All these examples show how a quantum superposition of two

states, say |A〉 and |B〉, can give the ‘third’ experimental result by quantum

interference that can never be obtained from |A〉, |B〉 nor a classical mixture of

|A〉 and |B〉. These effects (for example, the interference fringe in the double

slit gedanken experiment) disappear when any measurement is performed to

trace the trajectory of the quantum phenomenon. There are still controversies

over the origin of this oddity [36, 37] including some inspiring experimental en-

Fig 2.1. To be precise, the component states |x1〉 and |x2〉 should not be position eigenstates
but be ‘moderately’ localised states like Gaussian wave packets. While a classical particle
should be in one or the other well, a quantum particle can be in a superposition state of the
two states until a measurement is performed to find out its position.

2A state corresponding to a statistically mixed state of |x1〉 and |x2〉 with equal probabil-
ities should be represented by a density operator N(|x1〉〈x1|+ |x2〉〈x2|), where the normali-
sation factor N is determined by the overlap between |x1〉 and |x2〉.
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2.1 Qubit

x2

x1

x2x1 2+( )

(a)

(b)

(c)

Figure 2.1: A schematic of a linear superposition of two Gaussian wave packets
in a double potential well. A classical particle should be in one of the two po-
tential wells at a certain point, but a quantum particle can be in a superposition
of two different states like (c).

deavours to close these controversies [38, 39]. However, it is beyond the scope of

this dissertation to discuss the debates around these problems in further detail.

This crucial principle of quantum physics forces one to introduce a new

concept of the bit for quantum information. A quantum bit (qubit), the basic

element for quantum information, is defined as an arbitrary superposition of

the two truth value states, one for logical 0 and the other for logical 1. As we

have already mentioned, it represents neither a case of a statistical mixture of 0

and 1 nor a value between those two. The qubit is defined in a two-dimensional

Hilbert space H spanned by orthonormal basis vectors:

{|0L〉, |1L〉}. (2.2)
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2.1 Qubit

1L

0L

1L0L +a b

0

Classical Bit

1

Quantum Bit

Figure 2.2: A schematic of classical and quantum bits. While a classical bit
should occupy one of the two poles corresponding to 0 and 1, a quantum bit
can be on any point of the Bloch sphere for it can be in various superposition
states. In general, a qubit can be placed inside the sphere as it can be in a
mixed state.

Then, a qubit state |ψ〉 is

|ψ〉 = a|0L〉+ b|1L〉, (2.3)

which is a linear superposition of the two basis states with arbitrary complex

numbers a and b. The normalisation condition, |a|2 + |b|2 = 1, should be

met for a and b since |a|2 (|b|2) corresponds to the probability that the qubit

is measured as |0L〉 (|1L〉). Note that the computational basis states can be

arbitrarily chosen. For example, (|0L〉+ |1L〉)/
√

2 and (|0L〉 − |1L〉)/
√

2 can be

another orthonormal basis set. The most general form of a density matrix for

a qubit is

ρqubit =
1

2
(11 + ~r · ~σ), (2.4)

where ~r is a real vector and ~σ is the Pauli operator. The positivity condition of

the density operator, 〈ρqubit〉 ≥ 0, imposes an inequality |~r| ≤ 1. Then, a qubit

is represented by ~r in an imaginary ball with a unit radius as shown in Fig. 2.2.

This ball is called Bloch sphere. If a qubit is in a pure state, the corresponding
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2.1 Qubit

point will always be on the sphere.

One may naturally wonder if he or she can get more information from

a qubit than from a classical bit as a qubit can exist as an infinite number of

different superpositions. Actually, no more information can be gained from a

qubit because the qubit readout is a quantum mechanical measurement process.

Quantum mechanics does not allow one to measure a quantum state without

disturbing it. Therefore, in general, a qubit cannot be read without disturbance

while a classical bit can: A readout process for a qubit |ψ〉 will make the qubit

state reduced to |0L〉 or |1L〉. For the same reason, an unknown qubit cannot

be perfectly cloned, which is known as the no cloning theorem [40].

The quantum determinism postulate states that a pure quantum state

evolves into a pure state in a perfectly reproducible3 environment [41]. In the

case of a reproducible environment, the dynamic evolution of a quantum sys-

tem |Ψ〉 is governed by a unitary evolution U as |Ψ〉 → U |Ψ〉. However, the

quantum determinism postulate assumes a situation without entanglement be-

tween the system and its environment due to their interactions. If we consider

the environment a macroscopic quantum system and trace the system under

consideration only, the system will somehow evolve into a mixed state by these

interactions. (Note that the total system including the environment will still be

in a pure state regardless of the interactions.) Zurek explained the appearance

of a classical world from the quantum mechanical laws in terms of interactions of

the system with its environment [42]. In the matrix representation of the quan-

tum system, the off-diagonal terms get smaller by these interactions until the

density matrix becomes diagonal. For the case of a qubit, it will cause the loss

of information of the local phase. This process, called decoherence, is more con-

spicuous when the scale of the quantum system is macroscopic. Zurek showed

that the decoherence time for a typical macroscopic system may be as short as

10−23s [42]. This provides a persuasive argument of why we do not experience

typical quantum effects in a macroscopic world. The Schrödinger’s cat paradox

3When an environment is not controllable and thus it is not reproducible, the dynamic
evolution is described with respective probabilities pn’s as

|Ψ〉〈Ψ| →
∑

n

pnUn|Ψ〉〈Ψ|U †
n. (2.5)

In general, the resulting state in Eq. (2.5) is a mixed state, i.e., it can no longer be represented
by a state vector but by a density matrix.
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ψ

ψ ψ

ρ
Environment

(b)

(a)

U

Figure 2.3: A schematic of (a) a deterministic evolution of a quantum system
under the quantum determinism postulate and (b) a decoherence process in
an environment. As a result of interactions with its environment, a quantum
system loses its coherence and becomes a mixed state.

is argued away on this line. The decoherence effect has been pointed out to

be the most formidable obstacle to efficient quantum information processing.

Unfortunately, it is impossible to perfectly isolate a quantum system from its

environment. Quantum error correcting codes [14, 15] and entanglement purifi-

cation protocols [15, 43, 44] have been studied to overcome decoherence effects

on qubits and entangled quantum channels for quantum information processing.

There have been several suggestions to realise qubits for quantum infor-

mation processing in physical systems like atomic, optical and condensed matter

systems. In principle, any two-dimensional quantum system can be considered

a qubit system. A spin-1/2 particle, a two-level atom, and a photon polarisation

state are typical examples: One can assume that a photon carries single-qubit

information in its polarisation degree of freedom. However, it is another story

to find out suitable qubit systems for quantum information processing, which

should be initialisable, controllable, scalable, and readable with a long coherence

time.
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2.2 Quantum entanglement

Optical qubits have some remarkable advantages as a candidate for the

implementation of quantum information processing. For example, most of the

operations may be performed at room temperature, and the coherence time of

photons is long compared with the operation time typically required. Photons

are especially suited for quantum communication as they travel at the speed

of light and mostly immune from the effects of decoherence. Recent studies on

quantum computation using linear optics have opened the possibilities for an

implementation of an optical quantum computer [27].

2.2 Quantum entanglement

Quantum entanglement is one of the most profound features of quantum me-

chanics. It was first introduced by Schrödinger as follows [45]:

“When two systems, of which we know the states by their respective rep-

resentatives, enter into temporary physical interaction due to known forces be-

tween them, and when after a time of mutual influence the systems separate

again, then they can no longer be described in the same way as before, viz. by

endowing each of them with a representative of its own. I would not call that

one but rather the characteristic trait of quantum mechanics, the one that en-

forces its entire departure from classical lines of thought. By the interaction the

two representatives have become entangled.”

Recently, the quantum paradoxes discussed in the previous Section have

been revisited and attributed to entanglement of physical systems [37, 38] rather

than the traditional explanation based on Heisenberg’s uncertainty principle.

As was explained by Schrödinger, entangled states may arise as a result of

interactions between quantum systems such as when a pair of particles are

created simultaneously under the requirement that some attribute like total

spin or momentum be conserved. At the same time, an entangled state easily

loses its entanglement as it interacts with an environment. Entanglement plays

a crucial role as resource in quantum information processing including quantum

teleportation [7, 8, 9], quantum cryptography [11], and quantum computation

[6].
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Figure 2.4: How do two physical systems get entangled and disentangled? (a)
There are two separated physical systems A and B which are not entangled.
(b) A and B interact with each other. (c) A and B become entangled. (d) A
and B interact with the environment C and lose their entanglement.

Suppose a two-mode state defined in a Hilbert space H1 ⊗H2

|ΨB
−〉12 =

1√
2
(|0L〉1|1L〉2 − |1L〉1|0L〉2). (2.6)

One can simply recognise that this state cannot be represented as a direct

product of any two states |ψ〉1 and |ψ′〉2. In general, we say that a quantum

state |Ψ〉12 is entangled in H1 ⊗ H2 when it cannot be represented as a direct

product of two arbitrary states as

|Ψ〉12 = |ψ〉1|ψ′〉2, (2.7)
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2.2 Quantum entanglement

where |ψ〉1 (|ψ′〉2) is a state vector defined in H1 (H2). This definition can be

generalised to mixed states: Any state ρ12 is entangled (or inseparable) when

it cannot be written in a convex combination4 of direct products of density

operators ρAr1 and ρBr2 as

ρ12 =
∑

r

prρ
A
r1 ⊗ ρBr2. (2.8)

Maximally entangled pure states are ideal as quantum channels for quan-

tum information processing. For example, if a quantum channel for teleporta-

tion is not maximally entangled, the fidelity of teleportation will be lower than

unity, the perfect one. It is generally very demanding to generate highly entan-

gled quantum states. However, protocols have been developed to distil maxi-

mally or highly entangled states from non-maximally or lowly entangled ones

using only local operations and classical communications [15]. These schemes,

called entanglement purification (or distillation), will be studied in Chapter 9.

There have been many discussions and studies on how to define and

quantify quantum entanglement. In general, quantum entanglement of a high-

dimensional quantum state is not a tractable subject. For a bipartite state,

the Peres-Horodecki criterion is a well known and useful sufficient condition for

entanglement: A density matrix ρ is inseparable if its partial transpose5 ρT2 has

any negative eigenvalue(s) [46]. It has been shown that the Peres-Horodecki

criterion is a necessary and sufficient condition for 2⊗ 2 and 2⊗ 3 systems [46].

For higher dimensional cases, it is no longer a necessary condition since there

are entangled states for which their partial transposes are positive [47, 48].

A measure of entanglement E(ρ) for a state ρ should satisfy the following

conditions [49]: First, E(ρ) = 0 if and only if ρ is separable. Second, E(ρ) is

invariant under local unitary operations. Third, the expected entanglement

cannot increase by local measurements and classical communications. For a

pure state |ψ〉12, the degree of entanglement can be defined by von Neumann

entropy of the partial density operator as

E(|ψ〉12) = −Trρ1 ln ρ1 = −Trρ2 ln ρ2 (2.9)

4If
∑

r
pr = 1 and 0 ≤ pr ≤ 1 for each pr, ρ12 is called a convex combination of ρA

r1
⊗ ρB

r2
.

5The partial transpose ρT2 of the density matrix ρ is specified as 〈ij|ρT2 |kl〉 = 〈il|ρ|kj〉.
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2.2 Quantum entanglement

where ρ1 and ρ2 are partial density operators of the density operator ρ12 =

|ψ〉12〈ψ|. We can find that the state (2.6) is maximally entangled which has

1 ebit of entanglement. For a mixed state, the degree of entanglement are

defined in a few different ways. The entanglement of formation is intended to

quantify the amount of quantum communication required to a given state. The

entanglement of formation EF is defined as [15]

EF (ρ) = min
[∑

i

piE(|ψi〉)|ρ =
∑

i

pi|ψi〉〈ψi|
]
, (2.10)

which is the least expected entanglement of any ensemble of pure states. The

calculation of entanglement of formation is nontrivial for most cases. It becomes

numerically intractable very rapidly as the dimensions of the Hilbert spaces in-

crease. Analytical expressions of the entanglement of formation exist for a 2×2

system [50] and highly symmetrical states [51, 52]. The entanglement of distilla-

tion is defined based upon the entanglement distillation protocol [15]. Suppose

that two parties share N pairs of qubits such that each pair is nonmaximally

entangled but an identical mixed state ρ. Entanglement distillation protocols

enable us to obtain M(< N) maximally entangled states using only local oper-

ations and classical communications [15]. In the limit N → ∞, the fidelity of

the singlets (maximally entangled states) approaches 1 and the fraction M/N a

fixed limit, called the asymptotic yield. Entanglement of distillation ED is the

maximum asymptotic yield of singlet states that can be produced from the given

mixed state by local operation and classical communication. The distillable en-

tanglement is important in terms of quantum information processing because

maximally entangled states are preferred for quantum channels. Note that ED

is the maximal number of singlets that can be produced by local operations and

classical communication while EF corresponds to the minimal number under

the same condition [53]. Horodecki et al. showed that any ensemble entangle-

ment measure E suitable for the regime of high number of identically prepared

entangled pairs satisfies ED ≤ E ≤ EF [53].

The entanglement of relative entropy ER(ρ) is defined by [49]

ER(ρ) = min
ρ′∈D

S(ρ||ρ′) (2.11)

where D denotes the set of unentangled mixed states and S(ρ||ρ′) = Trρ[ln ρ−
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2.2 Quantum entanglement

ln ρ′] is the quantum relative entropy. The quantum relative entropy S(ρ||ρ′)
tells us how difficult it is to distinguish the states ρ and ρ′. Negative eigenvalues

of the partial trace of the density matrix are also used for quantification of

entanglement [46, 54]. According to the Peres-Horodecki condition, a density

matrix ρ is inseparable if ρT2 has any negative eigenvalue(s) [46] and the measure

of entanglement EN for ρ in terms of the negative eigenvalues of ρT2 [54]

EN (ρ) = −2
∑

i

λ−i (2.12)

where λ−i are the negative eigenvalue(s) of ρT2 and the factor 2 is introduced to

have 0 ≤ EN (ρ) ≤ 1. Werner et al. introduced a more computable measure of

entanglement, the negativity N (ρ) defined as [55]

N (ρ) ≡ ‖ρ
T2‖1 − 1

2
, (2.13)

which corresponds to the absolute value of the sum of negative eigenvalues of

ρT2 . The negativity N (ρ) measures by how much ρT2 fails to be positive definite.

For continuous-variable states, entanglement criteria for Gaussian states have

been found [56, 57, 58] based on the Peres-Horodecki criterion. Recently, Giedke

et al. calculated the entanglement of formation for symmetric Gaussian states

[59]. All the entanglement measures mentioned above are reduced to the von

Neumann entropy of entanglement for pure states.

It is another important problem how to experimentally detect entangle-

ment of a quantum state in a laboratory. An experimental detection of entan-

glement was first addressed for pure states [60]. Procedures based on the use of

collective measurements were proposed by Horodecki and Ekert [61]. A general

method to detect entanglement with few local measurements was presented and

optimal schemes were designed for two-dimensional systems, bound entangled

states and entangled states of three qubits [62]. A protocol for this purpose has

been found for Gaussian continuous-variable states [63] .
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2.3 Coherent state

2.3 Coherent state

A coherent state can be defined as [64]

|α〉 = e−|α|2/2
∞∑

n=0

αn√
n!
|n〉, (2.14)

where |n〉 is a number state and α = αr + iαi is6 a complex number. The

coherent state has a few notable characteristics. Firstly, it is the eigenstate of

an annihilation operator a with its eigenvalue α:

a|α〉 = α|α〉. (2.15)

The coherent states form an overcomplete set in the infinite dimensional Hilbert

space:
1

π

∫ ∞

−∞
d2α|α〉〈α| = 11 (2.16)

where 11 is the identity operator and d2α = dαrdαi. Therefore, any state can

be represented by a combination of coherent states. The coherent state is a

minimum uncertainty state and has the same quadrature variance about any

direction in the phase space:

∆X∆P = 1, ∆X = ∆P (2.17)

where X̂ = (a + a†), P̂ = (a − a†)/i, (∆X)2 = 〈X̂2〉 − 〈X̂〉2 and (∆P )2 =

〈P̂ 2〉− 〈P̂ 〉2. The coherent state is a quantum mechanical analogy of a classical

particle in the phase space. A classical particle is represented as a point in the

phase space of the position and momentum variables. In quantum mechanics,

this is prohibited by the uncertainty principle. The uncertainty relation for

the two quadrature variables of light is ∆X∆P ≥ 1. The coherent state is

the minimum point-like state in the quantum phase space. The coherent state

is a very useful tool in quantum optics and a laser field is considered a good

approximation of it.

There have been controversies on laser fields as resource of quantum infor-

6Here, αr is the real part of α and αi is the imaginary part of α. This notation will be
used throughout this dissertation.
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2.4 Coherent state qubit

mation processing. Rudolph and Sanders argued that unconditional continuous-

variable teleportation cannot be achieved with conventional laser sources thus

the experiment performed in Ref. [31] cannot be readily considered uncondi-

tional teleportation [65]. Their argument is based on the fact that laser field is

not a real coherent state. In quantum optics, it is often assumed that an ideal

single-mode laser is given by a coherent state. However, it is well known that

the phase φ of the laser field for the amplitude |α|eiφ is completely unknown.

Therefore, a laser field should be represented by a mixed state

ρL =

∫ 2π

0

dφ

2π
||α|eiφ〉〈|α|eiφ| = e−α

2

∞∑

0

α2n

n!
|n〉〈n| (2.18)

which is obviously not a coherent superposition of number states as it is diagonal

in the energy eigenstate (Fock) basis. One cannot say “it is a coherent state even

though its phase is unknown” based on the first decomposition in Eq. (2.18)

because exactly the same statement could be made for a number state based

on the second decomposition. The choice of a basis is simply arbitrary and one

should not misuse any particular decomposition to interpret an experiment in

a preferred way [66]. The same analysis for a two-mode squeezed state makes

it fail to be an entangled state [65]. The argument on the existence of optical

quantum coherence goes way back to Mφlmer’s analysis [67]. He conjectured

that optical coherence does not exist in optics experiments and showed that

quantum optics experiments can be explained without quantum coherence. Van

Enk and Fuchs, on the contrary to Rudolph and Sanders in Ref. [65], claimed

that coherent states play a privileged role in the description of laser light [68].

Wiseman also argued against Rudolph and Sanders in a different way that their

claim is “baseless because true coherence is always illusory as the concept of

absolute time on a scale beyond direct human experience is meaningless” [69].

2.4 Coherent state qubit

We now introduce qubit systems using coherent states. Let us consider two

coherent states |α〉 and | − α〉. The two coherent states are not orthogonal

to each other but their overlap |〈α| − α〉|2 = e−4|α|2 decreases exponentially

with |α|. For example, when |α| is as small as 2, the overlap is ≈ 10−7, i.e.,
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2.4 Coherent state qubit

|〈α| − α〉|2 ≈ 0. We identify the two coherent states of α as basis states for a

logical qubit:

|α〉 → |0L〉, | − α〉 → |1L〉. (2.19)

A qubit state is then represented by

|φ〉 = A|0L〉+ B|1L〉 = A|α〉+ B| − α〉 (2.20)

where the normalisation condition is

1 = 〈φ|φ〉 = |A|2 + |B|2 + (AB∗ +A∗B)〈α| − α〉 ≈ |A|2 + |B|2. (2.21)

A coherent state qubit (2.20) has a couple of remarkable merits. As we will

see, its readout can be easily performed. It is possible to realise non-trivial

Bell-measurements only with linear optical elements. As a coherent state is a

quantum analogy of a classical state (it becomes more classical as α gets larger),

the coherent state qubit (2.20) is considered an example of the realisation of

the Schrödinger’s cat, and it is actually called “Schrödinger’s cat state” or

simply “cat state” in the case of |A| = |B|. It is interesting to explore the

possibility of quantum information processing with macroscopic or mesoscopic

quantum states. However, according to the decoherence theory, macroscopic

quantum states decohere and lose their quantum characteristics faster than

microscopic quantum states. As it was already pointed out in Section 2.1, this

is one of the possible explanations why we cannot perform an experiment to

demonstrate the quantum nature of macroscopic systems like real cats. We

will study its examples in Chapters 3 and 4. Therefore, it is obvious that the

coherent amplitude α for a coherent state qubit should not be too large during

quantum information processing.

It is possible to construct an orthogonal qubit basis with two linear in-

dependent coherent states |α〉 and | − α〉. Consider the basis states

|e〉 = M+(|α〉+ | − α〉)→ |0L〉, (2.22)

|d〉 = M−(|α〉 − | − α〉)→ |1L〉, (2.23)
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2.4 Coherent state qubit

where M+ and M− are normalisation factors

M± =
1√

2(1± exp[−2|α|2])
. (2.24)

It can be simply shown that they form an orthonormal basis as

〈e|d〉 = 〈d|e〉 = 0, (2.25)

〈e|e〉 = 〈d|d〉 = 1. (2.26)

We can then define a 2-dimensional Hilbert space Hα spanned by |e〉 and |d〉.
The even cat state |e〉 contains only even number of photons while the odd cat

state |d〉 contains only odd number of photons as

|e〉 = M+e
− |α|2

2

∞∑

n=0

1 + (−1)nαn√
n!

|n〉 (2.27)

= 2M+e
− |α|2

2

∞∑

n=0

α2n

√
(2n)!

|2n〉, (2.28)

|d〉 = M−e
− |α|2

2

∞∑

n=0

1− (−1)nαn√
n!

|n〉 (2.29)

= 2M−e
− |α|2

2

∞∑

n=0

α(2n+1)

√
(2n+ 1)!

|2n+ 1〉, (2.30)

which means these two states can be discriminated by a photon parity measure-

ment

OΠ =
∞∑

n=0

(|2n〉〈2n| − |2n+ 1〉〈2n+ 1|). (2.31)

The average photon number for |e〉 and |d〉 are

Pe = 〈e|n̂|e〉 = |α|2 1− e−2|α2|

1 + e−2|α2| , (2.32)

Pd = 〈d|n̂|d〉 = |α|2 1 + e−2|α2|

1− e−2|α2| , (2.33)

where n̂ = a†a is the number operator. As α goes to zero, the odd cat state

|d〉 approaches a single photon state |1〉 while the even cat state |e〉 approaches

|0〉. No matter how small α is, there is no possibility that no photon will be

detected from the state |d〉 at an ideal photodetector.
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2.5 Entangled coherent states

We define entangled coherent states [70]

|ECS1〉12 = N ′
ϕ(|β〉1|β〉2 + eiϕ|γ〉1|γ〉2), (2.34)

|ECS2〉12 = Nϕ(|β〉1|γ〉2 + eiϕ|γ〉1|β〉2), (2.35)

where |β〉 and |γ〉 are coherent states with coherent amplitudes β and γ, ϕ is a

relative phase factor, and N ′
ϕ and Nϕ are normalisation factors:

N ′
ϕ =

1√
2 + exp[−|β|2 − |γ|2]

(
exp[iϕ + 2β∗γ] + exp[−iϕ + 2βγ∗]

) , (2.36)

Nϕ =
1√

2 + 2 cosϕ exp |β − γ|2
. (2.37)

The entangled coherent states have been found to be very useful as quantum

channels for quantum information processing. An entangled coherent state can

be generated using coherent light propagating through a nonlinear medium [71]

and a 50-50 beam splitter. Suppose a coherent superposition state

M ′
−(|
√

2α〉 − | −
√

2α〉), (2.38)

where M ′
− is a normalisation factor, is superposed on a vacuum |0〉 by a lossless

50:50 beam. It can be shown that the output state is

|Ψ−〉12 = N−(|α〉1| − α〉2 − | − α〉1|α〉2), (2.39)

where N− is the normalisation factor. A superposition of the two coherent states

|
√

2α〉 and | −
√

2α〉 can be generated from a coherent state |
√

2α〉 propagating

through a nonlinear medium [71]. However, the nonlinear effect is typically very

small to produce a coherent superposition state of the form (2.38). There have

also been proposals to entangle fields in two spatially separated cavities [72].

The entangled coherent state and its usage for quantum teleportation [73, 74,

75], quantum computation [76, 77], and entanglement purification [75, 78] have

all been recently studied. We will investigate, in further detail, how to generate

an optical entangled coherent state in Chapter 11.
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2.5 Entangled coherent states

Let us consider two kinds of entangled coherent states which have sym-

metry in phase space:

|Φϕ〉12 = Nϕ(|α〉1|α〉2 + eiϕ| − α〉1| − α〉2), (2.40)

|Ψϕ〉12 = Nϕ(|α〉1| − α〉2 + eiϕ| − α〉1|α〉2). (2.41)

where Nϕ = {2(1 + cosϕe−4|α|2)}−1/2 is the normalisation factor. It can be ver-

ified that any entangled coherent states in the form of |ECS1〉 and |ECS2〉 can

be converted respectively to |Φϕ〉 or |Ψϕ〉 by applying local unitary operations.

By applying local unitary transformations, any state in the form of |ECS2〉
with arbitrary amplitudes β and γ can be transformed to a form like that of

Eqs. (2.40) and (2.41) and up to a global phase factor. Applying displacement

operators D1(x)D2(x), where x = xr + ixi is complex, the entangled coherent

state |ECS2〉 becomes |Ψϕ〉 up to a global phase φ:

|Ψϕ〉 = e−iφD1(x)D2(x)|ECS2〉12, (2.42)

where x = −1
2
(β+γ), α = β+x = −(γ+x), φ = xiβr−xrβi+xiαr−xrαi, and

the displacement operator is defined as D(x) = exp(xa† + x∗a). It is clear that

Nϕ is the same as Nϕ neglecting the irrelevant global phase. A similar analysis

can be made for |ECS1〉 and |Φϕ〉. Note that |Φϕ〉 and |Ψϕ〉 can be converted

to each other simply by applying phase shifter P̂ (π) on one of the two modes

as

|Ψϕ〉 = P2(π)|Φϕ〉 (2.43)

where P (ϕ′) = ein̂ϕ
′
also is a local unitary operation. We thus can study either

|Φϕ〉 or |Ψϕ〉 without losing generality.

Using the orthogonal basis {|e〉, |d〉}, we can study entangled coherent

states in the 2 × 2-dimensional Hilbert space. Entangled coherent states are

represented in the orthogonal basis as

|Φϕ〉 =
Nϕ

4

{1 + eiϕ

M2
+

|e〉|e〉+ 1 + eiϕ

M2
−
|d〉|d〉+ 1− eiϕ

M+M−
(|e〉|d〉+ |d〉|e〉)

}
, (2.44)

|Ψϕ〉 =
Nϕ

4

{1 + eiϕ

M2
+

|e〉|e〉 − 1 + eiϕ

M2
−
|d〉|d〉 − 1− eiϕ

M+M−
(|e〉|d〉 − |d〉|e〉)

}
. (2.45)
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For ϕ = 0 and ϕ = π, |Φϕ〉 and |Ψϕ〉 can be represented as

|Φϕ=0〉 =
Nϕ=0

2M2
+

(
|e〉|e〉+ M2

+

M2
−
|d〉|d〉

)
, (2.46)

|Φϕ=π〉 =
1√
2

(
|e〉|d〉+ |d〉|e〉

)
, (2.47)

|Ψϕ=0〉 =
Nϕ=0

2M2
+

(
|e〉|e〉 − M2

+

M2
−
|d〉|d〉

)
, (2.48)

|Ψϕ=π〉 =
1√
2

(
− |e〉|d〉+ |d〉|e〉

)
, (2.49)

where we can find that |Φϕ=π〉 and |Ψϕ=π〉 are maximally entangled states re-

gardless of α in the 2 × 2 Hilbert space H(1)
α ⊗ H(2)

α . This characteristic of

entangled coherent states has been pointed out by some authors [79, 80]. The

entanglement of |Φϕ〉 and |Ψϕ〉 can be obtained from Eqs. (2.44) and (2.45)

by the von Neumann entropy of their reduced density matrices. The reduced

density matrix ρ1 is

ρ1 = Tr2|Φϕ〉〈Φϕ| =
N2
ϕ

2




1+cosϕe−2|α|2

M2
+

−i sinϕe−2|α|2

M+M−

i sinϕe
−2|α|2

M+M−

1−cosϕe−2|α|2

M2
−


 . (2.50)

We find that the degree of entanglement E(|α|, ϕ) for |Φϕ〉 is

E(|α|, ϕ) = −Tr[ρ1 ln ρ1]

= −λ1 lnλ1 − λ2 lnλ2 (2.51)

where λ1 and λ2 are eigenvalues of the matrix ρ1:

λ1 =
1

4

(
2−

√
e−2iϕ(1 + eiϕ)2(1 + 4e4|α|2+iϕ − 2eiϕ + e2iϕ)

(e4|α|2 + cosϕ)2

)
, (2.52)

λ2 =
1

4

(
2 +

√
e−2iϕ(1 + eiϕ)2(1 + 4e4|α|2+iϕ − 2eiϕ + e2iϕ)

(e4|α|2 + cosϕ)2

)
. (2.53)

It is easily recognised that |Ψϕ〉 also has the same degree of entanglement

E(|α|, ϕ) as |Ψϕ〉 is converted to |Φϕ〉 by a simple local unitary operation (2.43).

The degree of entanglement E(|α|, ϕ) for an entangled coherent state has been

so simply found because it was dealt with in the 2×2 space H(1)
α ⊗H(2)

α . Parker
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Figure 2.5: Measure of entanglement E(|α|, ϕ), quantified by the von Neumann
entropy of the reduced density matrix, against the relative phase ϕ of the en-
tangled coherent state. |α| = 0.8 (solid line), |α| = 1 (dashed line), |α| = 1.2
(dot-dashed line), and 0 ≤ ϕ < 2π. This figure shows that when |α| is large, the
quasi-Bell states are good approximations to maximally entangled Bell states.

considered an entangled coherent state in a continuous-variable basis and nu-

merically calculated a degree of entanglement [81]. The degree E(|α|, ϕ) varies

not only by the coherent amplitude α but also by the relative phase ϕ. When

ϕ = π, as we have shown, both the entangled coherent states |Φϕ〉 and |Ψϕ〉
are maximally entangled regardless of α, i.e., E(|α|, π) = 1. When ϕ = 0, on

the other hand, E(|α|, ϕ) is minimised for a given coherent amplitude α. In

Fig. 2.5, we also show that the entanglement E(|α|, ϕ) drastically approaches

to 1 as |α| increases. We calculate E(1, 0) ' 0.948, E(2, 0) ' 0.9999997 and

E(3, 0) ' 1− 6.7× 10−16.

The Bell basis is composed of four orthogonal Bell states

|ΦB
±〉12 =

1√
2
(|0L〉1|0L〉2 ± |1L〉1|1L〉2), (2.54)

|ΨB
±〉12 =

1√
2
(|0L〉1|1L〉2 ± |1L〉1|0L〉2), (2.55)

which are maximally entangled states of modes 1 and 2. We define quasi-Bell

26



2.6 Implementation of Bell-state measurement with linear optical
elements

states with coherent states as [79]

|Φ±〉12 = N±(|α〉1|α〉2 ± | − α〉1| − α〉2), (2.56)

|Ψ±〉12 = N±(|α〉1| − α〉2 ± | − α〉1|α〉2), (2.57)

where N± is normalisation factors. One can immediately notice that the quasi-

Bell states have already been dealt with in Eqs. (2.46) to (2.49). The four quasi-

Bell states do not form a complete measurement set by themselves because they

do not satisfy orthogonality and completeness. However, this set is a very good

approximation of the Bell basis. These states are orthogonal to each other

except

〈Ψ+|Φ+〉 =
1

cosh 2|α|2 , (2.58)

and we immediately see that |Ψ+〉 and |Φ+〉 rapidly become orthogonal as |α|
grows.

2.6 Implementation of Bell-state measurement

with linear optical elements

A Bell-state measurement, or simply Bell measurement, is very useful in quan-

tum information processing. An efficient Bell measurement protocol is necessary

to implement quantum teleportation. It is also used to construct quantum gates

in quantum computation. There has been an experimental demonstration of a

complete Bell measurement, which was used for teleportation, using nonlinear

optical elements [82, 83]. It was shown that a complete Bell-state measurement

on a product Hilbert space of two two-level systems is not possible using linear

elements [84]. A Bell measurement scheme using linear optical elements [85]

has been used to distinguish only up to two of the Bell states for teleportation

[8] and dense coding [86]. However, a remarkable feature of quasi-Bell states is

that each one of them can be unambiguously discriminated using only simple

linear elements.

Suppose that each mode of the entangled state is incident on a 50-50
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BeamSplitter

Detector A Detector B

a

g

b

f

Figure 2.6: Scheme to discriminate all four Bell states using a 50:50 beam
splitter and two photo-detectors. If an odd number of photons is detected at
detector A for mode f then we know that the entangled state incident on the
measurement set up was |Φ−〉. On the other hand, if an odd number of photons
is detected at detector B for mode g then the incident entangled state was |Ψ−〉.
If a non-zero even number of photons is detected for mode f , the incident state
was |Φ+〉 and if a non-zero even number is detected for mode g, it was |Ψ+〉.

beam splitter. After passing the beam splitter, the quasi-Bell states become

|Φ+〉ab −→ |E〉f |0〉g,
|Φ−〉ab −→ |D〉f |0〉g,
|Ψ+〉ab −→ |0〉f |E〉g,
|Ψ−〉ab −→ |0〉f |D〉g, (2.59)

where the even cat state |E〉 = M ′
+(|
√

2α〉+ | −
√

2α〉) with the normalisation

factor M ′
+ contains only even numbers of photons, while the odd cat state

|D〉 = M ′
−(|
√

2α〉 − | −
√

2α〉) with the normalisation factor M ′
− contains only

odd numbers of photons. By setting two photodetectors for the output modes

f and g respectively to perform number parity measurement, the quasi-Bell

measurement can be simply achieved. For example, if an odd number of photons

is detected for mode f , the state |Φ−〉 is measured, and if an odd number of

photons is detected for mode g, then |Ψ−〉 is measured. Even though there is

non-zero probability of failure in which both of the detectors do not register

a photon due to the non-zero overlap of |〈0|E〉|2 = 2e−2|α|2/(1 + e−4|α|2), the
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failure probability Pf is small for an appropriate choice of α and the failure is

known from the result whenever it occurs. For example, the failure probability

Pf is ∼28% for α = 0.8, ∼14% for α = 1 and only ∼ 10−4 for α = 2.

We pointed out that α for a coherent state qubit should be small for a

long decoherence time. However, if it is too small the success probability for

the Bell-measurement will become low as we have seen. There is a trade-off

between the coherence time and success probability. We will see α ' 3 may be

a good choice for quantum computation in Chapter 8.

One of the key requirements of this Bell-measurement scheme is to discern

even and odd cat states. Ideally, photodetectors distinguishing |n〉 from |n+ 1〉
for any n, called discriminating photodetectors, are required, which do not yet

exist [87]. In current technology, there are threshold photodetectors which can

distinguish no photon and at least one photon with high efficiency [88, 89].

However, it is possible to distinguish up to any arbitrary number of photons by

using ideal threshold photodetectors and beam splitters. One can use an array

of beam splitters to distribute photons to be detected to as many threshold

detectors as possible. The probability of undercounting photons is at most

k(k − 1)/2N , where k is the number of photons and N is the number of ideal

threshold detectors [90]. The visible-light photon counter has been constructed

to efficiently discriminate between one and two photons [89, 91]. In short,

it does not seem to be difficult to discern a couple of photons with current

technology. If we set α = 0.8, ∼ 28% of the cases will be found to be zero

photon, ∼ 35% of the cases will be found to be 1 photon, and ∼ 23% of the

cases will be found to be 2 photons in our Bell-measurement scheme. In other

word ∼ 63% of the cases will be found to be 0 or 1 photon, and ∼ 86% of the

cases will be found to be equal to or less than 2 photons. The failure probability

of ∼ 28% in which neither of the detectors register a photon should be excluded

because one cannot exactly know the measured state in this case. Assuming

that a photo-detecting scheme discriminates between 0, 1, and more than 1

photons, quantum teleportation with the total success probability ∼ 35% can

be performed. If a photo-detecting scheme discriminates between 2 and more

than 2 photons, quantum teleportation with the total success probability ∼ 58%

can be performed.

The key ideas of discriminating four quasi-Bell states are as follows: (1)
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2.6 Implementation of Bell-state measurement with linear optical
elements
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Photodetectors

Figure 2.7: The key ideas of unambiguously discriminating four Bell states with
a photodetector and a beam splitter.

The states |Φ+〉 and |Ψ+〉 have only even number of photons while |Φ−〉 and

|Ψ−〉 have only odd number of photons; They can be discriminated by photon

parity measurements. (2) Using a 50-50 beam splitter, we can move every

photon of |Φ+〉 and |Φ−〉 to the one side of the beam splitter while moving

every photon of |Ψ−〉 and |Ψ−〉 to the other side. This quasi-Bell measurement

scheme can be used for concentration of pure entangled coherent states [75, 78],

teleportation [75] and quantum computation with coherent state qubits [76].
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Chapter 3

Quantum Nonlocality for An

Entangled Coherent State

In quantum information processing, the most important ingredient is the non-

local properties of the channel which can be easily destroyed in nature. In

this Chapter, we study nonlocality of an entangled coherent state using photon

parity measurement. We first investigate the nonlocality of a pure entangled

coherent state, and move on to the dynamic behaviour of nonlocality for a de-

cohered entangled coherent state in a vacuum (zero temperature) environment.

The dynamic behaviour is also investigated in the framework of a 2× 2 Hilbert

space and the results are compared. It is found that nonlocality of a decohered

entangled coherent sate persists longer when it is considered in a 2× 2 space.

3.1 Quantum nonlocality

The paradox suggested by Einstein, Podolsky and Rosen (EPR) aroused a con-

troversy over nonlocality of quantum mechanics [1]. Their question was “Can

quantum mechanical description of physical reality be considered complete?”

They suggested an entangled state, the EPR state, as a counter example against

the completeness of quantum mechanics. The kernel of their argument can be

reformulated as follows. To be a complete physical theory, every element of

the physical reality must have a counterpart in the theory. From the non-

commutativity of two different quantum observables, they argued that (1) the
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3.1 Quantum nonlocality

quantum mechanical description of reality given by the wave function (or the

state vector) is not complete or (2) when the operators corresponding to two

physical quantities do not commute the two quantities cannot have simultane-

ous reality. Let us now suppose two distant parties, say Alice and Bob, each of

whom has a spin-1/2 particle labelled by 1 and 2 respectively. The total system

of the two particles can be in an EPR state1,

|ψEPR〉 =
1√
2
(| ↑〉1| ↓〉2 − | ↓〉1| ↑〉2), (3.1)

where | ↑〉 and | ↓〉 are eigenstates of the spin operator Sz along z-axis. The EPR

state |ψEPR〉 can be generated as a result of an interaction between particles 1

and 2 when the total spin of the two particles is conserved. The state |ψEPR〉
can also be represented in another basis as

|ψEPR〉 =
1√
2
(|−〉1|+〉2 − |+〉1|−〉2), (3.2)

where |+〉 = (| ↑〉 + | ↓〉)/
√

2 and |−〉 = (| ↑〉 − | ↓〉)/
√

2 denote eigenstates

of the spin operator Sx along x-axis. Note that the spin operators Sz and

Sx do not commute thus the spins along z- and x-axes cannot be determined

simultaneously. Now suppose that Alice performs a measurement on the spin

of particle 1 along z- and x-axes. If Alice measures the spin of particle 1 along

z-axis and its outcome was | ↑〉, the state of Bob’s particle 2 is reduced to | ↓〉.
However, for example, if Alice performs the same measurement along the z-axis

and the outcome was |+〉, the state of particle 2 is reduced to |−〉. In short,

the state vector of particle 2 changes according to the kind of measurement

performed on particle 1 and its outcome. Here, EPR argued that ‘no real

change can take place in the system 2 in consequence of anything that may

be done to the first system’, i.e., the physical reality of particle 2 must not

have changed regardless of any operation on particle 1. According the above

argument, the state vector of a system can change while the physical reality of

the system remains the same: Quantum mechanics makes it possible to assign

different states to the same physical reality. Then the two physical quantities

1The original EPR state is a continuous-variable entangled state in which the position (or
momentum) degrees of freedom of two distant systems are entangled. The original EPR state
is not a normalisable physical state. We here discuss an EPR-Bohm state (spin singlet) for
simplicity and completeness of the argument.
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3.1 Quantum nonlocality

corresponding to Sz and Sx, respectively, may have the simultaneous reality

with the definite eigenvalues. Therefore, the statement (2)2 is not true and we

are forced to admit the alternative (1).

It is important to note that EPR’s argument assumed locality, which is

not changed by any remote operations, to argue for reality. If EPR’s implicit

assumption of locality is not true, the above argument should go in the opposite

direction: In this case, quantum mechanics can be a ‘complete’ theory. At this

point, we can ask such a question: “Is there any theory, based on a local model,

which can admit every entangled state like an EPR state?” As a trial to answer

this question, one can assume the existence of a shared random variable between

Alice and Bob: The local hidden variable model was expected to enable classical

local theory to describe any ‘nonlocal’ states. The shared variable is used to

locally generate a measurement outcome depending only on the choice of the

local measurement. We can change the question to “Is there any nonlocal state

that cannot be accepted by any local hidden variable theory?”

It was Bell who proposed the remarkable inequality that any local hid-

den variable theory should obey [2]. Various versions of Bell’s inequality [92, 93]

followed the original one [2]. Bell’s inequality enables an experimental test on

quantum nonlocality in a real laboratory. Experimental evidences have demon-

strated the existence of nonlocal states which violate Bell’s inequality [20], i.e.,

the idea of local realism should be abandoned. Numerous theoretical studies

and experimental demonstrations have been performed to understand nonlocal

properties of quantum states.

Even though good experiments have been performed, it has been pointed

out that there remain two possible loopholes. One is called the lightcone loop-

hole that might allow local realistic interpretation. Some experiments have been

performed with strict relativistic separation between measurements to close this

loophole [94]. The other is the detection loophole due to detection inefficiency.

According to this loophole, there is a possibility that the detected subensemble

violates Bell’s inequality even though the whole ensemble satisfies it. Some au-

thors generalised Bell’s inequality to the case of inefficient detection [93, 95, 96]

and other proposals have been made [97] to close the detection loophole. Re-

2It is well known that Einstein’s aesthetic sense could not tolerate such a statement like
(2).
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3.2 Bell-CHSH inequality

cently, an experiment on nonlocality has been performed with an efficient de-

tection [98].

Quantum nonlocality of an entangled continuous-variable state has been

discussed using the Schmidt form for entangled nonorthogonal states [99] and

the quadrature-phase homodyne measurement [100]. A given state is nonlocal

when it violates any Bell’s inequalities. In fact, a state does not have to violate

all the possible Bell’s inequalities to be considered quantum nonlocal. A state

is quantum nonlocal for the given Bell’s inequality which is violated by the

measurement of the state. Banaszek and Wódkiewicz (BW) defined a Bell’s

inequality based on the parity measurement and they found that the two-mode

squeezed state violates Bell’s inequality [101, 102].

It is important to choose the type of measurement variables when test-

ing nonlocality for a given state. In the original EPR gedanken experiment [1],

EPR considered the positions (or the momenta) of two particles as the mea-

surement variables to discuss the two-body correlation. Bell [2] argued that

the EPR wave function does not exhibit nonlocality because its Wigner func-

tion W (x1, p1; x2, p2) is positive everywhere, allowing the description by a local

hidden variable theory. Munro showed that various types of Bell’s inequali-

ties are not violated in terms of the homodyne measurements of two particles

[100, 103]. To the contrary, Banaszek and Wódkiewicz [101, 102] examined even

and odd parities as the measurement variables and showed that the EPR state

and the two-mode squeezed state are nonlocal in the sense that they violate

Bell’s inequalities such as Clauser and Horne inequality and Clauser-Horne-

Shimony-Holt inequality.

3.2 Bell-CHSH inequality

Probably the most well known version of Bell’s inequalities is that of Clauser,

Horne, Shimony and Holt (CHSH) [92]. The Bell-CHSH inequality and its vio-

lation in quantum mechanics can be introduced as follows. Let us first consider

the case for classical observables. Suppose two distant particles 1 and 2, and

physical observables A and A′ (B and B′) which can take on the values ±1
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3.2 Bell-CHSH inequality

corresponding to local measurements on particle 1 (2). It is easy to see that

AB + AB′ + A′B − A′B′ = ±2. (3.3)

Let p(A,A′, B, B′) be the probability that A = a, A′ = a′, B = b and B′ = b′

for particle 1 and 2. The average value E of AB + AB ′ + A′B − A′B′ is

E(AB + AB′ + A′B − A′B′)

=
∑

A,A′,B,B′

p(A,A′, B, B′)(AB + AB′ + A′B − A′B′)

=
∑

A,A′,B,B′

p(A,A′, B, B′)AB + p(A,A′, B, B′)AB′

+ (A,A′, B, B′)A′B + p(A,A′, B, B′)A′B′

= E(AB) + E(AB ′) + E(A′B)− E(A′B′) (3.4)

and it is simple from Eqs. (3.3) and (3.4) to drive an inequality

−2 ≤ E(AB) + E(AB ′) + E(A′B)− E(A′B′) ≤ 2. (3.5)

The inequality (3.5) must hold in any theory in which local variables of particle

1 (2) determine the results of the experiments on particle 1 (2). We can apply

the inequality (3.5) to a quantum state with appropriate quantum observables

to test if it is a quantum nonlocal state which cannot exist in a local theory.

Recall the EPR-Bohm state

|ψEPR〉 =
1√
2
(| ↑〉1| ↓〉2 − | ↓〉1| ↑〉2), (3.6)

shared by Alice and Bob. To find a combination which violates the inequality

(3.5), Alice and Bob can construct their set of measurements S1 · a and S1 · a′

for Alice, and S2 ·b and S ·b′
2 for Bob, varying the unit vectors a, a′, b and b′,

where S = (Sx, Sy, Sz) is the spin operator. The average value can be calculated

to obtain the Bell-CHSH inequality as

−2 ≤ BCHSH ≤ 2 (3.7)
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3.3 Wigner representation of the Bell-CHSH inequality -
Generalised Banaszek-Wódkiewicz inequality

where the Bell function BCHSH is defined as the average value, BCHSH ≡
〈BCHSH〉, with the Bell operator BCHSH

BCHSH ≡ S1 · a⊗S2 ·b+S1 ·a⊗S2 ·b′ +S · a′
1⊗S2 ·b−S · a′

1⊗S2 ·b′. (3.8)

It is now obvious that the Bell-CHSH inequality is violated for the EPR singlet

state |ψEPR〉. For example, if Alice and Bob set their set of the measurements

as S1 · a = sz, S1 · a′ = (sz + sx)/
√

2, S2 · b = cos[π/8]sz + sin[π/8]sx, S2 · b′ =

cos[π/8]sz + sin[π/8]sx, we can find BCHSH = 2
√

2 which violates the Bell-

CHSH inequality. It is straightforward to find the upper and lower bounds of

the Bell-CHSH inequality as [104, 105]

〈BCHSH〉 = 〈4I2×2 + 4[S1 · (a× a′)]⊗ [S2 · (b× b′)]〉 ≤ 8, (3.9)

|BCHSH| ≤ 2
√

2. (3.10)

The inequality (3.10) is known as Cirel’son’s bound [106].

3.3 Wigner representation of the Bell-CHSH

inequality - Generalised Banaszek-Wódkiewicz

inequality

We have pointed out that the type of quantum observable to be measured is

a crucial factor in the nonlocality test. Banaszek and Wódkiewicz developed

a Wigner function representation of Bell-CHSH inequality using a two-mode

parity operator Π(ζ1, ζ2) as a quantum observable [101, 102]. The two-mode

parity operator Π(ζ1, ζ2) is defined as

Π(ζ1, ζ2) = D1(ζ1)D2(ζ2)ΠD
†
1(ζ1)D

†
2(ζ2), (3.11)

where D(ζ1) is the displacement operator D(ζ1) = exp[ζ1â
† − ζ∗1 â] and

Π = (Πe − Πo)1 ⊗ (Πe − Πo)2

= Πe1 ⊗ Πe2 − Πe1 ⊗ Πo2 − Πo1 ⊗ Πe2 + Πo1 ⊗ Πo2, (3.12)

(3.13)
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3.3 Wigner representation of the Bell-CHSH inequality -
Generalised Banaszek-Wódkiewicz inequality

with

Πe =

∞∑

n

|2n〉〈2n|, Πo =

∞∑

n

|2n+ 1〉〈2n+ 1|. (3.14)

The even and odd parity operators, Π̂e and Π̂o, are the projection operators to

measure the probabilities of the field having even and odd numbers of photons,

respectively. We define the Bell operator B as

B = Π(ζ1, ζ2) + Π(ζ ′1, ζ2) + Π(ζ1, ζ
′
2)− Π(ζ ′1, ζ

′
2) (3.15)

and the Bell function as B ≡ 〈B〉. The Bell-CHSH inequality is then

|B| = |〈Π(ζ1, ζ2) + Π(ζ1, ζ
′
2) + Π(ζ ′1, ζ2)− Π(ζ ′1, ζ

′
2)〉| ≤ 2. (3.16)

We say the field is quantum-mechanically nonlocal as |B|max is larger than 2 and

the nonlocality is stronger as |B|max gets larger. The displacement operation can

be effectively performed using a beam splitter with the transmission coefficient

close to one and a strong coherent state being injected into the other input port

[102]. The two-mode Wigner function at a given phase point described by ζ1

and ζ2 is [107]

W (ζ1, ζ2) =
4

π2
Tr[ρΠ(ζ1, ζ2)], (3.17)

where ρ is the density operator of the field. From Eqs.(3.16) and (3.17), we

obtain the Wigner representation of Bell’s inequality

|B| = π2

4
|W (ζ1, ζ2) +W (ζ1, ζ

′
2) +W (ζ ′1, ζ2)−W (ζ ′1, ζ

′
2)| ≤ 2. (3.18)

The Wigner function of a quantum state is obtained from the Fourier transform

of its characteristic function

C(η1, η2) = Tr[ρD1(η1)D2(η2)]. (3.19)

Banaszek and Wódkiewicz used their Bell function based on Wigner represen-

tation with ζ1 = ζ2 = 0. We consider all four variables ζ1, ζ2, ζ
′
1 and ζ ′2 in

our investigation of the Bell function as shown in Eq. (3.18) to test nonlocality

more generally. In this Chapter and Chapters 4 and 5, we will see that the

generalised BW inequality enables us to find deeper nonlocality for continuous-

variable states.
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3.4 Nonlocality for an entangled coherent state
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Figure 3.1: Nonlocality test for an entangled coherent state. A coherent state,
nonlinear medium, and 50-50 beam splitter are used to generate an entangled
coherent state.

3.4 Nonlocality for an entangled coherent state

We now consider the nonlocality of an entangled coherent state

|C±〉 =
1√
N±

(|α〉| − α〉 ± | − α〉|α〉) (3.20)

where N± are normalisation factors and α is assumed to be real for simplicity.

The Wigner function of the entangled coherent state is

WECS(ζ1, ζ2) = 4N 2
{

exp[−2|ζ1 − α|2 − 2|ζ2 + α|2]
+ exp[−2|ζ1 + α|2 − 2|ζ2 − α|2]

− exp[−2(ζ1 − α)(ζ∗1 + α)− 2(ζ2 + α)(ζ∗2 − α)− 4α2]

− exp[−2(ζ∗1 − α)(ζ1 + α)− 2(ζ∗2 + α)(ζ2 − α)− 4α2]
}
, (3.21)

from which the Bell function is simply obtained. The steepest descent method

[108] was used to gain the maximum value for the absolute Bell function in

Fig. 3.1. The maximum Bell-CHSH violation using Banaszek and Wódkiewicz’s

38



3.4 Nonlocality for an entangled coherent state
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Figure 3.2: The maximum value of the absolute Bell function |B|max against
amplitude α (> 0), of |C−〉 (solid lines) and |C+〉 (dashed lines) entangled
coherent states. The higher valued solid and dashed lines are for the generalised
BW inequality while the lower valued solid and dashed lines are for the case
taking α = ζ2 = 0.

version is approximately 2.19 for two-mode squeezed states as we will show in

the following Chapter [101, 109] and 2.5 for entangled coherent states as shown

in Fig. 3.2. However, for the generalised BW inequality in Eq. (3.18), both

two-mode squeezed states [106] and entangled coherent states have a maximal

Bell-CHSH violation of 2
√

2 (as shown in Fig. 3.2). The entangled coherent

states |C−〉 and |C+〉 violate the Bell inequality regardless of the size of the

amplitude, α > 0. As the amplitude α increases the maximal Bell function

|B|max tends towards a maximum of 2
√

2.

It is interesting to note that |B|max for the |C−〉 state takes a higher value

than for the |C+〉 state. If the number state representation of the coherent state

is [64]

|α〉 =
∑

n

e−|α|2/2αn√
n!

|n〉 (3.22)

which means that, in the limit of small coherent amplitude α,

| ± α〉 ≈ e−|α|2/2[|0〉 ± α|1〉]. (3.23)
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3.5 Dynamics of Nonlocality

Substituting this into the entangled coherent states |C+〉 and |C−〉 we find

|C+〉 ∝ |0〉|0〉 − α2|1〉|1〉
|C−〉 ∝ α(|1〉|0〉 − |0〉|1〉) (3.24)

When α is small |C+〉 → |0〉|0〉. As the weights of |0〉|0〉 and |1〉|1〉 are radically

different |C+〉 is only minimally entangled. However the two component states

|0〉|1〉 and |1〉|0〉 are equally weighted for |C−〉 which gives optimal entangle-

ment. A pure entangled state always violates nonlocality [110]. Any entangled

coherent state in a form as given in Eq. (3.20) is found to be nonlocal. We

conjecture that any entangled coherent state as given in Eq. (2.34) also has

nonlocality except when β = γ, i.e., when the state is a product state.

The results shown in Fig. 3.2 were obtained from a numerical considera-

tion of |B|max (3.18). In analogy with the work carried out in [109] we imposed

the condition B(|ζ1|, |ζ2|, |ζ ′1|, |ζ ′2|) = B(|ζ2|, |ζ1|, |ζ ′2|, |ζ ′1|). The method of steep-

est descent [108] was used to find the absolute maximum of the Bell function

under our assumptions.

3.5 Dynamics of Nonlocality

A quantum system loses its quantum characteristics if it is open to the world.

We modelled an entangled coherent state interacting with a dissipative envi-

ronment (two independent vacuum reservoirs). To study the dynamics of non-

locality of continuous variable entangled coherent states it is necessary to find

an expression of the time-dependent Bell-CHSH inequality. This in turn means

finding an expression for the time-dependent decohered Wigner function.

The quantum channel decoheres when it interacts with its environment

and becomes a mixed state of its density operator ρ(τ), where τ is the decoher-

ence time. To know the time dependence of ρ(τ), we have to solve the master

equation [111]

∂ρ

∂τ
= Ĵρ + L̂ρ ; Ĵρ = γ

∑

i

aiρa
†
i , L̂ρ = −γ

2

∑

i

(a†iaiρ+ ρa†iai) (3.25)
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3.5 Dynamics of Nonlocality

where ai and a†i are the annihilation and creation operators for the field mode i

and γ is the decay constant. We have assumed that each field mode is coupled

to its environment at the same coupling rate γ. The formal solution of the

master equation (3.25) can be written as

ρ(t) = exp[(Ĵ + L̂)τ ]ρ(0). (3.26)

which leads to the solution for the initial single-mode dyadic |α〉〈β|

exp[(Ĵ + L̂)τ ]|α〉〈β| = 〈β|α〉1−t2|αt〉〈βt| (3.27)

where t = e−
1

2
γτ . In this Chapter, we introduce a dimensionless normalised

interaction time r which is related to t by the expression r =
√

1− t2. When

τ = 0, t = 1 and r = 0. As τ →∞, t→ 0 and r → 1.

After solving the master equation (3.25) for the initial entangled coher-

ent state, the time-dependent density operator ρ(τ) is obtained. Substituting

ρ(τ) into Eq.(3.19), we calculate the characteristic function and its Fourier

transform to obtain the Wigner function for the decohered entangled coherent

state. Once again the results shown in Figs. 3.3-3.4 were obtained using the

method of steepest descent to find the maximum value of the Bell function un-

der our assumptions. The same symmetrical consideration as before (namely

B(|α|, |β|, |α′|, |β ′|) = B(|β|, |α|, |β ′|, |α′|)) was imposed.

From Figs. 3.3-3.4 it is obvious that as the entangled coherent state in-

teracts with its environment it fails the nonlocality test. From Fig. 3.3 it can be

seen that as the coherent amplitude α increases the initial nonlocality increases

and the rate of loss of nonlocality increases. The larger the initial amplitude,

i.e., the larger the initial nonlocality, the more rapid the loss of nonlocality oc-

curs, i.e., the shorter the duration of the nonlocality. This characteristic is due

to the rapid destruction of a macroscopic quantum state and will be discussed

in the following Chapter with two-mode squeezed states. As r → 1, in Fig. 3.3,

ρ becomes a product of two vacuum states and |B|max approaches the value 2.

We can see in Fig. 3.4 that the |C+〉 state of the coherent amplitude

α = 0.1 has a long duration of nonlocality (r ≈ 0.375). The duration of the

nonlocality can be increased by decreasing the coherent amplitude.
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Figure 3.3: Nonlocality as a function of the dimensionless normalised time r for
the |C−〉 state in the vacuum. α = 2 (solid line), α = 3 (dashed line) and α = 5
(dot-dashed line).
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Figure 3.4: The |C+〉 state for the coherent amplitude α = 0.1, coupled to the
vacuum environment, produces a prolonged nonlocal state.

3.6 Nonlocality test in 2×2 dimensional Hilbert

space

Entangled coherent states can be considered in a 2 × 2 dimensional Hilbert

space [75], where |C−〉 shows maximal entanglement regardless of the value of

α [79]. In this section, we will investigate nonlocality and the dynamics of the

42



3.6 Nonlocality test in 2×2 dimensional Hilbert space

entangled coherent state |C−〉 in a vacuum environment within the framework

of 2× 2 Hilbert space (see also the discussions in Ref. [112]).

We consider two orthogonal states

|e〉 =
1√N+

(
|α〉+ | − α〉

)
, (3.28)

|d〉 =
1√N−

(
|α〉 − | − α〉

)
(3.29)

where N+ = 2 + 2e−2α2

and N− = 2− 2e−2α2

are normalisation factors. A two-

dimensional Hilbert space can be spanned using these states as orthonormal

bases. The entangled coherent state |C−〉 can be represented in 2×2 dimensional

Hilbert space as

|C−〉12 =
1√
2

(
|e〉1|d〉2 − |d〉1|e〉2

)
, (3.30)

where we recognise that |C−〉 is maximally entangled.

The Bell-CHSH inequality for a bipartite spin- 1
2

state |ψ〉 is |B| ≤ 2,

where

B = 〈ψ|~a · ~σ1⊗~b · ~σ2 +~a · ~σ1⊗~b′ · ~σ2 +~a′ · ~σ1⊗~b · ~σ2−~a′ · ~σ1⊗~b′ · ~σ2|ψ〉 (3.31)

and ~a, ~a′, ~b and ~b′ are three-dimensional unit vectors and σ’s are Pauli matri-

ces [104]. The unit vectors determine the directions of σ-operators which are

measurement observables. They are usually realised by rotating the measure-

ment apparatuses at both sides. The effect of these unit vectors can also be

realised by local unitary operations on both particles of the pair independently,

fixing the direction of the measurement apparatuses so that the measurement

operator becomes σz1 ⊗ σz2.

We first consider ideal conditions for the nonlocality test. Assume |e〉
and |d〉 can be perfectly discriminated with eigenvalues 1 and -1 by an ideal

measurement operator Os = |e〉〈e|−|d〉〈d|, where the operator Os is an analogy

to σz in a spin-1
2

system. If an ideal rotation such as Rx(θ) around an axis,

Rx(θ)|e〉 = cos θ|e〉+ i sin θ|d〉,
Rx(θ)|d〉 = i sin θ|e〉+ cos θ|d〉, (3.32)
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3.6 Nonlocality test in 2×2 dimensional Hilbert space

can be performed on the particles of both sides by two local measurements Os1

and Os2, it can be proved that the entangled coherent state |C−〉 maximally

violates the Bell-CHSH inequality regardless of the value of α, i.e., |B|max =

2
√

2.

The dynamic change of nonlocality for the entangled coherent state can

be obtained from its time-dependent density matrix. Assuming vacuum envi-

ronment, it is possible to restrict our discussion in a 2× 2 dimensional Hilbert

space even for the mixed case. The basis vectors in Eqs. (3.28) and (3.29) now

should be

|e(τ)〉 =
1√
N+(τ)

(|tα〉+ | − tα〉), (3.33)

|d(τ)〉 =
1√
N−(τ)

(|tα〉 − | − tα〉), (3.34)

where N+(τ) = 2 + 2e−2t2α2

and N−(τ) = 2 − 2e−2t2α2

. Although |e(τ)〉 and

|d(τ)〉 are time-dependent, they always remain orthogonal until τ →∞.

With use of the master equation (3.25) we find the mixed density matrix

ρ−(τ) as follows

ρ−(τ) =
1

4N+N−




A 0 0 D

0 C −C 0

0 −C C 0

D 0 0 E



, (3.35)

where A, C, D and E are defined as

A = (1− Γ)N 2
+(τ), (3.36)

C = (1 + Γ)N+(τ)N−(τ), (3.37)

D = −(1− Γ)N+(τ)N−(τ), (3.38)

E = (1− Γ)N 2
−(τ), (3.39)

Γ = exp{−4(1− t2)α2}. (3.40)

The maximal Bell-CHSH violation for a 2×2 dimensional state ρ is given
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3.6 Nonlocality test in 2×2 dimensional Hilbert space
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Figure 3.5: Bell measure for an entangled coherent state against normalised time
r in 2× 2 Hilbert space under perfect rotations. Nonlocality persists longer in
2× 2 space than in continuous Hilbert space. α = 2 (solid line), α = 3 (dashed
line) and α = 5 (dot-dashed line).

in [113]

|B|max = 2
√
M(ρ), (3.41)

where M(ρ) is the sum of the two larger eigenvalues of TT † and T is a 3 × 3

matrix whose elements are defined as tnm = Tr(ρσm ⊗ σn) with Pauli matrices

represented by σ′s. Ideal measurement and rotation ability should be assumed

again here to use this formula. The three eigenvalues of TT † for the mixed

entangled coherent state ρ− are

(C +D)2

4N 2
+N 2

−
,

(C −D)2

4N 2
+N 2

−
,

(A− 2C + E)2

16N 2
+N 2

−
, (3.42)

from which M(ρ−) is obtained by calculating the sum of the two larger eigen-

values.

Fig. 3.5 shows |B|max versus the dimensionless time r(τ). Initially, ρ−(τ =

0) is maximally entangled regardless of α, and |B|max has the maximal value

2
√

2. As interaction time increases, nonlocality decreases. For τ → ∞, ρ−

becomes a direct product of two coherent states, which is a pure state, and

|B|max becomes 2. It is clear from Fig. 3.5 that the nonlocality persists longer

in 2 × 2 Hilbert space than in continuous-variable space, which is due to the
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3.6 Nonlocality test in 2×2 dimensional Hilbert space

change of the observable in the different Hibert space. We can see that the

nonlocality of a given state varies according to the Hilbert space in which the

state is considered, as does entanglement also [75].

It has already been found that the decohered state ρ−(τ) always remains

entangled in 2× 2 Hilbert space [75]. This indicates that the mixed state ρ−(τ)

retains some amount of entanglement even after it loses its nonlocality. For pure

states, it is true that any entangled state violates Bell’s inequality [110]. On the

other hand, it was shown that there are mixed states which are entangled but

do not violate Bell’s inequality [114]. Our model in 2× 2 space is one example

of that case.

Because the state |e〉 contains only even numbers of photons and |d〉
contains only odd numbers of photons, these two states are eigenstates of the

operator Or = Πe − Πo which is known as the pseudo-spin operator [115], i.e.,

Or|xn〉 = λn|xn〉; n = 1, 2 (3.43)

λ1,2 = ±1; |x1,2〉 = |e〉, |d〉, (3.44)

by which |e〉 and |d〉 can be perfectly discriminated. The parameters λ1,2 are

eigenvalues of the pseudo-spin operator Or and |x1,2〉 are eigenvectors of the

operator. The measurement for the nonlocality test is now Π = Or1⊗Or2, which

is in fact the same as the Π defined in Eqs. (3.12) and (3.14). Therefore, the

nonlocality test in 2×2 space can be performed by the same parity measurement

as in Eqs. (3.12) and (3.14). Note that there is no way to distinguish between

Or and Os in our restricted Hilbert space.

If an ideal rotation Rx is possible for |e〉 and |d〉, the same structure

as ~a · ~σ1 ⊗ ~b · ~σ2 can be perfectly made by Π. Cochrane et al. [116] showed3

that rotation Rx(θ) can be approximately realised for α� 1 by a displacement

operator which can change the parity of the even state |e〉 and the odd state

|d〉 [116, 117]. When a displacement operator D(iε), where ε is real, is applied

to a given parity eigenstate it shows oscillations between |e〉 and |d〉.
3See Appendix A where we point out a nontrivial mistake in their approximation and

correct it.
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3.6 Nonlocality test in 2×2 dimensional Hilbert space
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Figure 3.6: Oscillations in even and odd states by the displacement operator
D(iε). For α� 1, the displacement operator acts as a sinusoidal rotation. For
α = 2, 〈e′|Πe|e′〉 (solid line) and 〈d′|Πe|d′〉 (dashed line). For α = 5, 〈e′|Πe|e′〉
(dot-dashed line) and 〈d′|Πe|d′〉 (dotted line).

To obtain the Bell function, we can calculate

Pe(ε) = 〈e′|Πe|e′〉 =
e2iαε cosh[(α+ iε)2] + e−2iαε cosh[(α− iε)2] + 2 cosh[α2 + ε2]

2eε2(eα2 + e−α2)
,

(3.45)

P̃e(ε) = 〈d′|Πe|d′〉 =
e2iαε cosh[(α + iε)2] + e−2iαε cosh[(α− iε)2]− 2 cosh[α2 + ε2]

2eε2(eα2 − e−α2)
,

(3.46)

Ie(ε) = 〈e′|Πe|d′〉 =
e2iαε cosh[(α + iε)2]− e−2iαε cosh[(α− iε)2]

2e−α2+ε2
√

1− e−4α2
, (3.47)

Po(ε) = 〈e′|Πo|e′〉 = 1− Pe(ε), (3.48)

P̃o(ε) = 〈d′|Πo|d′〉 = 1− P̃e(ε), (3.49)

Io(ε) = 〈d′|Πo|e′〉 = −Io(ε), (3.50)

where |e′〉 = D(iε)|e〉 and |d′〉 = D(iε)|d〉.

From the average values Pe(ε) = 〈e′|Πe|e′〉 and P̃e(ε) = 〈d′|Πe|d′〉 shown

in Fig. 3.6, which represent the probabilities for the measured state to have

even parity, we can see oscillations due to D(iε) in the even and odd states.
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3.6 Nonlocality test in 2×2 dimensional Hilbert space

The Bell-CHSH inequality is then obtained using Eqs. (3.45) to (3.50),

B = 〈C−(ε1, ε2)|Π|C−(ε1, ε2)〉+ 〈C−(ε1, ε
′
2)|Π|C−(ε1, ε

′
2)〉

+ 〈C−(ε′1, ε2)|Π|C−(ε′1, ε2)〉 − 〈C−(ε′1, ε
′
2)|Π|C−(ε′1, ε

′
2)〉 (3.51)

=
(
2Pe(ε1)− 1

)(
P̃e(ε2) + P̃e(ε

′
2)− 1

)

+
(
2P̃e(ε1)− 1

)(
Pe(ε2) + Pe(ε

′
2)− 1

)

+
(
2Pe(ε

′
1)− 1

)(
P̃e(ε2)− P̃e(ε′2)

)
+
(
2P̃e(ε

′
1)− 1

)(
Pe(ε2)− Pe(ε′2)

)

+ 4Ie(ε1)
(
Ie(ε2) + Ie(ε

′
2)
)

+ 4Ie(ε
′
1)
(
Ie(ε2)− Ie(ε′2)

)
, (3.52)

where |C−(ε1, ε2)〉 = D1(iε1) ⊗ D2(iε2)|C−〉12. The nonlocality of this pure

entangled coherent state is the same as the nonlocality of the four variable

consideration shown in Fig. 3.2 (higher valued solid line).

For a mixed state, ρ−(τ) is used to obtain the Bell function,

B = Tr{ρ−(τ ; ε1, ε2)Π}+ Tr{ρ−(τ ; ε1, ε
′
2)Π}

+ Tr{ρ−(τ ; ε′1, ε2)Π} − Tr{ρ−(τ ; ε′1, ε
′
2)Π}, (3.53)

ρ−(τ ; ε1, ε2) = D1(iε1)⊗D2(iε2)ρ−(τ)D†
1(iε1)⊗D†

2(iε2). (3.54)

To calculate Tr{ρ−(τ ; ε1, ε2)Π}, we need to use the redefined identity in the

restricted Hilbert space,

11r = |e(τ)〉1|e(τ)〉22〈e(τ)|1〈e(τ)|+ |e(τ)〉1|d(τ)〉22〈d(τ)|1〈e(τ)|
+ |d(τ)〉1|e(τ)〉22〈e(τ)|1〈d(τ)|+ |d(τ)〉1|d(τ)〉22〈d(τ)|1〈d(τ)|

≡
4∑

n=1

|Xn〉〈Xn|, (3.55)

which is not equal to the identity 11 = 1
π

∫
d2αd2β|α〉|β〉〈β|〈α| in the continuous-

variable basis. Using

Tr{ρ−(τ ; ε1, ε2)Π} =
∑

n,m

〈Xn|ρ−(τ)|Xm〉〈Xm|D†
1(iε1)

⊗D†
2(iε2)ΠD1(iε1)⊗D2(iε2)|Xn〉, (3.56)
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Figure 3.7: The absolute maximum of the Bell function |B|max against nor-
malised time for a mixed entangled coherent state in 2 × 2 Hilbert space. For
α � 1, rotation needed for the nonlocality test in the 2-qubit state is ideally
realised as shown in Fig. 3.6, and the Bell function approaches the ideal case
shown in Fig. 3.5. α = 2 (solid line), α = 3 (dashed line) and α = 5 (dot-dashed
line).

B is obtained by a straightforward calculation as

B = Ave(ε1, ε2) + Ave(ε1, ε
′
2) + Ave(ε′1, ε2)− Ave(ε′1, ε′2), (3.57)

Ave(ε1, ε2) = g(ε1, ε2)A+ l(ε1, ε2)E + 2h(ε1, ε2)(C −D)

+
(
j(ε1, ε2) + k(ε1, ε2)

)
C, (3.58)

g(ε1, ε2) = (2Pe(ε1)− 1)(2P̃e(ε2)− 1), (3.59)

h(ε1, ε2) = 8Ie(ε1)Ie(ε2), (3.60)

j(ε1, ε2) = (2Pe(ε1)− 1)(2P̃e(ε2)− 1), (3.61)

k(ε1, ε2) = (2Pe(ε1)− 1)(2P̃e(ε2)− 1), (3.62)

l(ε1, ε2) = (2Pe(ε1)− 1)(2P̃e(ε2)− 1), (3.63)

where Pe(ε) = 〈e′(τ)|Πe|e′(τ)〉, P̃e(ε) = 〈d′(τ)|Πe|d′(τ)〉, Ie(ε) = 〈e′(τ)|Πe|d′(τ)〉,
Po(ε) = 〈e′(τ)|Πo|e′(τ)〉 = 1 − Pe(ε), P̃o(ε) = 〈d′(τ)|Πo|d′(τ)〉 = 1 − P̃e(ε),

Io(ε) = 〈d′(τ)|Πo|e′(τ)〉 = −Io(ε). These are modified versions of Eqs. (3.45) to

(3.50) with |e′(τ)〉 = D(iε)|e(τ)〉 and |d′(τ)〉 = D(iε)|d(τ)〉. As α increases, it

is expected that the result in 2× 2 space under the D(iε) operation approaches

to the ideal case shown in Fig. 3.5.
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3.7 Remarks

Fig. 3.7 shows the largest Bell violation |B|max for ρ−(τ) against the

normalised time. It is different from the former case of the continuous-variable

entangled coherent state for τ 6= 0, because the concerned identities are different

from each other. The nonlocality of a given state can differ according to the

Hilbert space concerned even though the same kind of measurement observable

is used. For α � 1, the rotation needed for the nonlocality test in the 2-qubit

state is ideally realised, and the time variance of the nonlocality approaches to

the ideal case in Fig. 3.5 as was expected. For α� 1, required rotation deviates

from the ideal case.

3.7 Remarks

In this Chapter, we have studied the dynamic behaviour of nonlocality for an

entangled coherent state in a dissipative environment. The nonlocality test

for an entangled coherent state can be realised with photon number measure-

ment and displacement operations. The entangled coherent state is found to be

nonlocal regardless of its amplitude. The higher the amplitude, the larger the

nonlocality is. When the state interacts with its environment, the nonlocality

is lost. The rapidity of the loss of nonlocality depends on the initial ampli-

tude of the state. The larger the initial amplitude, i.e., the larger the initial

nonlocality, the more rapid the loss of nonlocality occurs. This is due to the

rapid destruction of quantum coherence of a macroscopic quantum state. We

will discuss this problem in further detail with two-mode squeezed states in the

following Chapter. An entangled coherent state can be studied in 2× 2 Hilbert

space assuming a vacuum environment, where the nonlocality of the same state

persists for longer in the dissipative environment. This is due to the change of

the observable in the different Hibert space.
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Chapter 4

Quantum Nonlocality for A

Two-Mode Squeezed State

In this Chapter, we are interested in how the thermal environment affects the

quantum nonlocality of the two-mode squeezed field. We study the dynamic

behaviour of the quantum nonlocality based on the parity measurement for

the two-mode squeezed state in the thermal environment. The nonlocality is

stronger for the squeezed state with a larger degree of squeezing. It is found

that the nonlocality disappears more rapidly in the thermal environment as the

initial state is squeezed more.

4.1 The two-mode squeezed state

The squeezed light field is a very useful tool for quantum information processing

over continuous variables. The recent experimental demonstration [31] of the

quantum teleportation via the two-mode squeezed state [32] aroused great inter-

est in continuous-variable quantum information processing among researchers

in this field. Squeezed states can also be used for quantum cryptography [28],

quantum computation [118] and precision measurement [119].

In Chapter 2, we introduced a coherent state and pointed out that the

coherent state is a quantum analogy of a classical particle as it is the minimum

point-like state in quantum mechanics. Even though one cannot make a smaller

point-like state than a coherent state, it is possible to ‘squeeze’ it by applying
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4.1 The two-mode squeezed state

a unitary transformation on a coherent state. For example, one can imagine

a squeezed state which shows the minimum uncertainty, i.e., ∆X∆P = 1,

but squeezed as ∆X > ∆P . In this case, if ∆X approaches to infinity while

∆P approaches to zero, the state becomes an eigenstate of the operator P̂ . A

squeezed state is obtained as

|ψ(σ)〉 = exp
[1
2
(σ∗â2 − σâ†2)

]
|0〉, (4.1)

where σ = s exp(−iϕ), |0〉 is a vacuum state, and â is the annihilation operator.

It is possible to generate a squeezed state for a two-mode system. The two-

mode squeezed state is a correlated state of two field modes a and b that can

be generated by a nonlinear χ(2) medium [120, 121]. In this system, there exists

the two-mode squeezing property, ∆(X1 + X2) > ∆(P1 + P2)
(
∆(X1 + X2) <

∆(P1 + P2)
)
, when ∆(P1 + P2)

2 < 2
(
∆(X1 + X2)

2 < 2
)

[121]. The two-

mode pure squeezed state is obtained by applying the unitary operator on the

two-mode vacuum

|Ψ(σ)〉ab = exp
(
−σâb̂+ σ∗b̂†â†

)
|0〉a|0〉b (4.2)

where â (b̂) is an annihilation operator for the mode a (b). The value of the

squeezing parameter s determines the degree of squeezing. The larger s is, the

more the state is squeezed. Note that a two-mode squeezed state is generated

by passing a single-mode squeezed state through a 50-50 beam splitter. The

two-mode squeezed state is an optical realisation of the original EPR state and

becomes identical to it as the squeezing parameter s goes to infinity. However,

the mean photon number, which is 2 sinh2 ssq, becomes infinity in this limit and

such a state cannot be produced as it requires infinite energy.
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4.2 Time evolution of two-mode squeezed states in a thermal
environment

4.2 Time evolution of two-mode squeezed states

in a thermal environment

In the previous Chapter, we have studied the Bell function can then be written

in terms of the Wigner functions at different phase-space points,

B(ζ1, ζ2) =
π2

4
[W (0, 0) +W (ζ1, 0) +W (0, ζ2)−W (ζ1, ζ2)] . (4.3)

The Wigner function corresponding to the squeezed state is the Fourier trans-

form of its characteristic function CW (η1, η2) [121],

CW (η1, η2) = Tr
{
ρ̂ exp(η1â

† − η∗1 â) exp(η2b̂
† − η∗2 b̂)

}
. (4.4)

For the two-mode squeezed state of the density matrix ρ̂ = |Ψab(σ)〉〈Ψab(σ)|,
the Wigner function is written as

Wab(ζ1, ζ2) =
4

π2
exp

[
− 2 cosh(2s)

(
|ζ1|2 + |ζ2|2

)
+ 2 sinh(2s) (ζ1ζ2 + ζ∗1ζ

∗
2)
]
.

(4.5)

The correlated nature of the two-mode squeezed state is exhibited by the ζ1ζ2

cross-term which vanishes when s = 0.

The dynamics of a quantum system ρ coupled to a thermal environment

is described by the master equation. The master equation of a single-mode state

ρ in the interaction picture can be obtained by modelling the thermal reservoir

as a large number of harmonic oscillators [122]:

dρ

dt
=
γ

2
(n̄+ 1)(2aρa† − a†aρ− ρa†a) +

γ

2
n̄(2a†ρa− aa†ρ− ρaa†), (4.6)

where γ denotes the energy decay rate and n̄ is the average thermal photon num-

ber. The Fokker-Planck equation (in Born-Markov approximation) describing

the time evolution of the Wigner function in the interaction picture can be

obtained from the master equation (4.6) as [122]

∂Wab(ζ1, ζ2, τ)

∂τ
=
γ

2

∑

ζ1i
=ζ1,ζ2

[
∂

∂ζ1i

ζ1i
+

∂

∂ζ∗1i

ζ∗1i
+2

(
1

2
+ n̄

)
∂2

∂ζ1i
∂ζ∗1i

]
Wab(ζ1, ζ2, τ),

(4.7)
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4.2 Time evolution of two-mode squeezed states in a thermal
environment

where we have assumed that the two modes of the environment are independent

of each other and the energy decay rate of each mode is the same to γ. The

two modes are supposed to have the same average thermal photon number n̄.

By solving the Fokker-Planck equation (4.7), we get the time evolution of the

Wigner function at time τ to be given by the convolution of the original function

and the thermal environment [123],

Wab(ζ1, ζ2, τ) =
1

t(τ)4

∫
d2ζd2ηW th

a (ζ)W th
b (η)Wab

(
ζ1 − r(τ)ζ

t(τ)
,
ζ2 − r(τ)η

t(τ)
, τ = 0

)
,

(4.8)

where the parameters r(τ) =
√

1− e−γτ and t(τ) =
√
e−γτ . W th(ζ) is the

Wigner function for the thermal state of the average thermal photon number n̄:

W th(ζ) =
2

π(1 + 2n̄)
exp

(
− 2|ζ|2

1 + 2n̄

)
. (4.9)

Performing the integration in Eq. (4.8), the Wigner function for the initial two-

mode squeezed state evolving in the thermal environment is obtained as

Wab(ζ1, ζ2, τ) = N exp
[
− E(τ)(|ζ1|2 + |ζ2|2) + F (τ)(ζ1ζ2 + ζ∗1ζ

∗
2)
]

(4.10)

where

E(τ) =
2r(τ)2(1 + 2n̄) + 2t(τ)2 cosh 2s

D(τ)

F (τ) =
2t(τ)2 sinh 2s

D(τ)

D(τ) = t(τ)4 + 2r(τ)2t(τ)2(1 + 2n̄) cosh 2s+ r(τ)4(1 + 2n̄)2 (4.11)

and N is the normalisation factor. In the limit of s = 0, the ζ1ζ2 cross-term van-

ishes and the state can be represented by the direct product of each mode states

such that Wab(ζ1, ζ2, τ) = Wa(ζ1, τ)Wb(ζ2, τ). It is obvious that the Wigner

function (4.10) exhibits the local characteristics in this limit.

The system will eventually assimilate with the environment which can

be seen in the Wigner function, at the limit of τ →∞,

Wab(ζ1, ζ2) =
4

π2(1 + n̄)2
exp[− 2

(1 + 2n̄)
(|ζ1|2 + |ζ2|2)]. (4.12)
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4.3 Evolution of quantum nonlocality

This is the direct product of two thermal states in modes a and b.

4.3 Evolution of quantum nonlocality

Substituting Eq. (4.10) into Eq. (4.3), we find the evolution of the nonlocality

for the initial two-mode squeezed state in the thermal environment. The Bell

function B at time τ is written by

B(ζ1, ζ2, τ) =
π2N

4
exp

{
1 + exp

[
−E(τ)|ζ1|2

]
+ exp

[
−E(τ)|ζ2|2

]

− exp
[
− E(τ)(|ζ1|2 + |ζ2|2) + 2F (τ)|ζ1ζ2| cos θ

]}
,(4.13)

where θζ1 and θζ2 are the phases of ζ1 and ζ2 and θ = θζ1 +θζ2 . When cos θ = −1,

the Bell function Bm(|ζ1|, |ζ2|, τ) is described by the absolute values |ζ1| and

|ζ2|. Bm is symmetric in exchanging ζ1 and ζ2 such that Bm(|ζ1|, |ζ2|, τ) =

Bm(|ζ2|, |ζ1|, τ). It is straightforward to show that B ≤ Bm at any instance of

time τ . In order to find the evolution of the nonlocality, the maximal value

|B|max of the Bell function B is calculated by the steepest descent method [108]

and using the properties of Bm(|ζ1|, |ζ2|, τ). Recall that the field is quantum-

mechanically nonlocal as |B|max is larger than 2 and the nonlocality is stronger

as |B|max gets larger.

The initial two-mode squeezed state is always nonlocal as |B|max > 2 for

s > 0. |B|max increases monotonically as the degree s of squeezing increases.

The state becomes maximally nonlocal with |B|max ∼ 2.19055 as s→∞ [101].

In an intermediate time 0 < τ < ∞, the pure squeezed state evolves to a

two-mode mixed squeezed state and nonlocality is lost at a certain evolution

time. Figs. 4.1 and 4.2 show |B|max versus the dimensionless time r(τ) de-

fined in Eq. (4.8). We find that the nonlocality initially prepared persists until

the characteristic time τc(s, n̄) depending on the temperature of the thermal

environment and the initial squeezing. In Fig. 4.1 it is found that, when the

environment is the vacuum, |B|max decreases as time proceeds. After reaching

at the minimum value, |B|max increases to 2 which is the value of |B|max for

the vacuum. Even though it is not clearly seen in the figure due to the scale of

the figure, for any n̄ 6= 0 thermal environment, |B|max increases to its value for
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Figure 4.1: The time evolution of the maximal value |B|max of the Bell function
versus the dimensionless time r(τ) ≡

√
1− exp(−γτ) which is 0 at τ = 0 and 1 at

τ = ∞. The initial degree of squeezing s = 0.3 and the average photon number n̄

of the thermal environment is n̄ = 0 (solid line), n̄ = 0.5 (dotted line), and n̄ = 2
(dashed line). The larger n̄ is, the more rapidly the nonlocality is lost.

the thermal field after it decreases to a minimum. In Fig. 4.1, as n̄ gets larger

|B|max decreases much faster and further.

In Figs. 4.2, we identify an interesting phenomenon that the larger the

initial degree of squeezing the more rapidly |B|max decreases. We analyse the

reason why |B|max decreases more rapidly as the initial squeezing is larger as

follows.

The two-mode squeezed state (4.2) can be represented by the continuous

superposition of two-mode coherent states (A similar analysis was done for a

single-mode squeezed state [124])

|Ψab(σ)〉 =

∫
d2αG(α, σ)|α, α∗eiϕ〉 (4.14)

where the Gaussian weight function

G(α, σ) = (π sinh s)−1 exp

[
−
(

1− tanh s

tanh s

)
|α|2
]
. (4.15)

As s gets larger, the weight of a large α state is greater so that the contribution of

|α, α∗eiϕ〉 of a large α becomes more important in the continuous superposition

(4.14).
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Figure 4.2: The time evolution of |B|max versus r(τ) ≡
√

1− exp(−γτ) when the
squeezed state is prepared with the initial degree of squeezing s = 0.1(solid line),
s = 0.5(dotted line), and s = 1.0(dashed line). The two-mode squeezed state is
coupled with the n̄ = 0 vacuum (a) and the n̄ = 1 thermal environment (b). In the
vacuum, the larger the degree of squeezing, the more rapidly the nonlocality is lost.
In the n̄ = 1 thermal environment, we find that the nonlocality persists longer when
the squeezing is s ∼ 0.5.

The quantum interference between coherent component states is the key

of quantum nature of the field. The quantum interference is destroyed by the

environment. The speed of destruction depends on the distance between the

coherent component states and the average thermal energy of the environment

[125]. This is a reason why the macroscopic quantum superposition state is not

easily seen in nature. In the continuous superposition (4.14) we find that as

the degree of squeezing is larger, the superposition extends further so that the

quantum interference can be destroyed more easily. The quantum nonlocality
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in the two-mode squeezed state is also originated from the quantum interference

between the coherent component states which can be destroyed easily as the

contribution of the large amplitude coherent state becomes important.

In fact the uncertainty increases to its maximum and decreases to the

value of the environment when a single-mode squeezed state is influenced by

the thermal environment [122]. The uncertainty increases faster as the degree

of squeezing is larger. This can be explained using the same argument as the

loss of quantum nonlocality.

In Fig. 4.2(a), when the environment is in the vacuum, it is found that

the characteristic time τc(s, n̄) to lose the quantum nonlocality is shorter as

the initial degree of squeezing is larger. In Fig. 4.2(b), when the non-zero

temperature thermal environment (n̄ 6= 0) is concerned, we find that the larger

degree of squeezing does not necessarily result in the shorter characteristic time

τc(s, n̄). This clearly shows that the characteristic time is a function of the

average number of thermal photons as well as the degree of squeezing. However,

it is still true that |B|max decreases faster (the slope of its curve is steeper) when

s is larger. It is also found that |B|max decreases faster for n̄ 6= 0 than for n̄ = 0.

4.4 Remarks

We have studied the dynamic behaviour of the nonlocality for the two-mode

squeezed state in the thermal environment. The two-mode squeezed state can

be used for the quantum channel in quantum teleportation of a continuous

variable state. The two-mode squeezed state is found to be a nonlocal state

regardless of its degree of squeezing and the higher degree of squeezing brings

about the larger quantum nonlocality. As the squeezed state is influenced by

the thermal environment the nonlocality is lost. The rapidity of the loss of

nonlocality depends on the initial degree of squeezing and the average thermal

energy of the environment. The more strongly the initial field is squeezed, the

more rapidly the maximum nonlocality decreases. These are in agreement with

the results of the previous Chapter and have been analysed extensively.
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Chapter 5

Quantum Nonlocality Test for

Continuous-Variable States

With Dichotomic Observables

Gisin and Peres found pairs of observables whose correlations violate Bell’s

inequality for a discrete N -dimensional entangled state [126]. Banaszek and

Wódkiewicz (BW) studied Bell’s inequality for continuous-variable states, in

terms of Wigner representation in phase space based upon parity measurement

and displacement operation [101, 102]. This is useful because of its experimen-

tal relevance but does not lead to maximal violation for the original Einstein-

Podolsky-Rosen (EPR) state [127]. Recently, Chen et al. studied Bell’s inequal-

ity of continuous-variable states [115] using their newly defined Bell operator

[115, 128]. In contrast to the operators in BW formalism, the pseudo-spin op-

erators are not experimentally easy to realise but the EPR state can maximally

violate Bell’s inequality in their framework [115].

In this Chapter, we relate Chen et al.’s “pseudo-spin” Bell operator to one

of Gisin and Peres for a finite-dimensional state to bridge the gap between the

discussions for the nonlocality of finite and infinite dimensional (or continuous-

variable) systems. The origin of the pseudospin operator is attributed to the

limiting case of the Gisin-Peres observable [126]. We investigate various ver-

sions of Clauser, Horne, Shimony and Holt (CHSH)’s inequality for continuous-

variable states. It is pointed out that the BW formalism can be generalised to

obtain a larger Bell violation [129], but it cannot give the maximal violation for
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5.1 Origin of pseudospin operator

the EPR state even in the generalised version. We analyse the reason why the

EPR state cannot maximally violate Bell’s inequality in the generalised BW

formalism. We compare the EPR state with an entangled state of two coherent

states [70]. In contrast to the EPR state, the entangled coherent state shows

the maximal Bell violation for certain limit both for the generalised BW and

Chen et al.’s formalism. We also investigate Clauser and Horne (CH)’s version

of Bell’s inequality. We find the upper and lower bounds for the Bell-CH in-

equality and test whether the values for continuous-variable states reach these

bounds.

5.1 Origin of pseudospin operator

Chen et al. introduced a pseudospin operator s = (sx, sy, sz) for a nonlocality

test of continuous variables as a direct analogy of a spin-1/2 system [115, 128]:

sz =

∞∑

n=0

(
|2n+ 1〉〈2n+ 1| − |2n〉〈2n|

)
, (5.1)

sx ± sy = 2s±, (5.2)

a · s = sz cos θ + sin θ(eiϕs− + e−iϕs+), (5.3)

where s− =
∑∞

n=0 |2n〉〈2n+ 1| = (s+)† and a is a unit vector. The Bell-CHSH

operator based upon the pseudospin operator is then defined as [92, 115]

B = (a · s1)⊗ (b · s2) + (a · s1)⊗ (b′ · s2)

+ (a′ · s1)⊗ (b · s2)− (a′ · s1)⊗ (b′ · s2), (5.4)

where 1 and 2 denote two different modes and a′, b and b′ are unit vectors.

Bell’s inequality imposed by local hidden variable theory is then |〈B〉| ≤
2. In this formalism, the violation of the inequality is limited by Cirel’son

bound |〈B〉| ≤ 2
√

2 [115, 106] as we studied in Chapter 3. It was found that a

two-mode squeezed state [121]

|TMSS〉 =

∞∑

n=0

(tanh r)n

cosh r
|n〉|n〉, (5.5)
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5.1 Origin of pseudospin operator

where |n〉 is a number state and r is the squeezing parameter, maximally violates

Bell’s inequality, i.e. |〈B〉|max → 2
√

2 when r becomes infinity [115]. Note that

the two-mode squeezed state (5.5) becomes the original EPR state when r →∞
[32].

Gisin and Peres found pairs of observables whose correlations violate

Bell’s inequality for an N -dimensional entangled state [126]

|Ψ〉 =

N−1∑

n=0

cn|φn〉|ψn〉, (5.6)

where {|φn〉} and {|ψn〉} are any orthonormal bases. Further they showed that

the violation of Bell’s inequality is maximal in the case of a spin-j singlet state

for an even j. The Gisin-Peres observable is

A(θ) = αx sin θ + αz cos θ + E , (5.7)

where αx and αz are block-diagonal matrices in which each block is an ordinary

Pauli matrix, σx and σz, respectively. E is a matrix whose only non-vanishing

element is EN−1,N−1 = 1 when N is odd and E is zero when N is even. The Bell

operator is then defined as

BGP = (a · A1)⊗ (b · A2) + (a · A1)⊗ (b′ · A2)

+ (a′ · A1)⊗ (b ·A2)− (a′ ·A1)⊗ (b′ · A2), (5.8)

where A represents the Gisin-Peres observable A(θ). It was Gisin [130] who

showed any entangled pure state violates a Bell’s inequality. Later, Gisin and

Peres [126] found the observable (5.7) to give the violation of Bell’s inequality

for any N -dimensional entangled pure state.

In the limit N →∞, we find that αx and αz become pseudospin opera-

tors sx and sz in Eq. (5.2) and A(θ) becomes a·s (with ϕ = 0) in Eq. (5.3). Note

that the effect of E vanishes for N → ∞. Understanding Chen et al.’s observ-

ables as a limiting case of a Gisin-Peres observable defined for a finite discrete

system, it is now straightforward to show that the EPR state maximally vio-

lates Bell’s inequality as the EPR state
∑∞

n=0 |n〉|n〉 is the infinite-dimensional

singlet state. Extending the Gisin and Peres’ argument, we can make a remark:
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Any bipartite pure infinite-dimensional entangled state violates Bell’s inequality

for observables based on the pseudospin observables.

5.2 The Bell-CHSH inequalities for continuous

variables

5.2.1 The two-mode squeezed state

In the previous chapters, we introduced generalised BW inequality using parity

operators in terms of the Wigner function:

BBW = Π1(ζ1)Π2(ζ2) + Π1(ζ
′
1)Π2(ζ2) + Π1(ζ1)Π2(ζ

′
2)− Π1(ζ

′
1)Π2(ζ

′
2),(5.9)

|〈BBW 〉| =
π2

4
|W (ζ1, ζ2) +W (ζ1, ζ

′
2) +W (ζ ′1, ζ2)−W (ζ ′1, ζ

′
2)| ≤ 2, (5.10)

whereW (ζ1, ζ2) represents the Wigner function of a given state. Using Π1(ζ1)Π1(ζ1)

= Π2(ζ1)Π2(ζ1) = 11, it is straightforward to check the Cirel’son bound |〈BBW 〉| ≤
2
√

2 in the generalised BW formalism. Recall the Wigner function of the two-

mode squeezed state [131]

WTMSS(ζ1, ζ2) =
4

π2
exp[−2 cosh 2r(|ζ1|2+|ζ2|2)+2 sinh 2r(ζ1ζ2+ζ

∗
1ζ

∗
2)], (5.11)

with which the Bell function BBW ≡ 〈BBW 〉 can be calculated. In the infinite

squeezing limit, the absolute Bell function maximises as |BBW |max → 8/39/8 '
2.32 at ζ1 = −ζ ′1 = ζ ′2/2 =

√
(ln 3)/16 cosh 2r and ζ2 = 0. This shows that the

EPR state does not maximally violate Bell’s inequality in the generalised BW

formalism. In Fig. 5.1(a), using the generalised BW formalism, the maximised

value |BBW |max is plotted for the two-mode squeezed state and compared with

the violation of Bell’s inequality based on other formalisms. (The method of

steepest descent [108] is used in Fig. 5.1(a) and other figures in the paper to

get the maximised value of violation within the formalism.)

The reason why the generalised BW formalism does not give the max-

imum violation for the EPR state can be explained as follows. The operator

sz in Eq. (5.1) is equivalent to BW’s observable Π(ζ1) when ζ1 = 0 except a
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Figure 5.1: (a) The maximised value of absolute Bell function |B|max for a
two-mode squeezed state vs the squeezing parameter r in the BW (solid line),
the generalised BW (dashed), and Chen et al.’s (dotted) formalisms. It is
shown that the EPR state does not maximally violate Bell’s inequality in the
generalised BW formalism. (b) The expectation value P of BW’s observable for
number states of n = 1 (solid), n = 2 (dashed), and n = 3 (dotted) is plotted
against the absolute displacement parameter |ζ1|.

trivial sign change. The main difference is that BW use the displacement oper-

ator while Chen et al. use the direct analogy of the rotation of spin operators.

When the Gisin-Peres observable A(θ) (or equivalently pseudospin observable

a · s with ϕ = 0) is applied on an arbitrary state
∑∞

n=0 f(n)|n〉, where f(n) is

an arbitrary function, we obtain

A(θ)
∞∑

n=0

f(n)|n〉 =
√

2 cos(θ − π/4)
∞∑

n=0

f(2n)|2n〉

+
√

2 sin(θ − π/4)

∞∑

n=0

f(2n+ 1)|2n+ 1〉. (5.12)

The operator A(θ) rotates
∑
f(n)|n〉 into even and odd parity states; the pseu-
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5.2 The Bell-CHSH inequalities for continuous variables

dospin observable (5.3) can completely flip the parity of any given state by

changing the angle. Note that the only measurement applied to the nonlocality

test here is the parity measurement. Differently from the pseudospin opera-

tor, BW’s observable Π(ζ1) does not assure the complete parity change, which

makes it impossible to find the maximal Bell violation of the two-mode squeezed

state. In the two-mode squeezed state, orthogonal number states, which have

well defined parity, are the entangled elements. The expectation value of BW’s

observable for a number state is obtained as [132]

P (n, |ζ|) = 〈n|Π(ζ)|n〉

=
e−|ζ|2|ζ|2n

n!

∞∑

k=0

{(2k)!

|ζ|4k
(
L

(n−2k)
2k (|ζ|2)

)2 (2k + 1)!

|ζ|4k+2

(
L

(n−2k−1)
2k+2 (|ζ|2)

)2}
,

(5.13)

where L
(p)
q (x) is an associated Laguerre polynomial. We numerically assess

P (n, |ζ|) for some different numbers and check that the parity of the number

states cannot be perfectly flipped by changing the parameter ζ of the displace-

ment operator D(ζ) as shown in Fig. 5.1(b).

5.2.2 The entangled coherent state

The entangled coherent state [70] is another important continuous-variable en-

tangled state. Many possible applications to quantum information processing

have been studied utilising entangled coherent states [75, 76, 78]. The entangled

coherent state |ECS〉 can be defined as

|ECS〉 = N (|α〉| − α〉 − | − α〉|α〉), (5.14)

where N is a normalisation factor and |α〉 is a coherent state with α 6= 0. For

the case of the entangled coherent state, the Bell function in the generalised
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5.2 The Bell-CHSH inequalities for continuous variables

BW formalism (5.10) can be calculated from its Wigner function:

WECS(ζ1, ζ2) = 4N 2
{

exp[−2|ζ1 − α|2 − 2|ζ2 + α|2]
+ exp[−2|ζ1 + α|2 − 2|ζ2 − α|2]

− exp[−2(ζ1 − α)(ζ∗1 + α)− 2(ζ2 + α)(ζ∗2 − α)− 4α2]

− exp[−2(ζ∗1 − α)(ζ1 + α)− 2(ζ∗2 + α)(ζ2 − α)− 4α2]
}
,

(5.15)

where α is assumed to be real for simplicity. We find that the Bell function

approaches 2
√

2 for α → ∞ [129] at ζ1 = 0, ζ2 = 5π/16α, ζ ′1 = π/8α and

ζ ′2 = 3π/16α as shown in Fig. 5.2(a).

The entangled coherent state can be represented in the 2 × 2-Hilbert

space as

|ECS〉 =
1√
2
(|e〉|d〉 − |d〉|e〉), (5.16)

where |e〉 = N+(|α〉+ | − α〉) and |d〉 = N−(|α〉 − | − α〉) are even and odd cat

states with normalisation factors N+ and N−. Note that these states form an

orthogonal basis, regardless of the value of α, which span the two-dimensional

Hilbert space. Suppose that an ideal rotation Rx(θ) around the x axis,

Rx(θ)|e〉 = cos θ|e〉+ i sin θ|d〉,
Rx(θ)|d〉 = i sin θ|e〉+ cos θ|d〉, (5.17)

can be performed on the both sides of the entangled coherent state (5.16).

Because the state (5.16) is the same as the EPR-Bohm state of a two-qubit

system, it can be easily proved that it maximally violates the Bell’s inequality,

i.e., the maximised Bell function is 2
√

2. Remarkably, it is known that the

displacement operator acts like the rotationRx(θ) on the even and odd cat states

for α � 1 [129, 116]. The fidelity can be checked that |〈e|D†(iζ1i
)Rx(θ)|e〉|2 =

|〈d|D†(iζ1i
)Rx(θ)|d〉|2 → 1 for α → ∞, where θ = 2αζ1i

and ζ1i
is real. As

a result, the parity of the even and odd cat states, which are the orthogonal

entangled elements in the entangled coherent state, can be perfectly flipped by

the displacement operator for α → ∞ as is implied in Fig. 5.2(b) [129]. This

property permits the maximal Bell violation of the entangled coherent state for

a large coherent amplitude.
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Figure 5.2: (a) The maximised value of absolute Bell function |B|max for an
entangled coherent state is plotted against its coherent amplitude α using the
BW (solid), the generalised BW (dashed), and Chen et al.’s (dotted) formalisms.
The entangled coherent state maximally violates Bell’s inequality in the gener-
alised BW formalism for α → ∞ and in the Chen et al.’s formalism both for
α → 0 (but α 6= 0) and for α → ∞. (b) The expectation value P of BW’s
observable for the even cat state is plotted against ζ1 for α = 2 (solid) and
α = 5 (dashed). For α � 1, the displacement operator acts like a rotation so
that the parity of the even and odd cat states may be well flipped.

In the pseudospin formalism, the correlation function E(θ1, ϕ1, θ2, ϕ2) =

〈ECS|s1(θ1, ϕ1)⊗ s2(θ2, ϕ2)|ECS〉 of the entangled coherent state is

E(θ1, ϕ1, θ2, ϕ2) = − cos θ1 cos θ2 −K(α) cos(ϕ1 − ϕ2) sin θ1 sin θ2,

K(α) =
coshα2 sinhα2

(
∑∞

n=0
α4n+1√

(2n)!(2n+1)!
)2
, (5.18)

where 0 < K(α) < 1, and K(α) approaches to 1 when α → 0 (but α 6= 0) and

α → ∞. The maximised value of the Bell function B = 〈B〉 is obtained from
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5.2 The Bell-CHSH inequalities for continuous variables

Eq. (5.18) as

|B|max = 2
√

1 +K(α)2 (5.19)

by setting θ1 = 0, θ′1 = π/2, θ2 = −θ′2 and ϕ1 = ϕ2 = 0. Then, the maximal

violation is found for the two extreme cases, α → 0 and α → ∞. When α is

small, the entangled coherent state is not maximally entangled in an infinite-

dimensional Hilbert space, as tracing the state over one mode variables the

von Neumann entropy is not infinite. It is interesting to note that the non-

maximally entangled state maximally violates Bell’s inequality. We attribute

this mismatch to the dichotomic nature of the test of quantum nonlocality

for an infinite-dimensional system. However, the entangled coherent state is

maximally entangled in the 2×2 Hilbert space but it does not always maximally

violate the Bell-CHSH inequality as shown in Fig. 5.2(a). This shows that the

pseudospin formalism is not a ‘perfect’ analogy of a two-qubit system when a

qubit is composed of two orthogonal even and odd cat states. The pseudospin

operator a · s (with ϕ = 0) in Eq. (5.3) can be written as a · s = U(θ)sz where

a unitary rotation U(θ) is

U(θ)|2n+ 1〉 = cos θ|2n+ 1〉+ sin θ|2n〉, (5.20)

U(θ)|2n〉 = − sin θ|2n+ 1〉+ cos θ|2n〉. (5.21)

The even (odd) cat state does not flip into the odd (even) cat state by U(θ);

it is only the parity of the given state which changes. The fidelity between the

‘rotated’ odd cat state and the even cat state is obtained as

|〈d|U(π/2)|e〉|2 = K(α) (5.22)

which is smaller than 1. It is clear that |e〉 and |d〉 are well flipped to each other

only for the limiting cases of α → 0 and α → ∞. In other words, the rotation

may get the given states out of the 2 × 2 space spanned by |e〉 and |d〉. Note,

for example, that U(π/2)|e〉 cannot be represented by a linear superposition of

|e〉 and |d〉.
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5.3 The Clauser-Horne inequality

We have studied quantum nonlocality of continuous-variable states using the

Bell-CHSH inequality [92] and all the arguments have been based upon the

parity measurement. The Clauser and Horne’s version of the Bell’s inequality

[93] can also be considered to test the nonlocality of continuous-variable states

with photon number measurement [101, 102]. We will investigate the Bell-CH

inequality in this section.

5.3.1 The bound values for Bell-CH inequality

The bound values for the Bell-CHSH inequality±2
√

2 are well known as Cirel’son

bound [106]. The upper bound (−1 +
√

2)/2 of the Bell-CH inequality was

proved by comparing the CH and CHSH inequalities [133]. The bound values

for the Bell-CH inequality can also be simply found as follows. The Bell-CH

operator for a two-qubit system is defined as [93, 101, 102]

BCH = ξ1(θ1)⊗ ξ2(θ2) + ξ1(θ1)⊗ ξ2(θ′2) + ξ1(θ
′
1)⊗ ξ2(θ2)

− ξ1(θ′1)⊗ ξ2(θ′2)− ξ1(θ1)⊗ 112 − 111 ⊗ ξ2(θ2), (5.23)

where ξ(θ) = |θ〉〈θ| and |θ〉 = cos θ|0〉+ sin θ|1〉. then the local theory imposes

the inequality −1 ≤ 〈BCH〉 ≤ 0. Note here that we investigate a simple 2 × 2

system without loss of generality. One can prove by direct calculation

B2
CH = −BCH −∆, (5.24)

where

∆ = 〈θ1|θ′1〉
(
|θ1〉〈θ′1| − |θ′1〉〈θ1|

)
1
⊗ 〈θ2|θ′2〉

(
|θ2〉〈θ′2| − |θ′2〉〈θ2|

)
2
. (5.25)

Using 〈BCH〉2 ≤ 〈B2
CH〉, the average of Eq. (5.24) becomes

〈BCH〉2 + 〈BCH〉+ 〈∆〉 ≤ 0, (5.26)
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5.3 The Clauser-Horne inequality

and the Bell-CH function BCH ≡ 〈BCH〉 is

−1−
√

1− 4〈∆〉
2

≤ BCH ≤
−1 +

√
1− 4〈∆〉
2

. (5.27)

The maximal and minimal values of 〈∆〉 can be obtained from the eigenvalues

of ∆ [104], which are ± sin[2(θ1 − θ′1)] sin[2(θ2 − θ′2)]/4. The inequality −1/4 ≤
〈∆〉 ≤ 1/4 is then obtained. Finally, the maximum and minimum of the Bell-CH

function are found at 〈∆〉 = −1/4 as

−1−
√

2

2
≤ BCH ≤

−1 +
√

2

2
(5.28)

in which the upper and lower bounds of the Bell-CH function are given. For

example, the Bell-CH function for a single-photon entangled state

|ψ〉 =
1√
2
(|0〉|1〉 − |1〉|0〉) (5.29)

is calculated to be

BCH =
1

4

{
cos[2(θ′1− θ′2)− cos[2(θ1− θ′2)− cos[2(θ′1− θ2)− cos[2(θ1− θ2)]− 2

}
.

(5.30)

This maximises to (
√

2 − 1)/2 ' 0.21 at θ1 = 0, θ2 = −3π/8, θ′1 = π/4 and

θ′2 = −5π/8 [134] and minimises to −(
√

2 + 1)/2 ' −1.21 at θ1 = 0, θ′1 = π/4

and θ2 = −θ′2 = π/8.

5.3.2 Bell-CH inequalities for continuous variables

BW used the Q function for the test of the Bell-CH inequality violation of the

simple single-photon entangled state (5.29) [101, 102]. The Q function for a

two-mode state ρ12 is defined as

Q12(ζ1, ζ2) =
2〈ζ2|1〈ζ1|ρ12|ζ1〉1|ζ2〉2

π2
, (5.31)
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where |ζ1〉 and |ζ2〉 are coherent states. The Bell-CH function in terms of Q

representation is

BCH−BW = 〈υ1(ζ1)⊗ υ2(ζ2) + υ1(ζ1)⊗ υ2(ζ
′
2)

+υ1(ζ
′
1)⊗ υ2(ζ2)− υ1(ζ

′
1)⊗ υ2(ζ

′
2)

−υ1(ζ1)⊗ 112 − 111 ⊗ υ2(ζ2)〉
= π2[Q12(ζ1, ζ2) +Q12(ζ1, ζ

′
2) +Q12(ζ

′
1, ζ2)

−Q12(ζ
′
1, ζ

′
2)]− π[Q1(ζ1) +Q2(ζ2)], (5.32)

where Q1(ζ1) and Q2(ζ2) are the marginal Q functions of modes 1 and 2, and

υ(ζ1) = D(ζ1)|0〉〈0|D†(ζ1). Eq. (5.32) is a generalised version of the BW’s for-

malism as BW considered ζ1 = ζ2 = 0 [101, 102]. In this case the measurement

results are distinguished according to the presence of photons, in other words,

the dichotomic outcomes are no photon and the presence of photons. This is

more realistic because the parity of photon numbers is difficult to measure with

currently developed photodetectors.

The Q function for the two-mode squeezed state is [131]

QTMSS(ζ1, ζ2) =
1

π2 cosh2 r
exp[−|ζ1|2 − |ζ2|2 + tanh r(ζ1ζ2 + ζ∗1ζ

∗
2 )] (5.33)

and the Q function for the entangled coherent state

QECS(ζ1, ζ2) = N 2
{

exp[−|ζ1 − α|2 − |ζ2 + α|2]
+ exp[−|ζ1 + α|2 − |ζ2 − α|2]

− exp[−(ζ1 − α)(ζ∗1 + α)− (ζ2 + α)(ζ∗2 − α)− 4α2]

− exp[−(ζ∗1 − α)(ζ1 + α)− (ζ∗2 + α)(ζ2 − α)− 4α2]
}
.

(5.34)

The marginalQ function of each state can also be simply obtained from Eqs. (5.33)

and (5.34). One can investigate the violation of the Bell-CH inequality for the

two different states from Eqs. (5.32), (5.33) and (5.34). The results are plotted

in Figs. 5.3(a) and (b).

For the two-mode squeezed state, the degree of the violation of the Bell-

CH inequality increases as generalising the BW formalism. However, it increases
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Figure 5.3: (a) The maximised Bell-CH function BCH(max) for a two-mode
squeezed state is plotted against the degree of squeezing r using the BW (solid
line) and the generalised BW (dashed) formalisms. The maximised function
BCH(max) of the same state based upon parity measurement for the same state
is given (dotted line). (b) The minimised Bell-CH function BCH(min) for an
entangled coherent state is plotted against its coherent amplitude α using the
BW (solid line) and the generalised BW (dashed) formalisms. The minimised
function BCH(min) based upon the parity measurement is plotted for the same
state (dotted line).

up to a peak and decreases as increasing the squeezing r, which is shown in

Fig. 5.3(a). The two-mode squeezed state is a separable pure state when r is

zero, where no violation of the Bell’s inequality is found. As r increases, entan-

glement becomes to exist, which causes the violation of the Bell’s inequality.

However, as r increases, the average photon number increases and the weight

of |0〉|0〉 decreases as seen in Eq. (5.5). As the BW formalism of the Bell-CH

violation is based on the nonlocality of no photon and presence of photons, its

violation diminishes when r is large.

The even and odd cat states become the no-photon and single-photon
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5.3 The Clauser-Horne inequality

number states respectively, i.e. |e〉 → |0〉 and |d〉 → |1〉, when α → 0. There-

fore, the entangled coherent state approaches to the single-photon entangled

state (5.29) in this limit. It can be simply shown that the degree of the Bell-

CH violation in the generalised BW formalism for the entangled coherent state

for α → 0 (BCH−BW ' −1.17) is the same as the one for the single photon

entangled state (5.29). It is larger than the maximised value found by BW

(BCH−BW ' −1.11) [101, 102] which is also shown in Fig. 5.3(b). However,

it still does not reach the maximal violation −(1 +
√

2)/2 ' −1.21, which the

single-photon entangled state (5.29) shows with perfect rotations. It does not

maximally violate the Bell-CH inequality because of the imperfect rotations by

the displacement operator used in the BW formalism (5.32). Note that the

displacement operator does not flip |0〉 to |1〉 and vice versa (see Fig. 5.1(b)).

As α becomes large, one can observe qualitatively the same phenomenon as for

the two-mode squeezed state. The Bell violation approaches to zero as α→∞
because of the decrease of the weight of the term |0〉|0〉.

Instead of the measurement of the presence of photons, the parity mea-

surement can be used with the unitary rotation U(θ) to investigate the Bell-CH

inequality. The Bell-CH function is defined as

B
(Π)
CH = 〈χ1(θ1)⊗ χ2(θ2) + χ1(θ1)⊗ χ2(θ

′
2)

+ χ1(θ
′
1)⊗ χ2(θ2)− χ1(θ

′
1)⊗ χ2(θ

′
2)

− χ1(θ1)⊗ 112 − 111 ⊗ χ2(θ2)〉, (5.35)

χ(θ) =

∞∑

n=0

U(θ)|2n〉〈2n|U †(θ). (5.36)

For the two-mode squeezed state,

〈χ1(θ1)⊗ χ2(θ2)〉 = sin θ1 cos θ1 sin θ2 cos θ2 tanh 2r, (5.37)

〈χ1(θ1)⊗ 11〉 =
(cos2 θ1 cosh2 r + sin2 θ2

1 sinh2 r)

cosh 2r
, (5.38)
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and for the entangled coherent state,

〈χ1(θ1)⊗ χ2(θ2)〉 =
1

2
(sin2 θ1 cos2 θ2 + sin2 θ1 cos2 θ2)

−K(α) sin θ1 cos θ1 sin θ2 cos θ2, (5.39)

〈χ1(θ1)⊗ 11〉 =
1

2
(cos2 θ1 + sin2 θ1), (5.40)

from which the Bell-CH function B
(Π)
CH can be obtained. In both cases, we

find that the Bell-CH function approaches to the maximal violation B
(Π)
CH →

−(1 ±
√

2)/2. For the two-mode squeezed state, B
(Π)
CH reaches the maximal

violation for r → ∞ as shown in Fig. 5.3(a). The upper bound is found at

θ1 = 0, θ2 = −3π/8, θ′1 = π/4 and θ′2 = −5π/8, and the lower bound at θ1 = 0,

θ2 = −θ′2 = π/8 and θ′1 = π/4. As shown in Fig. 5.3(b), for the entangled

coherent state, B
(Π)
CH reaches the maximal violation for α → 0 and α → ∞ at

the same angles.

5.4 Remarks

We have studied the violation of Bell’s inequalities using various formalisms.

We have been able to discuss the link between the discussions for the quantum

nonlocality of finite and infinite dimensional systems. The pseudospin operator

[115] can be understood as the limiting case of a Gisin-Peres observable [126].

The BW formalism [101, 102] can be generalised to obtain a larger Bell vio-

lation [129]. However, the original EPR state cannot maximally violate Bell’s

inequality even in the the generalised version of the BW formalism. We dis-

cussed the reason compared with the case of the entangled coherent state which

shows maximal violation of Bell’s inequality in the generalised BW formalism.

Our result is in agreement with the recent study of nonlocality of a two-mode

squeezed state in absorbing optical fibers [135]. In [135], the authors found that

nonlocality of the two-mode squeezed state is more robust against a dissipative

environment in the pseudospin approach than in the previous study [109] based

on the BW formalism. It was shown that the dichotomic measurement for the

presence of photons is not so effective in finding the nonlocality of two-mode

squeezed states and entangled coherent states.
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However, it should be pointed out that the nonlocality based on the

Wigner and Q functions is very useful because the measurement of W and Q

functions is experimentally possible [136] while the implementation of other

operations which we have discussed here have difficulties in their experimental

realisation. Note also that Banaszek et al. studied the Bell-CH inequality for a

single-photon entangled state and a two-mode squeezed state in terms of Q rep-

resentation [137]. They took imperfect detection efficiency into consideration.

Recently, a paper generalising the work of Chen et al. where different qubit

states are assigned to a continuous variable system has also appeared [138].
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Chapter 6

Quantum Teleportation with An

Entangled Coherent State

This Chapter contains a detailed analysis of quantum teleportation via an en-

tangled coherent state as the quantum channel. In quantum information pro-

cessing, the entangled coherent state is normally categorised into a two-mode

continuous-variable state. However, it has already been shown in Chapter 2

that it is possible to study entangled coherent states within the framework of

a 2 × 2 dimensional Hilbert space. We assess the entanglement of an evolved

entangled coherent state in a vacuum environment and how useful it can be to

transfer the quantum information.

We first construct an orthogonal Bell basis set from non-orthogonal co-

herent states to reformulate the problem to 2×2 dimensional Hilbert space.

We then investigate the Bell-state measurement scheme that works perfectly in

the large amplitude limit. The Bell measurement scheme composed of linear

devices is proposed for use in entanglement concentration and quantum tele-

portation. Van Enk and Hirota’s teleportation scheme [73] is re-illustrated in

our framework. When the quantum system is open to the outside world, the

initially prepared system decoheres and becomes mixed. Assuming the vacuum

environment, we find how an entangled coherent state loses its initial entangle-

ment as interacting with the environment. We use the measure of entanglement

[54] based on the partial transposition condition of entanglement [46]. We then

consider optimal quantum teleportation via the mixed quantum channel. We

find that even though the channel is always entangled under the influence of
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6.1 Quantum teleportation

the vacuum environment, it becomes useless for teleportation at some point.

6.1 Quantum teleportation

The nonlocal property of quantum mechanics enables a striking phenomenon

called quantum teleportation. By quantum teleportation, an unknown quantum

state is disentangled in a sending place and its perfect replica appears at a

distant place via dual quantum and classical channels. Quantum teleportation

is an interesting example to demonstrate a quantum property and is useful for

quantum information processing. The key ingredients of quantum teleportation

are a quantum channel, which is an entangled state, and Bell-type measurement.

Let us begin with a simple problem: Is it possible to realise a disembodied

transport of an unknown quantum state |φ〉 between two distant parties? Until

recently, physicists thought that the answer would be negative because of the

implication of the no cloning theorem which prohibits producing a perfect copy

of an unknown quantum state. However, in 1993, Bennett et al. suggested an

intriguing Gedanken experiment [7]. According to their suggestion, it is possible

to teleport an unknown quantum state utilising a pre-arranged entangled state.

Bennett et al.’s suggestion was to teleport a simple 2-dimensional system as

follows. Suppose that Alice wants to send an unknown quantum state

|φ〉1 = a| ↑〉1 + b| ↓〉1. (6.1)

The first procedure that Alice and Bob should perform is to prepare the EPR

singlet state

|ψEPR〉23 =
1√
2
(| ↑〉2| ↓〉3 − | ↓〉2| ↑〉3), (6.2)

and share the pair between two, so that Alice has the particle 2 and Bob has

particle 3. The total system |Φ〉123 of the three particles is in a direct product

state |Φ〉123 = |φ〉1|ψEPR〉23 and can be represented by the Bell basis of particles

1 and 2 as

|Φ〉123 =
1

2
[|Ψ−〉12(−a| ↑〉3 − b| ↓〉3) + |Ψ+〉12(−a| ↑〉3 + b| ↓〉3)
+ |Φ−〉12(a| ↑〉3 + b| ↓〉3) + |Φ−〉12(a| ↑〉3 − b| ↓〉3)]. (6.3)
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If Alice performs a Bell measurement on particles 1 and 2 at her side, Bob’s

state will be reduced to one of the four components corresponding to parti-

cle 3 in Eq. (6.3). After the measurement, Alice sends Bob the result of her

measurement which corresponds to 2 classical-bit information so that Bob can

reconstruct the original unknown state by performing the corresponding unitary

operation on particle 3. For example, if the outcome of Alice’s measurement is

|Φ+〉12, Bob will operate with σz to finish the teleportation procedure.

The quantum teleportation of a 2-dimensional system has been exper-

imentally demonstrated with the polarisation of light [8, 9]. It is possible to

extend quantum teleportation of a two-dimensional system to an arbitrary N -

dimensional or a continuous-variable system. Vaidman first pointed out how

an original EPR state, which is a maximally entangled state, can be employed

with nonlocal measurements for teleportation of continuous variables [139]. He

suggested two different methods in the framework of nonlocal measurements.

One is teleportation via “crossed” space-time nonlocal measurements and the

other is a generalisation of Bennett el al.’s scheme [7] by nonlocal measure-

ments. In the second method, the original EPR state with perfect correlations

in both position and momentum is generated by nonlocal measurements. Even

though Vaidman’s ideas are creative applications of nonlocal measurements to

quantum teleportation, it is difficult to realise in real experiments. Braunstein

and Kimble suggested a protocol for an experimentally realisable teleportation

of a continuous-variable system [32]. Their scheme utilises a two-mode squeezed

state to teleport quadrature variables of light. The squeezing parameter deter-

mines the fidelity, which is a measure of how the input and output states are

close, of teleportation. A successful experiment was performed by Furusawa et

al. to demonstrate teleportation of continuous variables [31], though there has

been controversy on the requirement of optical coherence for continuous-variable

teleportation and the success of Furusawa et al.’s experiment [140, 141].

Teleportation protocols can be used for quantum computation where

storage of information is required. There was an experiment for teleportation

of nuclear-qubit states, where a quantum state of a carbon nucleus was tele-

ported to a hydrogen nucleus over interatomic distances using nuclear magnetic

resonance [142]. While light fields are ideal for quantum communication, atoms

are advantageous for the long-term storage of quantum information. Atoms are
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not ideal for quantum communication and information transfer as they move

slowly and interact strongly with an environment. There was a proposal to com-

bine the advantages of using both photons for transfer and atoms for storage

of quantum information to teleport atomic states over macroscopic distances

[143].

6.2 Construction of Bell basis with entangled

coherent states

We have considered two kinds of entangled coherent states which have symmetry

in phase space:

|C1〉 =
1√
N

(|α〉|α〉+ eiϕ| − α〉| − α〉), (6.4)

|C2〉 =
1√
N ′

(|α〉| − α〉+ eiϕ
′ | − α〉|α〉), (6.5)

where |α〉 and | − α〉 are coherent states of amplitudes α and −α, N and

N ′ are normalisation factors, and ϕ and ϕ′ are relative phase factors. In

Chapter 2, it was verified that any entangled coherent states in the form of

(|β〉|β〉 + eiϕ|γ〉|γ〉)/
√
N or (|β〉|γ〉 + eiϕ

′ |γ〉|β〉)/
√
N ′, where β and γ are any

complex amplitudes, can be converted respectively to |C1〉 or |C2〉 by applying

local unitary operations. As we have also pointed in Chapter 2, it is possible

to consider an entangled coherent state in C2⊗C2 Hilbert space. It makes the

problem simpler because two-qubit entangled states have the simplest math-

ematical structure among entangled states. In Chapter 2, we introduced odd

and even cat states as the basis states for the reduced two-dimensional Hilbert

space. However, the basis states can be arbitrarily chosen from the linear inde-

pendent vectors |α〉 and |−α〉. Suppose new orthonormal bases by superposing

non-orthogonal and linear independent two coherent states |α〉 and | − α〉:

|ψ+〉 =
1√
Nθ

(cos θe−
1

2
iφ|α〉 − sin θe

1

2
iφ| − α〉), (6.6)

|ψ−〉 =
1√
Nθ

(− sin θe−
1

2
iφ|α〉+ cos θe

1

2
iφ| − α〉), (6.7)
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where Nθ = cos2 2θ is a normalisation factor and real parameters θ and φ are

defined as

sin 2θe−iφ = 〈α| − α〉 = exp[−2|α|2]. (6.8)

We define four maximally entangled Bell states using the orthonormal

bases in (6.6) and (6.7):

|B1,2〉 =
1√
2
(|ψ+〉|ψ+〉 ± |ψ−〉|ψ−〉), (6.9)

|B3,4〉 =
1√
2
(|ψ+〉|ψ−〉 ± |ψ−〉|ψ+〉). (6.10)

They can be represented by |α〉 and | − α∗〉 as

|B1〉 =
1√
2Nθ

{
e−iφ|α〉|α〉+ eiφ| − α〉| − α〉

− sin 2θ
(
|α〉| − α〉+ | − α〉|α〉

)}
, (6.11)

|B2〉 =
1√
2Nθ

(
e−iφ|α〉|α〉 − eiφ| − α〉| − α〉

)
, (6.12)

|B3〉 =
1√
2Nθ

{
|α〉| − α〉+ | − α〉|α〉

− sin 2θ
(
e−iφ|α〉|α〉+ eiφ| − α〉| − α〉

)}
, (6.13)

|B4〉 =
1√
2Nθ

(
|α〉| − α〉 − | − α〉|α〉

)
, (6.14)

where we immediately recognise that |B2〉 and |B4〉 are in the form of entangled

coherent states |C1〉 and |C2〉 while |B1〉 and |B3〉 become so as |α| → ∞.

Now we are ready to consider decoherence and teleportation with mixed

entangled coherent states. For simplicity we assume φ = 0, i.e., α is real, in the

rest of the Chapter.

6.3 Teleportation via a pure channel

There have been studies on the quantum teleportation of a coherent superpo-

sition state via an entangled coherent channel |B2〉 [73]. Here, we suggest a
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scheme for the same purpose with the use of Bell bases (6.11), (6.12), (6.13),

and (6.14). The scheme includes direct realisation of Bell-state measurements.

We also show that the Bell-state measurement method enables the entanglement

concentration of partially entangled coherent states.

6.3.1 Teleportation and Bell-state measurement

Let us assume that Alice wants to teleport a coherent superposition state

|ψ〉a = A|α〉a + B| − α〉a (6.15)

via the pure entangled coherent channel |B4〉bc, where the amplitudes A and B
are unknown. The state (6.15) can be represented as

|ψ〉a = A′|ψ+〉a + B′|ψ−〉a (6.16)

with A′ = A cos θ + B sin θ and B′ = A sin θ + B cos θ. After sharing the quan-

tum channel |B4〉bc, Alice performs a Bell-state measurement on her part of

the quantum channel and the state (6.15) and sends the outcome to Bob. Bob

accordingly chooses one of the unitary transformations {iσy, σx,−σz, 11} to per-

form on his part of the quantum channel. Here σ’s are Pauli operators and 11

is the identity operator and the correspondence between the measurement out-

comes and the unitary operations are B1 ⇒ iσy, B2 ⇒ σx, B3 ⇒ −σz, B4 ⇒ 11.

Acting of these operators on |α〉 and| − α〉 gives effects as follows:

| α〉 iσy−→ 1

Nθ

(
sin 2θ|α〉 − | − α〉

)
, (6.17)

| −α〉 iσy−→ 1

Nθ

(
|α〉 − sin 2θ| − α〉

)
, (6.18)

| α〉 σx←→ | − α〉, (6.19)

| α〉 −σz−→ 1

Nθ

(
|α〉 − sin 2θ| − α〉

)
, (6.20)

| −α〉 −σz−→ 1

Nθ

(
sin 2θ|α〉 − | − α〉

)
. (6.21)

It is not a trivial problem to discriminate all four Bell states. In fact it was

shown that complete Bell-state measurements on a product Hilbert space of two
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two-level systems are not possible using linear elements [84]. We here employ

the Bell-state measurement scheme studied in Chapter 2, according the basis

state in this Chapter, to discriminate Bell states constructed from entangled

coherent states. Although perfect discrimination is not possible, arbitrarily high

precision can be achieved when the amplitude of the coherent states becomes

large. For simplicity, we shall assume that the 50:50 beam splitter imparts equal

phase shifts to reflected and transmitted fields.

Suppose that each mode of the entangled state is incident on the beam

splitter. After passing the beam splitter (bs), the Bell states become

|B1〉ab bs−→ 1√
2Nθ

(|even〉f |0〉g − sin 2θ|0〉f |even〉g),

|B2〉ab bs−→ 1√
2Nθ

|odd〉f |0〉g,

|B3〉ab bs−→ 1√
2Nθ

(|0〉f |even〉g,− sin 2θ|even〉f |0〉g),

|B4〉ab bs−→ 1√
2Nθ

|0〉f |odd〉g, (6.22)

where |even〉 = |
√

2α〉 + | −
√

2α〉 has non-zero photon-number probabilities

only for even numbers of photons and |odd〉 = |
√

2α〉 − | −
√

2α〉 has non-

zero photon-number probabilities only for odd numbers of photons. Note that

|even〉 and |odd〉 are not normalised. If an odd number of photons is detected

at detector A for mode f then we know that the entangled state incident on

the measurement set up was |B2〉. On the other hand, if an odd number of

photons is detected at detector B for mode g then the incident entangled state

was |B4〉. When even numbers of photons are measured, we cannot in general

tell if the incident state was |B1〉 or |B3〉. However, for sin 2θ (= 〈α| − α〉) ' 0,

i.e. α � 1, if a non-zero even number of photons is detected for mode f , the

incident state was |B1〉, and if a non-zero even number is detected for mode g,

it was |B3〉. When sin 2θ is not negligible, the probability of wrong estimation

is

Pi(α) =
1

2(1 + e4α2)
. (6.23)

For the limit of α � 1, this probability approaches to zero and all the Bell

states can be discriminated with arbitrarily high precision.
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When the measurement outcome is |B2〉, the receiver performs |α〉 ↔
| − α〉 on c. Such a phase shift by π can be done using a phase shifter whose

action is described by R(ϕ) = eiϕa
†a:

R(ϕ)aR†(ϕ) = ae−iϕ, (6.24)

where a and a† are the annihilation and creation operators. When the measure-

ment outcome is |B4〉, the receiver does nothing on c as the required unitary

transformation is only the identity operation 11. When the outcome is |B3〉, an

operator 1
Nθ

(|α〉〈α|− |−α〉〈−α|) plays the corresponding role, which becomes a

unitary operator for α � 1. This transformation can be obtained by displace-

ment operator D(iπ/4α) and be simply realised by a beam splitter and a strong

coherent field as explained in Chapter 31. When the outcome is |B1〉, σx and

σz should be successively applied.

6.3.2 Concentration of partial entanglement via entan-

glement swapping

If the initially prepared quantum channel is in a pure but not maximally entan-

gled state, the channel may be distilled to a maximally entangled state before

using it for quantum information processing including teleportation. This pro-

cess is known as the entanglement concentration protocol [144, 43]. For an

entangled coherent channel, it can be simply realised via entanglement swap-

ping [145, 146] using the Bell measurement proposed in Sec. 6.3.1.

Suppose an ensemble of a partially entangled pure state

|D4〉 =
1√
Nη

(cos η|α〉| − α〉 − sin η| − α〉|α〉) (6.25)

from which we want to distil a sub-ensemble of a maximally entangled state. Nη

is a normalisation factor and the real phase factor η, 0 < η < π/2, determines

the degree of entanglement for |D4〉. The state |D4〉 in (6.25) is written in the

1There are more detailed discussions on this transformation in Chapter 8 and Appendix
A.
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orthonormal bases (6.6) and (6.7) as follows:

|D4〉 =
1√
Nη

{
1

2
sin 2θ(cos η − sin η)

(
|ψ+〉|ψ+〉+ |ψ−〉|ψ−〉

)

+
(
cos2 θ cos η − sin2 θ sin η

)
|ψ+〉|ψ−〉

+
(
sin2 θ cos η − cos2 θ sin η

)
|ψ−〉|ψ+〉

}
. (6.26)

First, we consider the case when α is large. In this case, state |D4〉 ' |E4〉
where

|E4〉 = cos η|ψ+〉|ψ−〉 − sin η|ψ−〉|ψ+〉. (6.27)

After sharing a quantum channel between Alice and Bob, Alice prepares a pair

of particles which are in the same entangled state as the quantum channel. Alice

then performs Bell-state measurement on her pair of the quantum channel. If

the measurement outcome is B1 or B2, the other particle of Alice’s and Bob’s

quantum channel is, respectively, in maximally entangled state |B1〉b′c or |B2〉b′c
where Alice’s particle is denoted by b′. Otherwise, Alice’s particle and Bob’s

quantum channel are not in a maximally entangled state:

|B′
3〉b′c =

1√
N ′
η

(cos2 η|ψ+〉b′ |ψ−〉c + sin2 η|ψ−〉b′ |ψ+〉c), (6.28)

|B′
4〉b′c =

1√
N ′
η

(cos2 η|ψ+〉b′ |ψ−〉c − sin2 η|ψ−〉b′|ψ+〉c), (6.29)

respectively for measurement outcome of B3 or B4. N
′
η is a normalisation factor.

The probability P1 and P2 to obtain the maximally entangled state |B1〉b′c and

|B2〉b′c are P1 = P2 = cos2 η sin2 η. In this way, no matter how small the

initial entanglement is, it is possible to distil some maximally entangled coherent

channels from partially entangled pure channels.

We now consider the concentration protocol when α is not large enough

to neglect sin 2θ. In this case, only two Bell-states |B2〉 and |B4〉 can be pre-

cisely measured. Extending the previous argument leading to (6.29), when the

measurement outcome is |B4〉, the resulting state for particles b′ and c is not

maximally entangled. However, we can find that, for the measurement outcome

of |B2〉, the resulting state is |B2〉b′c even for the case of α small. The success
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probability P2 for this case is

P2(θ, η) =
cos4 2θ sin2 2η

4(1− sin2 2θ sin 2η)
(6.30)

where P2 → 0 for α ' 0 and P2 → cos2 η sin2 η for α� 1.

6.4 Decay of the entangled coherent channel:

measure of entanglement

When the entangled coherent channel |B4〉 is embedded in a vacuum environ-

ment, the channel decoheres and becomes a mixed state of its density operator

ρ4(τ), where τ stands for the decoherence time. To know the time dependence

of ρ4(τ), we have to solve the master equation (3.25). In Chapter 3, we have

studied its formal solution and found the solution for single-mode dyadic

exp[(Ĵ + L̂)τ ]|α〉〈β| = 〈β|α〉1−t2|αt〉〈βt| (6.31)

where t = e−
1

2
γτ . For later use, we introduce a normalised interaction time r

which is related to t: r =
√

1− t2.

To restrict our discussion in a 2×2 dimensional Hilbert space even for the

mixed case, the orthonormal basis vectors (6.6) and (6.7) are now τ -dependent:

|Ψ+(τ)〉 =
1√
NΘ

(cos Θ|tα〉 − sin Θ| − tα〉), (6.32)

|Ψ−(τ)〉 =
1√
NΘ

(− sin Θ|tα〉+ cos Θ| − tα〉), (6.33)

where sin 2Θ = exp(−2t2α2). The unknown state to teleport and the Bell-state

bases are newly defined according to the new basis vectors Eqs. (6.32) and

(6.33).

Any two dimensional bipartite state can be written as

ρ =
1

4

(
11⊗ 11 + ~v · ~σ ⊗ 11 + 11⊗ ~s · ~σ +

3∑

m,n=1

tnmσn ⊗ σm
)
, (6.34)

84



6.4 Decay of the entangled coherent channel: measure of
entanglement

where coefficients tnm = Tr(ρσm⊗σn) form a real matrix T . Vectors ~v and ~s are

local parameters which determine the reduced density operator of each mode

ρb = Trcρ =
1

2
(11 + ~v · ~σ), (6.35)

ρc = Trbρ =
1

2
(11 + ~s · ~σ), (6.36)

while the matrix T is responsible for correlation[147]

E(a, b) = Tr(ρ~a · ~σ ⊗~b · ~σ) = (~a, T~b). (6.37)

With use of Eqs. (6.14) and (6.31), we find ~v, ~s, and T for the mixed channel

ρ4(τ) as follows

~v = ~s =

(
B

Nθ
, 0, 0

)
, (6.38)

T =
1

2Nθ




A +D 0 0

0 −A +D 0

0 0 A− C


 , (6.39)

where A, B, C and D are defined as

A = (1− Γ) exp(−4t2α2),

B = (1− Γ) exp(−2t2α2),

C = 2− (1 + Γ) exp(−4t2α2),

D = −2Γ + (1 + Γ) exp(−4t2α2),

Γ = exp[−4(1− t2)α2]. (6.40)

Note that Nθ is a time-independent normalisation factor and ρ4(τ 6= 0) can not

be represented by a Bell-diagonal matrix.

The necessary and sufficient condition for separability of a two dimen-

sional bipartite system is the positivity of the partial transposition of its den-

sity matrix [46]. Consider a density matrix ρ for a 2×2 system and its partial

transposition ρT2 . The density matrix ρ is inseparable iff ρT2 has any negative

eigenvalue(s). We define the measure of entanglement E for ρ in terms of the

negative eigenvalues of ρT2 [54]. The measure of entanglement E is then defined
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as

E = −2
∑

i

λ−i (6.41)

where λ−i are the negative eigenvalue(s) of ρT2 and the factor 2 is introduced to

have 0 ≤ E ≤ 1.

For ρ4(τ) we find the time evolution of the measure of entanglement

E(τ) =

√
16B2 + (C −D)2 − (2A+ C +D)

4Nθ

. (6.42)

Initially, the state |B4〉 is maximally entangled, i.e., E(τ = 0) = 1, regardless of

α. It is seen in Fig. 6.1(a) that the mixed state ρ4(τ) is never separable at the

interaction time τ <∞. It should be noted that the larger the initial amplitude

α, the more rapidly the entanglement is degraded. It is known that the speed

of destruction of quantum interference depends on the distance between the

coherent component states[125]. When the amplitudes of coherent component

states are larger, the entanglement due to their quantum interference is more

fragile.

6.5 Teleportation via a mixed channel

The optimal fidelity of teleportation in any general scheme by means of trace-

preserving local quantum operations and classical communication (LQCC) via

a single channel can be obtained from the maximal singlet fraction of the

channel[148]. The relation is

f(ρ) =
F (ρ)N + 1

N + 1
, (6.43)

where f(ρ) is the optimal fidelity for the given quantum channel ρ, F (ρ) is the

maximal singlet fraction of the channel, and N is the dimension of the related

Hilbert space CN ⊗CN . F (ρ) is defined as max〈Φ|ρ|Φ〉 where the maximum is

taken over all the N ×N maximally entangled states.

Any 2× 2 channel becomes useless for quantum teleportation when the

optimal fidelity f(ρ) is less than the classical limit 2/3. In other words, when
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F (ρ) ≤ 1/2, the channel is useless for quantum teleportation. To find the

maximally entangled basis in which a given channel has the highest fraction of

a maximally entangled state, it suffices to find rotations which diagonalise T

[149]. In the case of ρ4, T in (6.39) is always a diagonal matrix. This means that

the Bell bases constructed from Eqs. (6.32) and (6.33) give the maximal singlet

fraction at any decay time. The optimal fidelity f(ρ4) obtained by Eq. (6.43)

and the definition of the maximal singlet fraction is

f(ρ4) =
1

3
max

{
1 +

e4α
2 − e4t2α2

e4α2 − 1
,
e4t

2α2 − e4r2α2

+ 2e4α2 − 2

e4α2 − 1

}
. (6.44)

Because the initially defined Bell bases always give the maximal singlet frac-

tion, the optimal fidelity is obtained by the standard teleportation scheme with

Bell measurement and unitary operations. This means that the experimental

proposal in Sec. 6.3 for a pure channel can also be used for a mixed channel to

obtain the optimal fidelity. The optimal fidelity for the standard teleportation

scheme is

fs(ρ4) = max

[
1

2
(1− 1

3
TrTO)

]
= f(ρ4), (6.45)

where the maximum is taken over all possible rotations O = O+(3)[147]. As the

interaction time varies, parameters ~v, ~s and T are changed. For the decoherence

model we consider in this Chapter, T alone affects the fidelity of teleportation.

Fig. 6.1(b) shows the optimal fidelity at the normalised decay time r.

The channel is always entangled as shown in Fig. 6.1(a). However, after the

characteristic time rc = 1/
√

2 the channel becomes useless for teleportation. It

is worth noting that the characteristic time does not depend on the initial α

value. This is confirmed by the fact that the only real solution of the equation

f(ρ4) = 2/3 is r = 1/
√

2 regardless of α. Bennett et al. [15] have pointed out

that some states with nonzero entanglement do not have the maximal singlet

fractions higher than 1/2. The decohered entangled coherent channel ρ4(r ≥ rc)

is an example of such a case.

As the interaction time varies, all of matrix T and local parameters ~v

and ~s are changed. For the decoherence model we consider in this Chapter,

T alone affects the fidelity of teleportation as shown in Eq. (6.45) while the

local parameters ~v and ~s do not. We investigate how T , ~v and ~s affect the

entanglement of the decohered channel in the following.
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Figure 6.1: (a) Entanglement E for the mixed entangled coherent channel
against the normalised decoherence time r =

√
1− e−γτ . (b) Optimal fidelity

f of quantum teleportation with the mixed entangled coherent channel. The
maximum fidelity 2/3 obtained by classical teleportation is plotted by a dotted
line. We can clearly see that the mixed channel is not useful in quantum tele-
portation from r = 1/

√
2 even though it is always entangled. α = 0.1 (solid

line), α = 1 (long dashed) and α = 2 (dot dashed).

In Eqs. (6.38) and (6.42), it is clear that all T , ~v, and ~s affect entan-

glement of the channel. The change of T with the decay time decreases the

entanglement of the channel. On the other hand, the change of the local states

represented by the change of ~v and ~s partially recovers the entanglement. It be-

comes clear by the following analysis. Suppose a τ -dependent quantum channel

whose T changes as in (6.39) but local parameters ~v and ~s remain zero. The
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6.5 Teleportation via a mixed channel

density matrix of the mixed channel at τ is

ρT (τ) =
1

4

(
11⊗ 11 +

3∑

m,n=1

tnmσn ⊗ σm
)

(6.46)

and the degree of entanglement is

ET (τ) = max
{
− A +D

2Nθ

, 0
}
, (6.47)

where ET (τ) decreases faster than E(τ) in Eq. (6.42). Note that this channel

is not directly related to the decoherence model concerned here.

For this assumption, teleportation fidelity is not changed from Eq. (6.45)

due to the same T and linearly dependent on the entanglement ET (τ) while

ET (τ) has a nonzero value. The mixed channel ρT (τ) is useful for teleportation

iff it is entangled, as for any entangled channel with diagonal T and ~v = ~s = 0

[147].

Comparing E(τ) with ET (τ), it is clear that some amount of entangle-

ment is added to E(τ) by the increase of B/Nθ of ~v and ~s. We can thus say that

the environmental effects on the local states contribute towards entanglement

but this “additive entanglement” is not useful for teleportation at all. Therefore,

teleportation fidelity is lower than 2/3 even when the channel is entangled.

Bose and Vedral [150] found that not only entanglement but also mixed-

ness of quantum channels affect the fidelity of teleportation. We may conjecture

that the higher entanglement and the lower mixedness (higher purity) result in

the better fidelity. In this case, it is shown to be true only when the channel

is useful for teleportation. The mixedness of a given state ρ can be quantified

by its linear entropy S(ρ) = 1− Tr(ρ2). For the decohered entangled coherent

channel, the linear entropy is

S(ρ4) =
(e8r

2α2 − 1)(e8t2α2 − 1)

2(e4α2 − 1)2
, (6.48)

which increases to the maximal value and then decreases to zero as shown in

Fig. 6.5 because the channel interacts with the vacuum and the state for τ →∞
approaches to the two-mode vacuum which is a pure state. We found that
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Figure 6.2: Mixedness S quantified by the linear entropy for the mixed entan-
gled coherent state against the normalised decoherence time r. The mixedness
becomes maximised at the characteristic time rc after which the channel is no
longer useful for teleportation. α = 0.1 (solid line), α = 1 (long dashed) and
α = 2 (dot dashed).

mixedness becomes maximised at the characteristic time rc. It is confirmed

by solving the equation ∂S(ρ4)/∂r = 0 which yields a unique real solution

r = 1/
√

2 = rc again regardless of α. It is easily checked that von Neumann

entropy as a measurement of mixedness gives exactly the same result.

Horodecki et al. [149] showed that any entangled 2 × 2 density matrix

can be distilled to a singlet form by local filtering [43, 151] and an entanglement

concentration protocol [144]. If sufficiently many entangled 2× 2 channels are

given, no matter how small the entanglement of the channels is, some maxi-

mally entangled channels can be obtained from the original pairs. Because the

decohered channel ρ4 is entangled at any decay time, the ensemble represented

by ρ4(τ) can be purified to obtain some maximally entangled channels. We have

seen that the singlet fraction F (ρ4) becomes smaller than 1/2 after rc, mean-

while the purification protocol in [144] can be applied when the singlet fraction

of a given density matrix is larger than 1/2. Therefore, if the decay time is

longer than rc, a local filtering or a generalised measurement [149] should be

first performed on ρ4 for purification. It has been pointed out that the filtering

process allows one to transfer the entanglement hidden in the relation between

~v, ~s and T (the entanglement added by change of the local states) to T [149].
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6.6 Usefulness for continuous-variable teleportation

6.6 Usefulness for continuous-variable telepor-

tation

We have studied entangled coherent states in a 2× 2 Hilbert space. However,

entangled coherent states are in fact continuous-variable states in infinite di-

mensional Hilbert space. If |B2〉 and |B4〉 are considered in infinite dimensional

Hilbert space, they are not maximally entangled any more[152]. It is thus nat-

ural to ask such a question: how useful are the entangled coherent states for

teleportation of continuous-variable states?

In the protocol proposed in [32] and demonstrated experimentally in [31]

for continuous-variable teleportation, a two-mode squeezed state is used as the

quantum channel and a joint homodyne measurement as Alice’s measurement.

An unknown quantum state in Eq. (6.15) can be teleported by a two-mode

squeezed state, and the fidelity becomes unity for the limit of infinite squeezing.

Assume that a coherent state of an unknown amplitude is the state to

teleport via an entangled coherent state, |C2〉 in Eq. (6.5) with ϕ′ = 0. After a

straightforward calculation, the fidelity is obtained [153]

f(α) =
1 + exp(−2α2

r)

2
[
1 + exp(−4α2

r)
] . (6.49)

Note that f(α) is independent from the amplitude of the unknown coherent

state to teleport. It depends only on the real part of coherent amplitude α of

the quantum channel. We find from Eq. (6.49) that the fidelity is always better

than 1/2. The maximal value is about 0.6 when αr ' ±0.7.

6.7 Remarks

We have studied a mixed entangled coherent channel in 2×2 Hilbert space. We

constructed orthogonal Bell bases with entangled coherent states to consider

their entanglement and usefulness for teleportation in a dissipative environment.

A pure entangled coherent channel is shown to teleport perfectly some quantum

information. We investigated an experimental scheme for teleportation and
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entanglement concentration with a realisable Bell-measurement method.

It is found that a mixed entangled coherent state is always entangled

regardless of the decay time. The larger initial amplitude α, the more rapidly

entanglement is degraded. This is in agreement with the fact that macroscopic

quantum effects are not easily seen because it is more fragile.

Because a decohered entangled coherent channel is entangled at any de-

cay time, its ensemble can be purified by an entanglement purification protocol

[144] and used for reliable teleportation. On the other hand, it is shown that

the optimal fidelity of teleportation attainable using a single pair is better than

the classical limit 2/3 only until a certain characteristic time rc, at which the

mixedness of the channel becomes maximised. The maximal singlet fraction of

the state is not more than 1/2 after rc, even though it is still entangled.

Entanglement and mixedness [150] of quantum channels are important

factors which affect teleportation. Until the characteristic time, both entangle-

ment and purity decrease, which causes the decrease of teleportation fidelity.

After the time rc, the purity of the channel is recovered back even though en-

tanglement decreases further. The experimental realisation of purification for

the mixed channels deserves further investigation.
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Chapter 7

Quantum Teleportation with A

Two-Mode Squeezed State

A continuous variable state can be teleported with use of a two-mode squeezed

vacuum for a quantum channel [32]. In this Chapter, we investigate the tele-

portation via a mixed two-mode squeezed channel to consider the influence of

a thermal environment. We are interested in the transfer of non-classical prop-

erties of quantum states. It is assumed that the thermal environment gives

the same effect on each mode of the quantum channel and the original state is

prepared in a pure state.

7.1 Quasiprobability functions

Before considering quantum teleportation, we briefly review the quasiproba-

bility functions. The family of quasiprobability functions are obtained by the

following convolution relation [154]

Rσ(ζ) =

∫
d2ξ

[
2

π(1− σ)
exp

(
−2 |ζ − ξ|2

1− σ

)]
P (ξ) (7.1)

where the σ-parameterised Rσ(ζ) function becomes Q function for σ = −1,

Wigner (W ) function for σ = 0, and P function for σ = 1. By the Fourier
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transform, we find the relation between their characteristic functions

CR
σ (η) = exp

[
−(1− σ)|η|2

2

]
CP (η) (7.2)

where CR
σ (η) and CP

σ (η) are the characteristic functions for the R and P func-

tions, respectively. The family of two-mode quasiprobability functions can be

analogously defined as

Rσ(ζa, ζb) =
4

π2(1− σ)2

∫
d2ηad

2ηb exp

(
−2 |ζa − ηa|2

1− σ − 2 |ζb − ηb|2
1− σ

)
P (ηa, ηb).

(7.3)

7.2 Teleportation using a two-mode vacuum

Suppose that Alice at the sending station wants to teleport an unknown state

to Bob at a distant receiving station via a two-mode squeezed vacuum. Two

modes b and c of the squeezed state are distributed separately to the sending

and receiving stations. Recall the Wigner function of the two-mode squeezed

vacuum,

Wqc(ζb, ζc) =
4

π2
exp

[
−2
(
|ζb|2 + |ζc|2

)
cosh 2sqc +2 (ζbζc + ζ∗b ζ

∗
c ) sinh 2sqc] ,(7.4)

where sqc is the degree of squeezing and the complex quadrature phase variable

ζb,c = ζrb,c + iζ ib,c. When sqc → ∞ the state (7.4) manifests the maximum

entanglement and becomes an original EPR state.

At the sending station, the original unknown state of mode a is mixed

with a mode b of the quantum channel by a 50/50 beam splitter. Before the

action of the beam splitter, the total state is a product of the original state

and the state of the quantum channel, which is represented by the total Wigner

function Wt(ζa, ζb, ζc) = Wo(ζa)Wqc(ζb, ζc) where Wo(ζa) is the Wigner function

of the original state ρ̂o. The product state of the original field and quantum

channel becomes entangled at the beam splitter. Considering the unitary ac-

tion of the beam splitter, the quadrature variables ζd,e of the output fields are

related to those of the input fields: ζd,e = (ζb ± ζa)/
√

2. The Wigner function
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WB
t (ζd, ζe, ζc) for the total field after the beam splitter is

WB
t (ζd, ζe, ζc) = Wt

(
ζe + ζd√

2
,
ζe − ζd√

2
, ζc

)
(7.5)

which exhibits entanglement between the modes a and b.

Setting homodyne detectors at the output ports of the beam splitter,

the imaginary part of ζd and the real part of ζe are simultaneously measured by

appropriately choosing the phases of reference fields for the homodyne detectors.

Each measurement result is transmitted to the receiving station to displace

the quadrature variables of the field mode c. We have to make sure that the

displacement operation is done on the photon of mode c entangled with the

photon measured at the sending station. After the displacement ∆(ζ id, ζ
r
e ) the

field of mode c becomes to be represented by the Wigner function Wr(ζc);

Wr(ζc) =

∫
d2ζd d

2ζeW
B
t (ζd, ζe, ζc −∆(ζ id, ζ

r
e )). (7.6)

Braunstein and Kimble [32] found that the displacement of ∆(ζ id, ζ
r
e) = −

√
2(ζre−

iζ id) maximises the fidelity when the channel is a pure two-mode squeezed state.

The probability P (ζ id, ζ
r
e ) of measuring ζ id and ζre at the sending station is the

same as the marginal Wigner function

P (ζ id, ζ
r
e ) =

∫
dζrd dζ

i
ed

2ζcW
B
t (ζd, ζe, ζc). (7.7)

7.3 Two-mode squeezed vacuum in thermal en-

vironments

The quantum channel initially in the two-mode squeezed vacuum results in

a mixed state by the interaction with the thermal environment. Assuming

that two thermal modes are independently coupled with the quantum channel

the dynamics of the squeezed field is described by a Fokker-Planck equation

(4.7) studied in Chapter 4. The two thermal modes are assumed to have the

same average energy and coupled with the channel in the same strength. This

assumption is reasonable as the two modes of the squeezed state are in the same
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frequency and the temperature of the environment is normally the same. The

time-dependent Wigner function (4.10) obtained in Chapter 4 is represented as

Wqc(ζb, ζc;T ) = N exp

[
− 2Γ

Γ2 − Λ2

(
|ζb|2 + |ζc|2

)
+

2Λ

Γ2 − Λ2
(ζbζc + ζ∗b ζ

∗
c )

]

(7.8)

where N is the normalisation factor and two parameters, Γ = T (1 + 2n̄) + (1−
T ) cosh 2sqc, Λ = (1−T ) sinh 2sqc. The renormalised time T (t) = 1− exp(−γt).
The relative strength of Λ to Γ determines how much the mixed channel is

entangled. When Λ is zero for T → 1, the channel loses any correlation so to

have neither classical nor quantum correlation. At T = 0 the mixed squeezed

state (7.8) is simply the squeezed vacuum (7.4).

When the quantum channel is embedded in thermal environments, the

teleported state is still represented by the Wigner function (7.6) with the quan-

tum channel (7.8). However, a question remains on the unitary operation at

the receiving station when the channel is a mixed state. According to the phi-

losophy of the faithful teleportation, the displacement has to be determined to

maximise the fidelity of teleportation. The fidelity F , which measures how close

the teleported state is to the original state, is the projection of the original pure

state |Ψo〉 onto the teleported state of the density operator ρ̂r: F = 〈Ψo|ρ̂r|Ψo〉.
The fidelity is also represented by the overlap between the Wigner functions for

the original and teleported states [155];

F = π

∫
d2ζWo(ζ)Wr(ζ). (7.9)

For a maximally entangled quantum channel, the original pure state is repro-

duced at the receiving station and the fidelity is unity. For an impure or partially

entangled channel, the unitary operation at the receiving station may depend

on original states to maximise the fidelity, which has been shown for the tele-

portation of a two-level state [156, 54]. For the infinite dimensional Hilbert

space, a formal study is very much complicated. However, we have found that

even when the channel is mixed, the displacement of ∆(ζ id, ζ
r
e ) = −

√
2(ζre − iζ id)

maximises the fidelity for an initial coherent state.
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7.4 Separability of the quantum channel

A discrete bipartite system of modes b and c is separable when its density

operator is represented by ρ̂ =
∑

r Prρ̂b,r ⊗ ρ̂c,r. Separability and measures

of entanglement for continuous variable states has been studied [152, 157]. In

particular, Duan et al. found a criterion to determine the separability of a two-

mode Gaussian state. Lee et al. employed a somewhat different approach to

find when a two-mode squeezed vacuum in thermal environments is separable

and not quantum-mechanically entangled [154]. This analysis is described for

any two-mode Gaussian state in Appendix B.

As shown in Appendix B, the mixed two-mode squeezed vacuum in the

thermal environment is separable when a positive definite P function can be

assigned to it. The mixed two-mode squeezed vacuum serving the quantum

channel can then be written by a statistical mixture of the direct-product states;

ρ̂qc =

∫
d2ξP(ξ)ρ̂b(ξ)⊗ ρ̂c(ξ) (7.10)

where P(ξ) is a probability density function.

With use of Eqs. (7.3) and (7.8), we find that the mixed two-mode

squeezed vacuum is separable when nτ = 1 where nτ is defined as

nτ (n̄, sqc, T ) ≡ Γ− Λ = (2n̄+ 1)T + (1− T ) exp(−2sqc) (7.11)

according to the condition (B.10). This is in agreement with Duan et al.’s

separation criterion [157]. The pure two-mode squeezed vacuum for T = 0,

is never separable unless sqc = 0. For the zero temperature environment, i.e.,

n̄ = 0, the two-mode squeezed state stays quantum-mechanically entangled at

any time. For the reasons given in Sec. IV, we call nτ as the noise factor.

If nτ < 1, the quantum channel state is entangled and the teleportation

is performed at the quantum level. When nτ ≥ 1, the quantum channel is no

longer quantum-mechanically entangled. However the inter-mode correlation is

still there as Λ 6= 0 in Eq. (7.8). Questions then arise: Does this classical corre-

lation influence the teleportation? Can any nonclassical properties imposed in

an original state be teleported by the classically-correlated channel? Braunstein
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and Kimble found that when a pure two-mode squeezed state is separable, i.e.,

ssq = 0, observation of any nonclassical features in the teleported state is pre-

cluded. However, when a pure state is separable there is no classical correlation

either.

7.5 Transfer of nonclassical features

An imperfect replica state is reproduced at the receiving station when the quan-

tum channel is not maximally entangled. It is well known that any linear

noise-addition process, for example linear dissipation and amplification, can be

described by the convolution relation of the quasiprobability functions [123].

With use of the Wigner functions for an arbitrary original state and for an

impure quantum channel (7.8), we find that the equation (7.6) leads to the

following convolution relation

Wr(ζ) =

∫
d2ξPτ(ζ − ξ)Wo(ξ) (7.12)

where the function Pτ characterises the teleportation process;

Pτ (ζ − ξ) =
1

πnτ
exp

(
− 1

nτ
|ζ − ξ|2

)
(7.13)

and the noise factor nτ , defined in Eq. (7.11), is completely determined by the

characteristics of the quantum channel. The noise factor increases monotonously

as the interaction time T increases. The larger the initial squeezing, the less

vulnerable the quantum channel is.

The noise factor nτ is related to the fidelity. With use of Eqs. (7.9) and

(7.12) the fidelity can be written as

F = π

∫
d2ζd2ξWo(ζ)Pτ(ζ − ξ)Wo(ξ). (7.14)

In the limit of nτ → 0, the function Pτ (ζ − ξ) in Eq. (7.13) becomes a delta

function and the fidelity becomes unity. The teleportation loses the original

information completely with F = 0 in the limit of nτ →∞.
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The properties of the nonclassical states have been calculated and illus-

trated by quasiprobability functions. The nonclassical features are associated

especially with negative values and singularity of the quasiprobability P func-

tion [158, 159, 160]. Suppose an original state whose P function is not positive

everywhere in phase space. When this state is teleported, its nonclassical fea-

tures are certainly transferred to the teleported state if the teleportation is

perfect. If the teleportation is poor, the teleported state may have its P func-

tion positive definite and lose the nonclassical features.

By the Fourier transform of Eq. (7.12), the convolution relation is repre-

sented in terms of the characteristic functions as

CW
r (η) = exp(−n̄τ |η|2)CW

o (η). (7.15)

Using the relation (7.2) between characteristic functions, Eq.(7.15) is written

as

CP
r (η) = exp[−(nτ − 1)|η|2]CQ

o (η), (7.16)

where CQ
o (η) is the characteristic function forRσ=−1(ζ) of the original state. The

P function is not semi-positive definite if its characteristic function CP
r (η) is not

inverse-Fourier-transformable. Even when it is inverse-Fourier-transformable,

there is a chance for the P function to become negative at some points of phase

space. Lütkenhaus and Barnett found that only when σ ≤ −1 the quasiprob-

ability Rσ(ζ) for any state is semi-positive definite. We are sure that, for any

original state, the left-hand side of Eq. (7.16) is inverse-Fourier transformed

to a P function semi-positive definite only when nτ ≥ 1. This condition is the

same as the separability condition (7.11) for the quantum channel. We conclude

that when a quantum channel is separable, i.e., not quantum-mechanically en-

tangled, no nonclassical features implicit in an original state is transferred by

teleportation. In other words, nonclassical features are not teleported via a

classically-correlated channel.

As an example, we examine the transfer of quadrature squeezing which

an unknown original state may have. The quadrature-phase operator is defined

as

X̂(φ) = e−iφâ+ eiφâ† (7.17)

where â (â†) is an annihilation (creation) operator and φ related to the angle
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7.5 Transfer of nonclassical features

in phase space. A state is said to be squeezed if the quadrature-phase variance

[∆X(φ)]2 < 1 for an angle φ. The expectation value of an observable for a state

can be obtained by use of the characteristic function CP (η) for its P function

[161];

〈(â†)mân〉 =
∂m

∂ηm
∂n

∂(−η∗)nC
P (η)

∣∣∣∣
η=η∗=0

. (7.18)

Substituting Eq. (7.16) into Eq. (7.18), the mean quadrature phase X̄r(φ) and

variance [∆Xr(φ)]2 for the teleported state can be calculated

X̄r(φ) = X̄o(φ); [∆Xr(φ)]2 = [∆Xo(φ)]2 + 2nτ , (7.19)

where X̄o(φ) and [∆Xo(φ)]2 are the mean quadrature phase and variance for the

original state. It is interesting to realise that the mean quadrature phase does

not change at all during teleportation. From Eq. (7.19), we can simply notice

that squeezing properties cannot be teleported when nr ≥ 1/2; the quantum

channel should be entangled enough as nτ < 1/2 to transfer squeezing proper-

ties.

A squeezed vacuum with the degree of squeezing so is written in the

Wigner representation as

Wo(ζ) =
2

π
exp

[
−2 exp(2so)ζ

2
r − 2 exp(−2so)ζ

2
i

]
(7.20)

where ζr and ζi are real and imaginary parts of ζ. Its teleported state is repre-

sented by the Wigner function

Wr(ζ) =
2

π
√
A(so)A(−so)

exp

[
− 2

A(so)
ζ2
r −

2

A(−so)
ζ2
i

]
(7.21)

where the parameter A(so) = 2nτ + exp(−2so). The fidelity is given by

F(so) =
(
n2
τ + 2nτ cosh 2so + 1

)−1/2
. (7.22)

When the teleportation is classical with nτ = 1, F(so) = (2 + 2 cosh 2so)
−1/2.
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7.6 Remarks

Quantum teleportation can be made more reliable by sophisticated schemes such

as purification of the impure or partially entangled quantum channel [152, 162],

detection with perfect efficiency, and well-defined unitary operation. However,

in the real world, the influence of noise cannot easily be disregarded. We have

been interested in the influence of noise on the transfer of nonclassicalities which

may be imposed in an original unknown state. To make the problem simple

while honouring the real experimental situation, we assumed that the same

amount of noise affects the two modes of the quantum channel. We found that

when the quantum channel is separable the transfer of any nonclassicality is im-

possible: Nonclassical features can not be teleported via a classically-correlated

channel. The separability of a two-mode Gaussian state is considered using the

possibility of assigning a positive well-defined P function to the state after some

local unitary operations. As an example, we have analysed the transfer of the

squeezing property.
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Chapter 8

Quantum Computation using

Coherent States

The theory of quantum computation promises to revolutionise the future of

computer technology with merits in factoring large integers [4] and combina-

tional searches [5]. In recent years, the physical implementation of a quantum

computer has been intensively studied. Quantum computing using optical sys-

tems has been studied as one of several plausible models. Recently, it was found

that universal quantum computation may be realised only with single photon

sources, single photon detectors and simple linear optical elements without non-

linear interactions [27]. While this result is extremely striking, it has some ob-

stacles such as inefficiency of the single photon source and photo-detection to

its experimental realisation. Another problem is that the optical networks are

too complex to realise near-deterministic scalable quantum computation.

A coherent field is a fundamental tool in quantum optics and linear su-

perposition of two coherent states is considered one of the realisable mesoscopic

quantum systems [71]. In particular, Cochrane et al. [116] showed how logical

qubits can be implemented using even and odd coherent superposition states

which are defined as |α〉±|−α〉 with |α〉 and |−α〉 representing coherent states

of π phase difference. The two superposition states form orthogonal bases in

two-dimensional Hilbert space and they can be discriminated by photon number

measurement. There were some proposals to entangle such logical qubits with

atomic states [163]. One drawback of using even and odd cat states as a logical

qubit basis for quantum computation is that they are extremely sensitive to
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8.1 Quantum computer

photon loss and detection inefficiency as was explained in Chapter 2.

In this Chapter, we present a method to implement universal quantum

computation using coherent states. This proposal makes it possible to realise

universal quantum computation based on quantum teleportation [7] which was

shown to be a useful tool in controlled gate operation [164]. It is also found

that this scheme may be robust to detection inefficiency.

8.1 Quantum computer

To begin this Chapter, let us try to briefly answer the following basic questions:

First, what is a quantum computer? Second, how is quantum computation

performed? Third, why do we need a quantum computer or what are advantages

of quantum computation compared with classical computation? Fourth, how

can we implement a physical quantum computer?

A quantum computer is a collection of l qubit systems [165], which can

be represented as

|ψQC〉 =
2l−1∑

x=0

cx|x〉, (8.1)

where |x〉 denotes a direct product state of l basis states (each of those is |0L〉
or |1L〉) and the normalisation condition is

∑
x |cx|2 = 1. To perform quantum

computation, a quantum computer makes a sequence of unitary operations.

Each of the unitary operations, called a quantum gate, is applied to a qubit or

to more than one qubit in a combined way. After a computation process, all

the qubits are finally measured for a readout and the measurement result will

produce a set of l binary numbers.

If any computation can be performed by a set of gates, the set is called

universal. For example, the NAND gate is a universal gate in classical com-

putation. Classical computation is based upon Boolean logic, where NAND

and NOT gates are basic gates used to construct various circuits for any com-

putation. For quantum computation, the C-NOT gate and 1-bit unitary gate

are a well known universal set of quantum gates [166]. There are universal

103



8.1 Quantum computer

quantum gates which satisfy universality by themselves as a single gate1. The

NAND gate, which is a basic gate in classical computation, is an irreversible

gate because the amount of output information is less than the input infor-

mation. The irreversible characteristic of computation means that a computer

always dissipates some amount of heat during a computation process and it can

be a nontrivial obstacle to building a computer on a small scale [167]. On the

contrary, quantum gates are in definition reversible because they are unitary

transformations of which unique inverse unitary transformations always exist.

In fact, one may in theory have reversibility (quantum or classical) of gate oper-

ations without losing information during computational process. Irreversibility

results from erasure [167] and it is at re-setting where irreversibility comes in.

In classical computation, parallel processing is a strong solution to de-

crease the time required for a certain computation. Parallel computing enables

the linear decrease of the computation time by the increase of the number of

processors, i.e., the increase of the size of the physical system. In quantum

computing, one can gain an exponential increase of the amount of parallelism

under the same condition: There is a possibility for an exponential decrease of

the computation time by a linear increase of the size of the physical system.

Suppose a function f(y)

f : (0, 1, · · ·, 2m−1)→ (0, 1, · · ·, 2n−1), (8.2)

where n and m are positive integers. It is possible to construct a quantum

circuit performing the following unitary transformation Uf :

Uf |y〉a|0〉b = |y〉a|f(y)〉b, (8.3)

where the register a keeps the input value while the result f(y) is in the register

b. Here, it is indispensable to use both the registers, a and b, to ensure the

reversibility of quantum computation. If we use a single register such as Uf |y〉 =

|f(y)〉, the final state may lose some information about the input state in case

y and f(y) do not have one-to-one correspondence: Such a process does not

1It has been found that many of 2-qubit quantum gates are universal [168].
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correspond to a quantum unitary transformation. If a superposed state,

1

2m/2

2m−1∑

y=0

|y〉, (8.4)

is given for the input state instead of |y〉 in Eq. (8.3), the final state becomes

Uf

( 1

2m/2

2m−1∑

y=0

|y〉
)
|0〉 =

1

2m/2

2m−1∑

y=0

|y〉|f(y)〉. (8.5)

Note that the state (8.5) contains information about f(0) to f(2m−1). This

means a quantum computer computes f(y) for more than two input values by

a single process. It is obvious that the total number of qubits including both

registers a and b is 2m and such a quantum system can compute f(y) for 2m

input values by the single process Uf : We gain the exponential increase of

parallelism by linear increase of the physical system. This characteristic, called

quantum parallelism, is a fundamental feature of many quantum algorithms.

However, quantum parallelism is not directly applicable to a faster com-

putation. The final stage of quantum computation to measure each qubit will

reduce the quantum state (8.5) to one of |y〉|f(y)〉’s and only one of the many

results will remain. It is a separate problem to find out useful algorithms which

make use of quantum parallelism. Deutsch presented a simple problem show-

ing how quantum computation can outperform classical computation in testing

whether a function f : (0, 1)→ (0, 1) is constant or balanced [169]. Deutsch and

Josza generalised this algorithm to a general n-qubit case [170]. Shor’s polyno-

mial time algorithms for factorisation and computation of discrete logarithms

are the most important algorithms showing the power of quantum computing

[4]. Grover discovered a fast quantum algorithm for a search problem, which is

also a significant breakthrough [5].

To physically realise a quantum computer, there are a few major require-

ments. First, one should decide a physical system for qubit encoding. This

system should be initialisable, scalable, and measurable with universal gate

operations. An efficient error correcting scheme should exist to overcome de-

coherence and imperfect operations. DiVincenzo discussed ‘five plus two’ basic

requirements for the physical implementation of quantum computation with the
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following subtitles [171]: (1) A scalable physical system with well characterised

qubits, (2) the ability to initialise the state of the qubits to a simple fiducial

state, (3) the relevant decoherence time much longer than the gate operation

time, (4) universal set of quantum gates, (5) a qubit specific measurement ca-

pability, (6) the ability to inter-convert stationary and flying qubits, and (7)

the ability to faithfully transmit flying qubits between specified locations.

There have been various approaches for implementation of quantum com-

putation including nuclear magnetic resonance (NMR) [172], ion trap [173], neu-

tral atom [174], optical [175, 27] and solid state [176] quantum computers. Each

of them has its own strengths as well as limitations according to DiVincenzo’s

criteria. The optical approach is one of the strongest candidates for the phys-

ical implementation of a quantum computer with some remarkable advantages

[26]. It is relatively easy to observe quantum interference in optical systems and

coherence time is generally much longer than operation time. Most of the oper-

ations can be done at room temperature. The requirement of nonlinearity has

been pointed out as an obstacle to realise an optical quantum computer. Unfor-

tunately, nonlinear effects in existing materials, required for the indispensable

photon-photon coupling, are extremely small. The Giant Kerr effect has been

observed in some experiments reporting light speed reduction [177]. It has been

found by Knill et al. that requirement of nonlinearity can be circumvented by

a probabilistic way [27]. Linear optics quantum computing is a scheme using

linear optical devices, a single photon source and photodetectors [27, 178]. Knill

et al. employed dual rail logic in which a qubit is represented by a single photon

occupation of one mode of a pair of optical modes [27]. Even though the linear

optics quantum computation is basically a probabilistic scheme, it is possible

to build a near-deterministic scheme by successive applications of conditional

measurements [27]. In this case, the increase of resources and complexity of

circuits are a heavy cost to be paid for a higher success probability. The inef-

ficiency of the single photon source and detection inefficiency are other serious

problems. Recently, there have been some remarkable advances in single photon

generating and efficient photodetecting. Single photon detectors with efficiency

of ∼ 90% have been demonstrated [89]. There have been experimental reports

for the generation of single photons using single quantum dots [179] and single

atoms in a cavity [180]. However, their efficiency is still not satisfactory, only

∼ 8%.
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1
B

| α >
2

A

| φ > b

a

Figure 8.1: Measurement scheme for |φ〉1 = A|α〉1 + B| − α〉1 with a 50-50
beam splitter and auxiliary state |α〉2. If detector A registers any photon(s)
while detector B does not, the measurement outcome is |α〉, i.e. |0L〉. On the
contrary, A does not click while B does, the measurement outcome is | − α〉,
i.e. |1L〉.

8.2 Readout scheme and universal gate opera-

tions for coherent state qubits

Let us consider the readout of a coherent state qubit, which was defined in

Chapter 2,

|φ〉 = A|α〉+ B| − α〉, (8.6)

where |α〉 and | − α〉 form a logical qubit basis. The basis states, |α〉 and

|−α〉, can be discriminated by a simple measurement scheme with a 50-50 beam

splitter, an auxiliary coherent field of amplitude α and two photodetectors as

shown in Fig. 8.1. At the beam splitter, the input state |φ〉1 is superposed with

the auxiliary state |α〉2 and gives the output

|φR〉ab = A|
√

2α〉a|0〉b + B|0〉a| −
√

2α〉b. (8.7)

If detector A registers any photon(s) while detector B does not, we know that

|α〉 was measured. On the contrary, if A does not click while B does, the

measurement outcome was | −α〉. Even though there is non-zero probability of

failure Pf(φR) = |〈00|φR〉|2 = |A + B|2e−2α2

in which both of the detectors do

not register a photon, the failure is known from the result whenever it occurs,

and Pf approaches to zero exponentially as α increases.

An arbitrary 1-bit rotation and a controlled-NOT (CNOT) gate for two-
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qubit states form a set which satisfies all the requirements for a universal gate

operation. For any SU(2) unitary operation, there is a unique rotation R(θ, φ, η)

around the x, y and z axes. Cochrane et al. showed that the rotation around

x axis for even and odd coherent superposition states can be realised using a

interaction Hamiltonian HD = ~(βa† + β∗a), where β is the complex amplitude

of the classical driving force [116]. The evolution by this Hamiltonian corre-

sponds to the displacement operator, D(δ) = exp(δa† − δ∗a), where a and a†

are respectively annihilation and creation operators. In a similar way, z-rotation

Uz(θ/2) =

(
eiθ/2 0

0 e−iθ/2

)
(8.8)

for a logical qubit |φ〉 can be obtained. A coherent state is a displaced vacuum

|α〉 = D(α)|0〉. We know that two displacement operators D(α) and D(δ) do

not commute but the product D(α)D(δ) is simply D(α + δ) multiplied by a

phase factor, exp[(αδ∗ − α∗δ)/2]. This phase factor plays a role to rotate the

logical qubit. The action of displacement operator D(iε), where ε (� 1) is real,

on the qubit |φ〉 is the same as z-rotation of the qubit by Uz(2αε). We can

easily check their similarity by calculating the fidelity:

|〈φ|U †
z (2αε)D(iε)|φ〉|2 = e−ε

2{|A|2 + |B|2 + e−2α2

(AB∗e−2iαε +A∗Be2iαε)
}2

≈ exp[−ε2] ≈ 1. (8.9)

Thus the rotation angle θ depends on α and ε: θ = 4αε. A small amount of ε

suffices to make one cycle of rotation as α is relatively large. The displacement

operation D(iε) can be effectively performed using a beam splitter with the

transmission coefficient T close to unity and a high-intensity coherent field of

amplitude iE , where E is real, as shown in Fig. 8.2(a). It is known that the

effect of the beam splitter is described by D(iE
√

1− T ) in the limit of T → 1

and E � 1. (More rigorously the output state becomes mixed but in the limit

it can well be approximated to a pure state as shown in [129].)

To achieve any arbitrary 1-bit rotation, we need to operate Ux(π/4) and

Ux(−π/4) which are rotations by π/2 and −π/2, respectively, around the x

axis. We find that Ux(π/4) can be realised using a nonlinear medium. Even

though the efficiency of nonlinear interaction can be a problem, there was an

experimental report of a successful measurement of giant Kerr nonlinearity [177].
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Figure 8.2: 1-bit rotation around the z (a), y (b), and x axes (c) for a qubit
state of coherent fields. NL represents a nonlinear medium. The transmission
coefficient T of the beam splitters is assumed to be close to unity. E corresponds
to θ

4α
√

1−T , where θ is the required degree for a rotation and α is the coherent

amplitude of the qubit state |φ〉. ∆ = π
8α

√
1−T . Starting from a coherent state, an

arbitrary qubit can be prepared up to a global phase using the above operations.

The anharmonic-oscillator Hamiltonian of an amplitude-dispersive medium is

[71]

HNL = ωa†a+ λ(a†a)2, (8.10)

where ω is the frequency of the coherent field and λ is the strength of the

anharmonic term. When the interaction time t in the medium is π/λ, coherent

states |α〉 and | − α〉 evolve as follows:

|α〉 −→ e−iπ/4√
2

(|α〉+ i| − α〉) ; | − α〉 −→ e−iπ/4√
2

(i|α〉+ | − α〉), (8.11)

which corresponds to Ux(π/4) up to a global phase shift. The other rotation

Ux(−π/4) can be realised by applying a phase shifter P (π), which acts |α〉 ↔
| − α〉, after or before Ux(π/4) operation. Note that P (π) corresponds to π-

rotation around the x axis, i.e. a 1-bit NOT gate. The other two required
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OutputInput

|  ∆ >i|  ∆ >i

NL

Figure 8.3: Hadamard gate for a qubit state |φ〉 = A|α〉 + B|−α〉. The coherent
field amplitude i∆ is i π

8α
√

1−T and the transmission coefficient T of the beam
splitters is close to unity. The irrelevant global phase is neglected.

unitary operations Uy(φ/2) and Uz(η/2) which correspond to rotations around

the y and x axes can be realised using the following identities [181]

Uy(φ/2) = Ux(−π/4)Uz(φ/2)Ux(π/4) ; Ux(η/2) = Uz(−π/4)Uy(η/2)Uz(π/4).

(8.12)

Therefore, any 1-bit rotation can be performed up to a global phase with beam

splitters, nonlinear media, phase shifters and auxiliary coherent light fields as

shown in Fig. 8.2. As an example, we can construct the Hadamard gate H as

H = −Uz(π/4)Ux(π/4)Uz(π/4), (8.13)

which is shown in Fig 8.3. Using these operations, any 1-qubit state |φ〉 =

A|α〉 + B| − α〉 with arbitrary A and B can be prepared up to a global phase

from a coherent state.

For a universal gate operation, a CNOT gate is required besides 1-bit

rotation. It was found that the CNOT operation can be realised using a tele-

portation protocol [164]. For a superposition of coherent states, quantum tele-

portation protocols have been suggested by utilising an entangled coherent state

[73, 75] including an entanglement purification scheme [75]. However, the suc-

cess probability of this teleportation scheme is limited to less than 1/2 in prac-

tise and the required photon parity measurement is very sensitive to detection

inefficiency and photon loss as the parity alternates by missing one photon. We

suggest a teleportation protocol as follows to circumvent those problems.

For any ideal teleportation scheme, a maximally entangled pair, Bell

measurement and unitary operations are required [7]. In our case, neces-

sary unitary operations σx and σz correspond to a phase shift P (π) and dis-
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Figure 8.4: Teleportation process for an unknown state |φ〉 = A|α〉 + B| − α〉.
H

√
2 represent the Hadamard gate with an incident qubit state of coherent

amplitudes ±
√

2α. B represents the Bell measurement. x and z represent π
rotation around the x and z axes. (a) Generation of the quantum channel |Φ+〉.
(b) Bell-state measurement with arbitrarily high precision. If detector A does
not click, the measurement outcome is |Φ+〉, and so on. Only one of the four
detectors does not detect any photon at a measurement event for α � 1. (c)
Scheme to teleport |φ〉 via the entangled quantum channel |Φ+〉. The Pauli
operations represented by x and z are performed according to the result of Bell
measurement B.

placement operation D( iπ
4α

√
1−T ) respectively. An entangled coherent channel

|Φ+〉 = N+(|α〉|α〉+ | − α〉| − α〉), where N+ is a normalisation factor, can be

generated from a coherent state passing through a H
√

2 gate and a 50-50 beam

splitter as shown in Fig. 8.4(a). The subscript
√

2 in H
√

2 stands for the ampli-

tude of the incident field being
√

2α. Note that the coherent amplitude i∆ for

a unitary operation shown in Fig. 8.3 should be iπ/[8α
√

2(1− T )] for the H
√

2-

gate operation. The Bell measurement shown in Fig. 8.4(b) is to distinguish
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four quasi-Bell states [79],

|Φ±〉 = N±(|α, α〉 ± | − α,−α〉), (8.14)

|Ψ±〉 = N±(|α,−α〉 ± | − α, α〉), (8.15)

where | ± α,±α〉 = | ± α〉 ⊗ | ± α〉 and N± are normalisation factors for α as

large as 3. Note that the quasi-Bell states become maximally entangled Bell

states when α � 1. If the incident field to the first beam splitter in Fig. 8.4

(b) is |Φ+〉12, it becomes |0, 2α,−
√

2α,
√

2α〉abcd at detectors A, B, C, and D.

If detector A does not click while the others do, the measurement outcome is

|Φ+〉12. Likewise, only B does not click for the measurement outcome |Φ−〉12,
C for |Ψ+〉12, and D for |Ψ−〉12. The failure probability for which no photon is

detected at more than one detector, which is due to the non-zero probability

of 〈0| ± 2α〉 and 〈0| ±
√

2α〉, approaches to zero rapidly as α increases, and,

moreover, the failure is always known when it occurs. The scheme to teleport

|φ〉 via the entangled channel |Φ+〉 is summarised in Fig. 8.4(c). When the Bell

measurement outcome is |Φ+〉, the output state does not need any operation.

When the Bell measurement outcomes is |Φ−〉 or |Ψ+〉, σz or σx is required

respectively. The unitary operations σz and σx should be successively applied

for the outcome |Ψ−〉.

Gottesman and Chuang showed that the teleportation protocol can be

used to construct a CNOT gate [164]. To apply their suggestion in our scheme,

we need to use two three-mode entangled states represented by

|ξ〉 = N
(
|
√

2α, α, α〉+ | −
√

2α,−α,−α〉
)

(8.16)

and the quantum teleportation protocol we just developed, whereN is a normal-

isation factor. The entangled state |ξ〉 can be generated by passing a coherent

field |2α〉 through a H2-gate, which is a Hadamard gate for a qubit with logical

bases | ± 2α〉, and two 50-50 beam splitters as shown in Fig. 8.5(a). After gen-

erating |ξ〉abc and |ξ〉def , Hadamard operations are applied to |ξ〉def as shown in
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8.2 Readout scheme and universal gate operations for coherent state
qubits

(a) | ξ >
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Figure 8.5: CNOT operation using teleportation protocol and three-mode en-
tanglement. (a) Generation of a three-mode entangled state |ξ〉=N (|

√
2α, α, α〉

+ | −
√

2α,−α,−α〉 with beam splitters. H2-gate is the Hadamard gate with
an incident qubit state of amplitudes ±2α. (b) CNOT operation with the use
of the coherent field |ξ〉 and the teleportation protocol. A four-mode entangled
state |χ〉 is generated for the operation at the left-hand side of the circuit. |φ1〉
is the target bit and |φ2〉 is the control bit here.
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8.3 Estimation of possible errors

Fig. 8.5(a). This makes the given state |ξ〉abc ⊗ |ξ〉def to be

−→ |Φ′
+〉ad

{
|α, α〉

(
|α, α〉+ | − α,−α〉

)
+ | − α,−α〉

(
|α,−α〉+ | − α, α〉

)}
bcef

+|Φ′
−〉ad

{
|α, α〉

(
|α, α〉+ | − α,−α〉

)
− | − α,−α〉

(
|α,−α〉+ | − α, α〉

)}
bcef

+|Ψ′
+〉ad

{
| − α,−α〉

(
|α, α〉+ | − α,−α〉

)
+ |α, α〉

(
|α,−α〉+ | − α, α〉

)}
bcef

+|Ψ′
−〉ad

{
| − α,−α〉

(
|α, α〉+ | − α,−α〉

)
− |α, α〉

(
|α,−α〉+ | − α, α〉

)}
bcef

,

(8.17)

where |Φ′
±〉 and |Φ′

±〉 are quasi-Bell states with the coherent amplitude ±
√

2α

and the normalisation factor is omitted. The Bell measurement B
√

2 in the

figure, must be performed on modes a and d. It can be easily shown from

Eq. (8.17) that a four-mode entangled state

|χ〉bcef = N ′
[
|α, α〉

(
|α, α〉+|−α,−α〉

)
+|−α,−α〉

(
|α,−α〉+|−α, α〉

)]
, (8.18)

where N ′ is a normalisation factor, is generated after the appropriate unitary

operation according to the Bell measurement result as shown in Fig. 8.5(b). The

entangled state |χ〉bcef is used to complete the CNOT gate on the right-hand

side of the circuit in Fig. 8.5(b), which can be verified by a little algebra [164].

8.3 Estimation of possible errors

We have shown that universal quantum computation using coherent states can

be realised even with limited detection efficiency. We already pointed out that

the failure probability for the measurement which is of the order of |〈
√

2α|0〉|2
is not only very small for a reasonably large α but also the failure is known

whenever it occurs. If the detection efficiency of a photodetector is d, the failure

probability P d
f of the detector not to resister any photon, while the incident field

is |φR〉ab in Eq. (8.7), is

P d
f =

∞∑

n,m=0

|a〈n|b〈m|φR〉ab|2(1− d)n(1− d)m ≈
∞∑

n=0

|〈n|
√

2α〉|2(1− d)n, (8.19)
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8.3 Estimation of possible errors

where approximation (2.21) is used. For example, suppose that α = 3 and

the detection efficiency of the detectors is 90% which is a reasonable value for

an avalanched photodetector [89], the failure probability P d
f that the detector

misses all the photons is P d
f ≈ 9× 10−8.

If the effect of ε for the displacement operator is not negligible, a qubit

state |φ′〉1 = D(iε1) · · ·D(iεN )|φ〉1 after N displacement operations may be

|φ′〉1 = A′
∣∣∣α + i

N∑

n=1

εn

〉
1
+ B′

∣∣∣− α + i

N∑

n=1

εn

〉
b
. (8.20)

After passing a 50-50 beam splitter with an auxiliary state |α〉2 as shown in

Fig. 8.1, the state |φ′〉1 becomes

|φ′
R〉ab = A′

∣∣∣
√

2α+
i√
2

N∑

n=1

εn

〉
a

∣∣∣ i√
2

N∑

n=1

εn

〉
b
+B′

∣∣∣ i√
2

N∑

n=1

εn

〉
a

∣∣∣−
√

2α+
i√
2

N∑

n=1

εn

〉
b
.

(8.21)

In this condition, there is non-zero probability P̃ d
f in principle for undetected

errors in which detector A(B) detects any photon and B(A) does not while

the incident state |φ′〉1 was |1L〉 (|0L〉) (see Fig. 8.1). For the worst case, all

εn’s may have the same sign with a large N . One useful trick to overcome this

problem is to flip the sign of εn appropriately for each operation, noting that

the rotation Rz(θ) can be performed both by positive and negative θ. By this

way, we can keep
∑N

n=1 εn ∼ ε̄ = π/4α, regardless of N , then Eq. (8.21) can be

represented as

|φ′
R〉ab = A′

∣∣∣
√

2α +
iε̄√
2

〉
a

∣∣∣ iε̄√
2

〉
b
+ B′

∣∣∣ iε̄√
2

〉
a

∣∣∣−
√

2α +
iε̄√
2

〉
b
. (8.22)

In this condition, the fidelity between the final state (8.20) and the ideal output

is of oder e−ε
2

from Eq. (8.9). The fidelity of ≈ 0.93 is then obtained for α = 3.

Differently from P d
f , the undetected error probability P̃ d

f is a probability

of making an error without being recognised. Considering the accumulated error

as in Eq. (8.22), in order to minimise the undetected error P̃ d
f while keeping

P d
f low, we need to modify the criterion to discriminate | ±

√
2α + iε̄/

√
2〉 and

|iε̄/
√

2〉. Ideally we took ε̄ = 0 and discriminated the two states by detection of

any photons and no photon. In this case, the probability of | ±
√

2α + iε̄/
√

2〉
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8.3 Estimation of possible errors

registering no photon is

pA =

∞∑

n=0

|〈n| ±
√

2α+ iε̄/
√

2〉|2(1− d)n (8.23)

and the probability of the state |iε̄/
√

2〉 registering one or more photons is

pB =
∞∑

m=1

∞∑

n=m

|〈n|iε̄/
√

2〉|2nCmdm(1− d)n−m (8.24)

where nCm = n!/m!(n−m)!. Both pA and pB approach to zero as α increases.

We then obtain undetected error probability P̃ d
f = pA×pB. On the other hand,

the success probability Ps is the probability in that |iε̄/
√

2〉 yields no photon

and | ±
√

2α + iε̄/
√

2〉 yields any photon(s) is

Ps =

∞∑

n=0

|〈n|iε/
√

2〉|2(1− d)n ×
∞∑

m=1

∞∑

n=m

|〈n|
√

2α + iε̄/
√

2〉|2nCmdm(1− d)n−m.

(8.25)

The detected error probability is P d
f = 1 − Ps − P̃ d

f . Suppose that α = 3 (ε̄

is then ≈ 0.26), and the detection efficiency is again 90% then, pA ≈ 9 × 10−8

and pB ≈ 0.030 are obtained. If we keep the criterion for the ideal case, we

find P̃ d
f ≈ 3× 10−9 and P d

f ≈ 0.030. However, if we take the registration of 0,1

and 2 photons as the measurement of |iε̄/
√

2〉 then pA, pB and Ps should be

re-defined as follows:

pA =

∞∑

n=0

|〈n|
√

2α+ iε̄/
√

2〉|2(1− d)n +

∞∑

n=1

|〈n|
√

2α + iε̄/
√

2〉|2d(1− d)n−1

+

∞∑

n=2

|〈n|
√

2α + iε̄/
√

2〉|2d2(1− d)n−2 (8.26)

pB =
∞∑

m=3

∞∑

n=m

|〈n|iε̄/
√

2〉|2nCmdm(1− d)n−m (8.27)

Ps =

{ ∞∑

n=0

|〈n|iε̄/
√

2〉|2(1− d)n +
∞∑

n=1

|〈n|iε̄/
√

2〉|2d(1− d)n−1

+
∞∑

n=2

|〈n|iε̄/
√

2〉|2d2(1− d)n−2

}

×
∞∑

m=3

∞∑

n=m

|〈n|
√

2α + iε̄/
√

2〉|2nCmdm(1− d)n−m. (8.28)
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8.4 Remarks

We then find P̃ d
f ≈ 6×10−11 and P d

f ≈ 2×10−5 for α = 3 and d = 0.9. Recently,

Takeuchi et al. [89] developed an avalanched photodetector which can discern

0,1, and 2 photons with high efficiency.

Decoherence is considered one of the main obstacles in quantum compu-

tation. When a qubit state |φ〉 is subject to a vacuum environment it evolves

to [111]

ρM (τ) = Nτ
{
|A|2|tα〉〈tα|+|B|2|−tα〉〈−tα|+Γ

(
AB∗|tα〉〈−tα|+A∗B|−tα〉〈tα|

)}

where t = e−γτ/2, Γ = e−2(1−t2)α2

, γ is the energy decay rate, τ is the interaction

time, and Nτ is the normalisation factor. Considering decoherence, we need

to change |0L〉 and |1L〉 to |tα〉 and | − tα〉. The auxiliary coherent fields

for computation have to be changed likewise. The larger the initial coherent

amplitude α is, the longer the condition that 〈tα| − tα〉 ≈ 0 is preserved, but

the decoherence becomes more rapid as α increases because Γ decreases more

rapidly for a larger α. The energy decay rate γ of the relevant system and

number of required operations for computation may be the crucial factors to

decide the value of α. However, decohered states can still be represented by

combinations of 1-bit errors for time-dependent logical qubits |tα〉 and | − tα〉.
It is known that an error correction circuit for an arbitrary 1-qubit error can

be built using CNOT and 1-bit unitary operations [182].

8.4 Remarks

In this Chapter, we have found that near-deterministic universal quantum com-

putation can be realised using coherent states. Efficient readout is possible using

beam splitters and coherent light sources. Single-bit unitary transformation can

be performed using beam splitters and nonlinear media, and CNOT gate can be

constructed based on teleportation protocol. Teleportation of a coherent state

qubit can be accomplished with a complete Bell measurement using nonlinear

media, photodetectors, coherent light sources, and beam splitters. This scheme

enables efficient quantum computation even with limited detection efficiency.

Alternatively, the universal gate operations developed in this Chapter
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8.4 Remarks

can be achieved by linear optical elements and pre-arranged quantum channels.

Ralph et al. showed that universal gate operations are possible with linear

optics and pre-arranged cat states for a qubit state |φP 〉 = A|0〉 + B|α〉 [77]

which is slightly different from the coherent state qubit |φR〉 in Eq. (8.6) in our

scheme. They showed that single qubit and CNOT operations can be approxi-

mately performed with beam splitters, phase shifters, displacement operations,

photodetectors and pre-arranged cat states. Note that the CNOT gate in our

scheme (see Fig. 8.5) can be performed by Bell measurements, linear optical

operations P (π) and D( iπ
4α

√
1−T ) and the four-mode entangled state |ξ〉. As

shown in Chapter 2, the Bell measurements can be performed by linear optical

devices and photodetectors. Ralph et al.’s method for a single qubit operation

can be directly applied to our qubit state |φ〉R because |φ〉R (|φ〉P ) is simply

converted to the form of |φ〉P (|φ〉R) by a displacement operation. However, a

large coherent amplitude (α > 20) is required to obtain high fidelity (F > 0.9)

for this appoximation [77]. In this case, the photo-counting ability to discrimi-

nate between odd and even numbers of photons is extremely hard, which may

be a major obstacle to the physical implementation.

Decohered states can be represented by combinations of 1-bit errors

for time-dependent coherent state qubits of reduced amplitude. A purifica-

tion scheme for decohered entangled channels will be studied in the following

Chapter. Detailed error correction methods for our scheme deserves further in-

vestigation. The nonlinear effect [71] used in this Chapter is typically too weak

to generate required superposition states in current technology. The study of

generating coherent superposition of optical states requires further study.
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Chapter 9

Entanglement Purification for

Entangled Coherent States

Highly entangled states play a key role in an efficient realisation of quantum in-

formation processing including quantum teleportation [7], cryptography [11] and

computation [6]. When an entangled state prepared for quantum information

processing is open to an environment, the pure entangled state becomes mixed

one and the entanglement of the original state becomes inevitably degraded. To

obtain highly entangled states from less entangled mixed ones, entanglement

purification (or distillation) protocols [15, 43, 44] have been proposed. Entan-

glement purification protocols enable to obtain maximally entangled states from

a large ensemble of non-maximally entangled states using only local operations

and classical communications [15]. Bennett et al. first proposed the entangle-

ment purification protocol, where the implementation of a nontrivial CNOT

gate is required [15]. Pan et al. found a purification scheme using only linear

optical devices, where a polarising beam splitter takes the role of the CNOT

gate [44]. Entanglement purification was experimentally demonstrated for en-

tanglement of photon-polarisation states [183]. Entanglement purification of

continuous-variable states has also been studied [184, 185, 186, 187] but is more

difficult than cases for two-qubit systems. It is known that Gaussian states can-

not be distilled by Gaussian local operations and classical communication [188].

There exists a protocol to map pure non-Gaussian states onto approximately

Gaussian states to distil highly entangled bipartite Gaussian states [186].

In the previous Chapters, we have studied entangled coherent states for
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9.1 Entanglement purification for mixed states

quantum information processing and quantum nonlocality tests. The entangle-

ment concentration of pure entangled coherent states can be simply done using

the quasi-Bell measurement scheme studied in Chapter 2 [75]. There is a need

for a purification scheme not only for pure states but also for mixed entangled

coherent states. Entangled coherent states are categorised into non-Gaussian

continuous-variable states and their purification would be very hard if they are

considered in an infinite-dimensional Hilbert space. In this Chapter, we sug-

gest an entanglement purification scheme for mixed entangled coherent states

in the framework of 2× 2 Hilbert space introduced in Chapter 2. This scheme

is based on the use of 50-50 beam splitters and photodetectors. We show that

our scheme can be directly applied for entangled coherent states of the Werner

form based on quasi-Bell states [79]. The scheme can also be useful for general

mixed entangled coherent states using additional nonlinear interactions.

9.1 Entanglement purification for mixed states

In Chapter 2, we defined a 2-dimensional Hilbert spaceHα with two linear

independent vectors |α〉 and |−α〉. The orthonormal basis for the Hilbert space

Hα has been constructed

|u〉 = M+(|α〉+ | − α〉), (9.1)

|v〉 = M−(|α〉 − | − α〉), (9.2)

where M+ and M− are normalisation factors. Substituting ϕ by 0 and π, we

have also defined quasi-Bell states [79]

|Φ±〉ab = N±(|α〉a|α〉b ± | − α〉a| − α〉b), (9.3)

|Ψ±〉ab = N±(|α〉a| − α〉b ± | − α〉a|α〉b), (9.4)

where N± are normalisation factors. These states are orthogonal to each other

except 〈Ψ+|Φ+〉 = 1/ cosh 2|α|2, which is very small for α� 1.

Suppose that Alice and Bob’s ensemble to be purified is represented by

ρab = F |Φ−〉〈Φ−|+ (1− F )|Ψ−〉〈Ψ−|, (9.5)
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9.1 Entanglement purification for mixed states

where F is the fidelity defined as 〈Φ−|ρab|Φ−〉 and 0 < F < 1. Note that |Φ−〉
and |Ψ−〉 are maximally entangled and orthogonal to each other regardless of

α. Alice and Bob choose two pairs from the ensemble which are represented by

the following density operator

ρabρa′b′ = F 2|Φ−〉〈Φ−| ⊗ |Φ−〉〈Φ−|+ F (1− F )|Φ−〉〈Φ−| ⊗ |Ψ−〉〈Ψ−|
+ F (1− F )|Ψ−〉〈Ψ−| ⊗ |Φ−〉〈Φ−|+ (1− F )2|Ψ−〉〈Ψ−| ⊗ |Ψ−〉〈Ψ−|.

(9.6)

The fields of modes a and a′ are in Alice’s possession while b and b′ in Bob’s.

In Fig. 9.1(a), we show that Alice’s action to purify the mixed entangled state.

The same is conducted by Bob on his fields of b and b′.

There are four possibilities for the fields of a and a′ incident onto the

beam splitter (BS1), which gives the output (In the following, only the cat

part for a component of the mixed state is shown to describe the action of the

apparatuses)

|α〉a|α〉a′ −→ |
√

2α〉f |0〉f ′, (9.7)

|α〉a| − α〉a′ −→ |0〉f |
√

2α〉f ′, (9.8)

| − α〉a|α〉a′ −→ |0〉f | −
√

2α〉f ′, (9.9)

| − α〉a| − α〉a′ −→ | −
√

2α〉f |0〉f ′. (9.10)

In the boxed apparatus P1, Alice checks if modes a and a′ were in the same

state by counting photons at the photodetectors A1 and A2. If both modes a

and a′ are in |α〉 or | − α〉, f ′ is in the vacuum, in which case the output field

of the beam splitter BS2 is |α,−α〉t1,t2. Otherwise, the output field is either

|2α, 0〉t1,t2 or |0, 2α〉t1,t2. When both the photodetectors A1 and A2 register any

photon(s), Alice and Bob are sure that the two modes a and a′ were in the same

state but when either A1 or A2 does not register a photon, a and a′ were likely

in different states. Of course, there is a probability not to register a photon

even though the two modes were in the same state, which is due to the nonzero

overlap of |〈0|
√

2α〉|2.

It can be simply shown that the second and third terms of Eq. (9.6) are

always discarded by the action of P1 and Bob’s apparatus same as P1. For

example, at the output ports of BS1 and Bob’s beam splitter corresponding to
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Figure 9.1: (a) Entanglement purification scheme for mixed entangled coher-
ent states. P1 tests if the incident fields a and a′ were in the same state by
simultaneous clicks at A1 and A2. For P2, detector B is set for photon parity
measurement. Bob performs the same on his field of modes b and b′ as Alice.
If Alice and Bob measure the same parity, the pair is selected. By iterating
this process maximally entangled pairs can be obtained from a sufficiently large
ensemble of mixed states. (b) Simpler purification scheme to increase the co-
herent amplitude of the purified state. The success probability of this scheme
is more than twice as large as the scheme with P1 and P2 shown in (a).
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9.1 Entanglement purification for mixed states

BS1, |Φ−〉ab|Ψ−〉a′b′ becomes

|Φ−〉ab|Ψ−〉a′b′ −→ N2
−
(
|
√

2α, 0, 0,
√

2α〉 − |0,
√

2α,
√

2α, 0〉
− |0,−

√
2α,−

√
2α, 0〉+ | −

√
2α, 0, 0,−

√
2α〉
)
fgf ′g′

,

(9.11)

where g and g′ are the output field modes from Bob’s beam splitter correspond-

ing to BS1. The fields of modes f ′ and g′ can never be in |0〉 at the same time;

at least, one of the four detectors of Alice and Bob must not click. The third

term of Eq. (9.6) can be shown to lead to the same result by the same analysis.

For the cases of the first and fourth terms in Eq. (9.6), all four detectors

may register photon(s). After the beam splitter, the ket of (|Φ−〉〈Φ−|)ab ⊗
(|Φ−〉〈Φ−|)a′b′ of Eq. (9.6) becomes

|Φ−〉ab|Φ−〉a′b′ −→ |Φ′
+〉fg|0, 0〉f ′g′ − |0, 0〉fg|Φ′

+〉f ′g′ , (9.12)

where |Φ′
+〉 = N ′

+(|
√

2α,
√

2α〉+ |−
√

2α,−
√

2α〉) with the normalisation factor

N ′
+. The normalisation factor in the right hand side of Eq. (9.12) is omitted.

The first term is reduced to |Φ′
+〉fg〈Φ′

+| after |0, 0〉f ′g′〈0, 0| is measured out by

Alice and Bob’s P1’s. Similarly, the fourth term of Eq. (9.6) yields |Ψ′
+〉fg〈Ψ′

+|,
where |Ψ′

+〉 is defined in the same way as |Φ′
+〉, after |0, 0〉f ′g′〈0, 0| is measured.

Thus the density matrix for the field of modes f and g conditioned on simulta-

neous measurement of photons at all four photodetectors is

ρfg = F ′|Φ′
+〉〈Φ′

+|+ (1− F ′)|Ψ′
+〉〈Ψ′

+|, (9.13)

where

F ′ =
F 2

F 2 + (1− F )2
(9.14)

and F ′ is always larger than F for any F > 1/2.

If the pair is selected by Alice and Bob’s P1’s, each of them performs

another process (P2) for the selected pair. The pair is incident onto a 50-50

beam splitter at each site of Alice and Bob shown in Fig. 9.1(a). If the selected
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9.1 Entanglement purification for mixed states

pair is |Φ′
+〉〈Φ′

+| of Eq. (9.13), then the beam splitter gives

|Φ′
+〉fg −→ |Φ+〉kl

(M−
M+

|u, u〉k′l′ +
M+

M−
|v, v〉k′l′

)
+|Φ−〉kl

N+

N−

(
|u, v〉k′l′ +|v, u〉k′l′

)
,

(9.15)

where l and l′ are field modes at Bob’s site corresponding to k and k′. The

normalisation factor is omitted in Eq. (9.15). It is known that |u〉 contains

only even numbers of photons and |v〉 contains only odd numbers of photons.

The state is reduced to |Φ−〉 when different parities are measured at k′ and l′

by Alice and Bob respectively. The same analysis shows that |Ψ−〉 remains by

P2’s for |Ψ′
+〉fg〈Ψ′

+| of Eq. (9.13) which is originated from the fourth term of

Eq. (9.6).

The total state after the full process becomes

ρfg = F ′|Φ−〉〈Φ−|+ (1− F ′)|Ψ−〉〈Ψ−|. (9.16)

We already saw from Eq. (9.14) that F ′ is larger than F for any F > 1/2. Alice

and Bob can perform as many iterations as they need for higher entanglement.

The success probability Ps for one iteration is

Ps =
F 2 + (1− F )2

4

(
1− 2e−4|α|2

1 + e−8|α|2

)(1− e−4|α|2

1 + e−8|α|2

)
, (9.17)

which approaches to Ps = F 2+(1−F )2

4
and 1/8 ≤ Ps ≤ 1/4 for |α| � 1.

By reiterating this process including P1 and P2, Alice and Bob can distil

some maximally entangled states |Φ−〉 asymptotically. Of course, a sufficiently

large ensemble and initial fidelity F > 1/2 are required for successful purification

[15]. P2 may be different depending on the type of entangled coherent states to

be distilled. For example, if Alice and Bob need to distil |Φ+〉 instead of |Φ−〉,
pairs should be selected when the measurement outcomes yield the same parity.

Let us now consider the roles of P1 and P2 by comparing our scheme

with Refs. [15] and [44]. Pan et al. suggested a purification scheme for the

entanglement of linearly polarised photons, where they use polarising beam

splitters (PBS’s) with photodetectors to test if the two photons are in the same

polarisation [44]. From Eqs. (9.7) to (9.10), we pointed out that P1 is to test

whether the two fields a and a′ are in the same state. Hence P1 plays a similar
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9.1 Entanglement purification for mixed states

role in our scheme as PBS’s in [44]. Next, consider P2 which enables to per-

form orthogonal measurement based on |α〉 ± | − α〉. This measurement is also

necessary in the other schemes [15, 44]. (We will show later that this process

(P2) is not always necessary in our scheme.) Pan et al. explained that a PBS

in their scheme has the same effect as a controlled-NOT gate in the scheme

suggested by Bennett et al. [15] except that the success probability is half as

large as [15]. Both the schemes [15, 44] can be directly applied to any Werner

states without additional bilateral rotations, thereby it is clear that our scheme

is also applicable to any Werner-type states.

If Alice and Bob want to distil entangled coherent states |Φ+〉 or |Ψ+〉
while increasing their coherent amplitudes, it can be simply accomplished by

performing only P1 in Fig. 9.1(b). Suppose that Alice and Bob need to purify

a type of ensemble

ρab = G1|Φ+〉〈Φ+|+G2|Ψ+〉〈Ψ+|, (9.18)

where G1 +G2 ' 1 for |α| � 1. If P1 is successful, the selected pair becomes

ρfg = G′
1|Φ′

+〉〈Φ′
+|+G′

2|Ψ′
+〉〈Ψ′

+|, (9.19)

where G′
1 is larger than G1 for any G1 > G2. After n iterations, they get a

subensemble with higher fidelity of

|ΦF
+〉 = N+(|2n/2α〉|2n/2α〉+ | − 2n/2α〉| − 2n/2α〉), (9.20)

where the coherent amplitude has increased. Here, N+ is a normalisation factor.

For example, if G1 is 2/3 and coherent amplitude α is 2, the fidelity and the

amplitude will be ∼ 0.99999 and 8 respectively after three times of iterations.

Note that the success probability P ′
s of this simplified scheme is

P ′
s =

F 2 + (1− F )2

2

(
1− 2e−4|α|2

1 + e−8|α|2

)
, (9.21)

which is more than twice as large as that of the scheme shown in Fig. 9.1(a)

and approaches to 1/4 < P ′
s < 1/2 for |α| � 1. This is due to the fact that

the process P2 is not directly for entanglement purification differently from the
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9.2 Purification for general mixed states

other two schemes [15, 44]. We separated P1 and P2 while the other schemes

do both processes by one measurement. In our case, the process P1 purifies

the mixed ensemble but the resulting state has a larger amplitude. It should

be noted that even though the simplified scheme is applicable to any Werner-

type states, (symmetric) entangled coherent states |Φ+〉 and |Ψ+〉 can only be

obtained by it.

9.2 Purification for general mixed states

We have shown that a mixed Werner state may be purified using beam

splitters and photodetectors. A general mixed state may be transformed into a

Werner state by random bilateral rotations [43, 189]. The Werner state can then

be distilled purified. For the case of spin-1/2 systems, the required rotations

are Bx, By and Bz which correspond to π/2 rotations around x, y and z axes.

In the previous Chapter, we have studied single-mode unitary transfor-

mations for a coherent state qubit. The Bx rotation can be realised using a

nonlinear medium for the entangled coherent state as shown in Eqs (8.10) and

(8.11). The Bz rotation can be obtained by displacement operator D(δ) =

exp(δa† − δ∗a) as shown in Eqs. (8.8) and (8.9). We know that two displace-

ment operators D(α) and D(δ) do not commute but the product D(α)D(δ) is

simply D(α + δ) multiplied by a phase factor, exp[ 1
2
(αδ∗ − α∗δ)]. This phase

factor plays a role to rotate the logical qubit. The action of displacement op-

erator D(iε), where ε (� 1) is real, on a qubit |φ〉 = a|α〉 + b| − α〉 is the

same as z-rotation of the qubit by Uz(θ/2 = 2αε). The displacement operation

D(iε) can be effectively performed using a beam splitter with the transmission

coefficient T close to unity and a high-intensity coherent field of amplitude iE ,
where E is real. It is known that the effect of the beam splitter is described by

D(iE
√

1− T ) in the limit of T → 1 and E � 1. For the Bz rotation, ε should be

taken to be π/8α so that the incident coherent field may be |iπ/(8α
√

1− T )〉.
The By rotation can be realised by applying Bx and Bz together with σz noting

By = −σzBxBzBx, (9.22)

126



9.3 Purification for decohered states in vacuum

where σz is π rotation around z axis. The coherent state |iπ/(4α
√

1− T )〉
should be used to perform σz.

Alice and Bob can perform random bilateral rotations to transform the

initial general mixed state into a Werner state. In this process, the efficiency of

nonlinear interaction can affect the efficiency of the scheme.

9.3 Purification for decohered states in vac-

uum

We now apply our scheme to a physical example in a dissipative environ-

ment. When the entangled coherent channel |Φ−〉 is embedded in a vacuum,

the channel decoheres and becomes a mixed state of its density operator ρab(τ),

where τ stands for the decoherence time. By solving the master equation (3.25)

the mixed state ρab(τ) can be straightforwardly obtained as

ρab(τ) = Ñ(τ)
{
|tα, tα〉〈tα, tα|+ | − tα,−tα〉〈−tα,−tα|

− Γ(|tα, tα〉〈−tα,−tα|+ | − tα,−tα〉〈tα, tα|)
}
,

(9.23)

where | ± tα,±tα〉 = | ± tα〉a| ± tα〉b, t = e−γτ/2, Γ = exp[−4(1− t2)|α|2], and

Ñ(τ) is the normalisation factor. The decohered state ρab(τ) may be represented

by the dynamic quasi-Bell states defined as follows:

|Φ̃±〉ab = Ñ±(|tα〉a|tα〉b ± | − tα〉a| − tα〉b), (9.24)

|Ψ̃±〉ab = Ñ±(|tα〉a| − tα〉b ± | − tα〉a|tα〉b), (9.25)

where Ñ± = {2(1± e−4t2 |α|2)}−1/2. The decohered state is then

ρab(τ) = Ñ(τ)
{(1 + Γ)

Ñ2
−
|Φ̃−〉〈Φ̃−|+

(1− Γ)

Ñ2
−
|Φ̃+〉〈Φ̃+|

}

≡ F (τ)|Φ̃−〉〈Φ̃−|+ (1− F (τ))|Φ̃+〉〈Φ̃+| (9.26)

where, regardless of the decay time τ , |Φ̃−〉 is maximally entangled and |Φ̃−〉
and |Φ̃+〉 are orthogonal to each other. The decohered state (9.26) is not in the
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9.4 Multi-mode purification

same form as Eq. (9.5) so that we need some bilateral unitary transformations

before the purification scheme is applied. We find that unitary operation Bx on

each side of Alice and Bob transforms the state into

BxaBxbρab(τ)B
†
xbB

†
xa = F (τ)|Φ̃−〉〈Φ̃−|+ (1− F (τ))|Ψ̃+〉〈Ψ̃+|, (9.27)

which is obviously distillable form using the schemes explained in Sec. 3. A

Hadamard gate H for coherent states [76, 77] can also be used to transform the

state (9.26) into a distillable form

HaHbρab(τ)H
†
bH

†
a = Nh

{
F (τ)|Ψ̃+〉〈Ψ̃+|+ (1− F (τ))|Φ̃+〉〈Φ̃+|

}
, (9.28)

where Nh is the normalisation factor due to the nonzero overlap between |Ψ̃+〉
and |Φ̃+〉. Note that the Hadamard operation for coherent states can be ap-

proximately realised using linear elements if cat states are pre-arranged [77].

The ensemble of state (9.26) can be purified successfully only when F (τ)

is larger than 1/2. Because

F (τ) =
N2

+(1 + Γ)

N2
+(1 + Γ)−N2

−(1− Γ)
, (9.29)

it is found that purification is successful when the decoherence time γτ < ln 2

regardless of α. This result is in agreement with the decay time until which

teleportation can be successfully performed via an entangled coherent state

shown in Ref. [75].

9.4 Multi-mode purification

Besides a two-mode entangled coherent state, a multi-mode entangled

coherent state [190] can be used for quantum computation using coherent-state

qubits [76]. There is a suggestion for multi-mode entanglement purification

based on controlled-NOT operation [191]. In this subsection we investigate an

example of application of our scheme to multi-mode entangled states.

Multi-mode entangled coherent states can be generated using a coherent
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Figure 9.2: (a) Schematic for generation of a four-mode entangled coherent state
using a nonlinear medium and 50-50 beam splitters. A coherent-superposition
state M+(|α〉+|−α〉) can be prepared using a nonlinear medium before it passes
through beam splitters. (b) Entanglement purification for four-mode entangled
coherent states.

superposition state and 50-50 beam splitters. The number of required beam

splitters is N−1, where N is the number of modes for the multi-mode entangled

state. For example, a four-mode entangled state can be generated as shown in

Fig. 9.2(a). After passing the three beam splitters, the four-mode entangled

state |B1〉 = N−(|α, α, α, α〉+ | − α,−α,−α,−α〉) is generated. Suppose Alice

and Bob’s ensemble to be purified is represented by

ρab = F |B1〉〈B1|+G|B2〉〈B2|, (9.30)

where |B2〉 = N−(|α,−α, α,−α〉+ | − α, α,−α, α〉) and |B2〉 can be generated

in a similar way as |B1〉. By extending the scheme studied above, the ensemble

(9.30) can be purified as shown in Fig. 9.2(b). After one successful iteration of

the purification process, the originally selected pairs become

ρab = F ′|B1〉〈B1|+G′|B2〉〈B2|, (9.31)

where F ′ = F 2

F 2+(1−F 2)
is always larger than F for F > G. Alice and Bob can
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iterate the process as many time as required for their use. Note that this scheme

can be applied to any N -mode entangled states of the same type and so does

the simpler scheme only with P1.

9.5 Remarks

We have suggested an entanglement purification scheme for mixed entan-

gled coherent states. Our scheme is based on the use of 50-50 beam splitters and

photodetectors. The scheme is directly applicable for mixed entangled coherent

states of the Werner type, and can be useful for general two-mode mixed states

using additional nonlinear interactions. We have also suggested a simplified

variation of this scheme which, however, increases the coherent amplitude of

the entangled coherent state. We applied our scheme to an entangled coherent

state decohered in a vacuum environment.

Finally, we would like to address possible difficulties for experimental re-

alisation of the purification scheme. We already pointed out that the nonlinear

interaction required for the generation of cat states and for additional bilateral

rotations to purify some non-Werner type states is extremely difficult, while the

efforts to improve nonlinearity that additional noise is being continuously in-

vestigated. If the entangled coherent state is subject to a thermal environment,

it is not straightforward to represent the decohered state in the simple basis of

the quasi-Bell states (9.3) and (9.4). The purification of a decohered state due

to thermal environment will be much more complicated and will deserve further

studies. Laser phase drift can be another obstacle to realise quantum informa-

tion processing with coherent states and phase stabilisation methods via mixing

of laser beams can be used to reduce the drifts. Apart from the phase drift,

There has been a controversy on whether conventional laser sources can be used

for quantum communication with coherent states [140, 141]. Most recent study

[141] shows that the conventional laser can be used for quantum teleportation

and for generating continuous-variable entanglement because optical coherence

is not necessary for the purpose.

For quantum information processing, an entangled coherent state is nor-

mally assumed to have a large coherent amplitude. Even though the success
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probability of the purification scheme is better as the coherent amplitude, α,

is larger, it does not change much. For example, the success rate is about 5%

degraded for α = 1 compared with the case for α→∞. To use the first purifi-

cation scheme described in Fig. 2(a), even and odd numbers of photons have to

be discriminated. If the coherent amplitude is large, the efficiency to discrim-

inate even and odd numbers of photons becomes low due to the dark current.

However, when the coherent amplitude is small, a highly efficient avalanche

photodiode can be used to discriminate even (0 and 2) photon numbers and

odd (1) photon number [89] because, for example, taking α = 1 the probabil-

ity of photon number being 0 and 2 for an even cat state is about 97% and

the probability of photon number being 1 is about 85%. Takeuchi et al. used

threefold tight shielding and viewports that worked as infrared blocking filters

to eliminate the dark count. On the other hand, the second purification scheme

in Fig. 2(b) is robust against detection inefficiency when α is large because it is

enough to discern a coherent state and a vacuum in this simplified scheme. By

employing a distributed photon counter or a homodyne detector, we have even

a higher detection efficiency to discern a coherent state and a vacuum.

131



Chapter 10

Simulation of Quantum Random

Walks with Classical Light Field

Random walks are useful models for physicists to study statistical behaviours

of nature such as Brownian motions of free particles [192]. They have also

been studied for practical use such as algorithms in computer science [193] and

risk management in finance [194]. Quantum versions of random walks have

been recently studied both for fundamental interests and for the expectation

of building new algorithms for quantum computation [195]. There have been

several suggestions for a practical implementation of quantum random walks,

using ions in linear traps, optical lattices and cavity-QED [196, 197]. Recently,

proposals for the implementation of quantum random walks with linear optical

elements have been suggested [198, 200] and the first search algorithm using

quantum random walks has been reported [201]. Quantum random walks typi-

cally show very different patterns from the Gaussian distributions for classical

random walks, which have some remarkable characteristics including an expo-

nentially fast hitting time [195]. It has been pointed out that these differences

are due to the existence of quantum coherence [196].

A scheme to simulate quantum random walks on a line using the wave

nature of classical light fields is suggested in this Chapter. This is related to

the fact that the idea of quantum coherence is originally borrowed from the

interference of wave mechanics shown in Young’s double-slit experiment. It

is also possible to simulate decoherence processes using linear optical devices

and input coherent states in our scheme. Note that Knight et al. also pointed
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10.1 Quantum random walk with linear optical elements

out the possibility of simulation of quantum random walks using classical fields

[205].

10.1 Quantum random walk with linear optical

elements

In uni-dimensional coined random walks, the walker is restricted to move along

a line with a number of discrete integer points on it. The walker is supposed to

be a classical particle on one of the integer points. A coin tossing determines

whether the walker moves left or right for each step. In the quantum version

of coined random walks, the classical coin is replaced by a quantum bit whose

states |L〉 and |R〉 represent the logical values LEFT and RIGHT. The quantum

coin can be embodied by an internal degree of freedom of the walker itself [195].

The walker, which is a quantum particle, moves conditioned to the result of the

coin tossing operation which is realised by a Hadamard transform [196]. For

example, the transformation for one step of the particle from an arbitrary point

X is simply

|X,R〉 −→ 1√
2
(|X + 1, R〉+ |X − 1, L〉),

|X,L〉 −→ 1√
2
(|X + 1, R〉 − |X − 1, L〉).

(10.1)

After n steps, the state of the system is |Ψn〉. Differently from the classical walks

on a line, where the position of the particle is monitored at every step of the

process, in the quantum version the walker remains in a superposition of many

positions until the final measurement is performed. The probability for the

particle being at Xk after n steps is Pn(Xk) = |〈R|〈Xk|Ψn〉|2 + |〈L|〈Xk|Ψn〉|2.
During the quantum random walk process, destructive as well as constructive in-

terference may occur. The quantum correlation between two different positions

on a line introduced at the first step may be kept by delaying the measurement

step until the final iteration.

The probability distribution to find the particle at a given position is

generally dependent on the initial state of the system [196] and exhibits a very

structured pattern (See Fig. 10.1). This allows only numerical evaluations of its

variance. It has been shown that, roughly, the standard deviation σQRW grows
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Figure 10.1: Probability distribution, as a function of the position of a walker on
a line, in a quantum random walk process after N = 100 steps. (a) Comparison
between the initial states |R〉c ⊗ |0〉 (dashed line) and |L〉c ⊗ |0〉. The bias in
the probability distribution, due to the asymmetric action of the coin-tossing
operator is evident. (b) The symmetry in the probabilities is restored if the
initial state |Ψ0〉 = 1/

√
2 (i |R〉+ |L〉)c ⊗ |0〉 is taken. In these plots, just the

probabilities for the even position of the walker on a line are represented. This
is because only the probabilities relative to positions labelled by integers having
the same parity as N are non-zero, in the quantum random walk algorithm.

linearly with N and is independent from the initial state of the coin [197]. Thus,

the walker in quantum walks explores its possible configurations faster than in

classical walks, where the standard deviation grows as
√
N . This motivates the

conjecture that algorithms based on quantum random walks could beat their

classical versions in terms of the time needed to solve a problem [201].

There have been a few suggestions for experimental implementations of

quantum random walks [197]. Recently, it has been shown that quantum ran-

dom walks can be realised using linear optical elements [198]. In this scheme,
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10.1 Quantum random walk with linear optical elements

polarisation beam splitters, half-wave plates and photodetectors are used. The

walker is embodied in a single-photon state and the entire scheme is based on

the quantum coherence of two polarisation states of the photon. This result

is inspiring as a first proposal for an all-optical implementation of a quantum

random walk, even if it requires a reliable single-photon state source, which

is very demanding, and the apparatus is highly sensitive to variations in the

photons polarisation.

First, we propose a scheme which uses ordinary 50:50 beam splitters,

phase shifters and photodetectors. We formulate quantum random walks with

the coin tossing operation embedded in the translation of the walker particle.

In our scheme, the polarisation degree of freedom does not play a role and, thus,

is not considered at all. A single-mode field, including a thermal field, may be

used as an input to simulate the distribution of the quantum random walk. In

fact, this may be apparent if we recall that Young used a thermal field for his

double-slit experiment and showed interference.

Let us consider the experimental set-up, composed of 50:50 beam split-

ters, phase shifters, and photodetectors, shown in Fig. 10.2. For convenience,

we denote the field modes propagating sidewards by s and downwards by d. As

the beam splitters used here are polarisation insensitive, these modes do not

refer to polarisation. Here, we consider a single-photon state |1〉s as the initial

state of the walker and we show that, in this case, our scheme gives rise to

coined quantum random walks on a line. At the first beam splitter, B̂1(θ, φ),

the input field is mixed with a field mode prepared in a vacuum state (Fig.

10.2(a)). The following transformation is realised

B̂1(θ, φ)|0, 1〉ds = cos
θ

2
|1, 0〉ds + eiφ sin

θ

2
|0, 1〉ds, (10.2)

where B̂1(θ, φ) = exp{θ/2(eiφâ†sâd − e−iφâ†dâs)} is the beam splitter operator

and âs,d (â†s,d) are the annihilation (creation) operators for a sideward and a

downward field mode, respectively. We define the transformation in Eq. (10.2)
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Figure 10.2: All-optical set-up for the simulation of quantum random walks
on a line. (a) Two different kinds of operations are shown: T1 is an ordinary
beam splitter B̂1(θ, φ). T2 involves the cascade of the phase shifter P̂1(π/2),
of a 50:50 beam splitter B̂2(π/2, π) and of the phase shifter P̂2(−π/2). (b)
Proposed set-up, shown up to the fourth dynamic line. Apart the input state,
all the other modes are initially prepared in vacuum states.

as T1. We introduce the transformation T2

|1, 0〉d,s →
1√
2
(|1, 0〉+ |0, 1〉)d,s, (10.3)

|0, 1〉d,s →
1√
2
(|1, 0〉 − |0, 1〉)d,s, (10.4)

which can be realised with a 50:50 beam splitter, B̂2(π/2, π), and two phase
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10.1 Quantum random walk with linear optical elements

shifters P̂1(π/2) = eiπâ
†
sâs/2 and P̂2(−π/2) = e−iπâ

†
d
âd/2 as shown in Fig. 10.2(a).

The scheme can simply be illustrated as recursive applications of T2 after

the initial transformation T1, as shown in Fig. 10.2(b). A dynamic line [198] is

represented by a row of aligned optical elements (or photodetectors), labelled j

in Fig. 10.2(b). On the other hand, a node is given by a point represented by k

on a dynamic line. For example, the detector D−2 is on the fourth dynamic line

and occupies the node k = −2. If a photon is incident downward (sideward)

on a dynamic line j and node k, we represent its state as |k, d〉j (|k, s〉j). The

transition from a dynamic line j to j + 1 by means of the operation T2 is

synthesised by

|k, d〉j →
1√
2

(|k + 1, d〉+ |k − 1, s〉)j+1 ,

|k, s〉j →
1√
2

(|k + 1, d〉 − |k − 1, s〉)j+1 .
(10.5)

We notice that Eqs. (10.5) are equivalent to Eqs. (10.1). Thus, the actions

of T1 and T2 on a single-photon state exactly corresponds to a coined quan-

tum random walk. Any initial coin state, up to an irrelevant global phase,

can be prepared changing θ and ϕ in T1. If θ = π/2 and φ = −π/2, we get

the symmetric probability distribution that corresponds to the initial coin state

(|R〉+i|L〉)/
√

2 in a coined quantum walk [197]. In our model, the difference be-

tween quantum and classical walks from a certain step is due to the interference

of the walker’s paths on the T2 processes1.

A problem of the approach employing dynamic lines for quantum random

walks is that the required number of resources grows quadratically with the

number of steps. This imposes serious limitations to the scalability of such a

proposal [199]. In the alternative proposal in Fig. 10.3, this problem is bypassed

measuring all the even positions by the upper row of detectors, while the odd

ones are detected by the lower row. Acousto-Optic Modulators (AOMs) [202]

are used to guide a beam toward a mirror for further steps or toward a detector

for the measurement. When the AOMs in the top row have to deflect the light

beams toward the detectors, those in the bottom row should not be active. The

beam splitters and phase shifters in Fig. 10.2 and in Fig. 10.3 are the same.

1Note that classical random walks can be easily obtained removing all the phase shifters.
In this case, indeed, there can be no destructive interference that makes the quantum random
walk different from its classical counterpart.
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input
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Figure 10.3: Alternative set-up for quantum random walk on a line. In this
scheme, the number of required resources scales linearly with the number of
steps N . Two rows of Acousto-Optic Modulators (AOM) direct the incoming
beams of light to the perfect mirrors M or to the detectors row. This set-up is
conceptually equivalent to that sketched in Fig. 10.2(b).

Even if the scheme is demanding, from the experimental point of view, the

number of required resources increases only linearly with the number of steps.

10.2 Analysis with different states of the walker

In this Section we show that the scheme suggested in Fig. 10.2 exhibits the

same interference pattern at the detectors regardless of the nature of the input

state. We first address the case of an input coherent state and, then, we extend

the analysis to any field.

10.2.1 Coherent states

A coherent state |α〉 (α ∈ C) is generally assumed to be the best description of

the state of a laser beam. We consider |α〉 as the input state of the walker. The

action of the beam splitter operator on two input coherent states does not lead
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10.2 Analysis with different states of the walker

to any entanglement between the output modes [203]. Assuming θ = π/2 and

φ = −π/2 for the T1 process, we can calculate the distribution of the average

photon-number as a function of the position k on the chosen final dynamic line.

For example, for N = 4 steps, we find the final state

|Φ4〉 =
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−iα
4
, s

〉−4

4
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4
, d
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, d
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(10.6)

with |α, s〉kj (|α, d〉kj ) that indicates a coherent state incident sideward (down-

ward) on a dynamic line j and node k. The average photon-number Np(N, k)

for node k is Np(4, k) =M(4, k)Nin(|α〉), with

M(4,±4) =
1

16
, M(4,±2) =

3

8
, M(4, 0) =

1

8
. (10.7)

Here, Nin(|α〉) = |α|2 is the average photon number for the input state |α〉 and

M(N, k) is the normalised photon-number distribution at step N and node k.

It characterises the output photon-number distribution at the detectors. We

find that the distribution M(4, k) for an input coherent state is the same as

the one for the single photon input [197], i.e., the two different inputs result in

the same photon-number distribution. The average photon numbers for steps,

N = 4, 5, 6 are shown in Fig. 10.4. The deviations of a quantum walk from its

classical counterpart appears from the fourth step. This is due to the particular

values of the parameters in the transformation T1: θ = π/2 and φ = −π/2.

Since a coherent state input results in the same quantum random walk pattern

of the single photon case for all the steps we have considered, we conjecture that

the quantum walk pattern results even any initial state for a general number of

steps N . In what follows, we prove the validity of this conjecture.

10.2.2 General case

With the proposed set-up, the quantum walk process can be represented as

|ΦN〉 = ÛT (j=N)...ÛT (j=1)T̂1(j=0)|Φ0〉 ≡ ÛN
QW |Φ0〉,
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Figure 10.4: Average photon-number distribution for an input coherent state
|α = 1〉, as a function of the position along the final dynamic line. Three dif-
ferent cases are considered: the solid-line curve is relative to a number of steps
N = 4; the dashed-line represents N = 5 while the dot-dashed one is for N = 6.
The plots match perfectly the graphs expected for a coined quantum walk on a
line. In the general case of α 6= 1, Np has to be normalised with respect to |α|2.

where |Φ0〉 is the input state, N is the number of steps, and ÛT is an appropriate

unitary transformation for each step. For a coherent state, the previous result

can be summarised as

|Φ0〉 = |α〉
ÛN

QW−→ |χ1α〉1|χ2α〉2...|χNα〉2N = |ΦN〉. (10.8)

Eq. (10.6) is an explicit example. The average photon number for mode r

(0 ≤ r ≤ 2N) is nr = |χr|2|α|2 = |χr|2Nin(|α〉), with r = 0 corresponding

to the mode incident on the detector that occupies j = N , k = −N . It is

easy to show that the average photon number for the k-th node and j-th step

is given by Np(j, k) = nj−k + nj−k+1 = (|χj−k|2 + |χj−k+1|2)Ntot(|α〉), where

χ0 = χ2N+1 ≡ 0. This result also means that

M(j, k) = |χj−k|2 + |χj−k+1|2. (10.9)

Note that χr does not depend on the amplitude of the initial state but only on

the structure of ÛN
QW .

The initial state density operator in P representation can be generally
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written as [192, 204]

ρ0 =

∫
d2αP (α)|α〉〈α|, (10.10)

where P (α) is the P representation of the initial state ρ0. Provided that P (α)

is a sufficiently singular generalised function, such a representation exists for

any given operator ρ0 [204]. After N steps, the density operator evolves as:

ρN = ÛN
QWρ0Û

N†

QW =

∫
d2αP (α)|χ1α〉1〈χ1α| ⊗ ..⊗ |χ2Nα〉2N〈χ2Nα| (10.11)

where Eqs. (10.8) and (10.10) have been used. The P representation is partic-

ularly appropriate for our aim to find the average photon-number distribution

since it can be shown that the moments of the P representation give the expec-

tation values of normally-ordered products of bosonic operators [192, 204].

The marginal density matrix for mode r is simply obtained as

ρr =

∫
d2αP (α)|χrα〉r〈χrα|. (10.12)

The average photon number for the r-th mode is

nr = Trr[ρrâ
†â] = |χr|2

∫
d2αP (α) |α|2 = |χr|2Nin(ρ0),

and the average photon number for the j-th step and k-th node is Np(j, k) =

M(j, k)Ntot(ρ0) = (|χj−k|2 + |χj−k+1|2)Ntot(ρ0), from which Eq. (10.9) is found

to hold for the case of any input field. The interference pattern determined by

M(j, k) does not depend on the initial input state. For a given set of beam

splitters and phase shifters, any input state will result in the same interference

pattern. Only an overall factor will be changed, according to the total average

photon-number of the initial state. For a classical light, in a pictorial way, the

result is nothing but quantum random walks with many walkers simulated by

interference between fields. For a weak field, the quantum random walks with a

single walker can be probabilistically performed. For example, given a coherent

state with α = 1, a single photon is detected with 37% of the probability.
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j=N

j=0

j=1

Mirror Mirror

T1

T2 T2

Figure 10.5: An implementation of a quantum random walk on a circle using
‘dynamic circles’. Mirrors are used to change the paths of light fields.

10.3 Remarks

We have investigated an all-optical set-up to simulate a quantum random walk

process using ordinary beam splitters, phase shifters, and photodetectors. For

a single-photon state input, the process realised is shown to be equivalent to a

coined quantum random walk. Starting from this result, we have investigated

the case of an input coherent state. This class of states gives rise to exactly

the same pattern with a single-photon case (and, thus, with a coined quantum

walk on a line) with respect to the average photon-number distribution. We

have proved how our set-up is sufficiently flexible to work for any initial state.

We have addressed the question of the number of resources needed to

implement a given number of steps describing an alternative set-up. It turns

out that a quantum walk on a line could be implemented, with input coherent

states, using a number of resources that grows linearly with N .

It is possible to extend our scheme to quantum random walks on a circle
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as shown in Fig. 10.5. One can use ‘dynamic circles’ and mirrors to change the

paths of light fields. The transformation T1 is used only for the first dynamic

circle and T2’s are employed for further steps. This implementation is simply

based on the simulation scheme of a quantum walk on a line studied in this

Chapter. It is obvious that this modified version will simulate quantum walks

on a circle with classical fields. It is an interesting open question how to simu-

late quantum random walks using the wave nature of classical fields in higher

dimensions, general graphs and hypercubes. The possibility of classical simula-

tion of quantum random walks does not mean that it can be used for a practical

quantum algorithm. There remain important open questions for further studies

such as ‘what can we gain from the classical simulation of quantum walks in

terms of speed-up of quantum computation?’
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Chapter 11

Generating Optical Cat States

As we have studied, an optical cat state of a propagating field can be extremely

useful both for the study of fundamental quantum physics and for application of

quantum information processing. Once such cat states are generated, quantum

teleportation [73, 74, 75], nonlocality test [129, 206], generation and purification

[75, 78] of entangled coherent states and universal quantum computation [76, 77]

may become realisable using current technology.

It has been known theoretically that the cat state can be generated from

a coherent state by a nonlinear interaction in a Kerr medium [71]. However, the

Kerr nonlinearity of currently available nonlinear medium is too small to gener-

ate the required coherent superposition state. It was pointed out that one needs

an optical fibre of about 3,000km for an optical frequency of ω ≈ 5×1014rad/sec

to generate a coherent superposition state with currently available Kerr nonlin-

earity using two-mode nonlinear interactions and a Mach-Zehnder interferome-

ter [207, 208]. A nonlinear cell of about 1,500km is required when single-mode

interactions are used [209]. Even though it is possible in principle to make such

a long nonlinear optical fibre, the decoherence effect during the propagation will

become too large. A signal loses half of its energy in about 15km of propagation

through a typical commercial fibre used for telecommunication [210, 211]. This

will make the required state lose its quantum characteristics and useless for

quantum information processing. Proponents of photonic crystal fibre foresee

fibres with losses of less than 0.01db/km for optical networks [212]. Experimen-

tal efforts are being made for optical fibres with small losses and losses as low as

0.01db/km have been reported for Flurozirconate (ZrF4) fibres [213]. Even in
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such cases, a signal attenuates by half in about 300km, which is still not enough

to generate a cat state with the currently available nonlinear strength.

Some alternative methods have been studied to generate a superposi-

tion of macroscopically distinguishable states using conditional measurements

[214, 215]. One drawback of these schemes is that a highly efficient photon num-

ber measurement is required to obtain a coherent superposition state, which is

difficult using current technology. Cavity quantum electrodynamics has been

studied to enhance nonlinearity [216]. Even though there have been experimen-

tal demonstrations of generating cat states in a cavity and in a trap [217, 218],

unfortunately, all the suggested schemes for quantum information processing

with coherent states [73, 75, 74, 76, 77, 78] require propagating optical cat

states. There were other suggestions to generate cat states with trapped ions

[219] and with solitons [220].

Electromagnetically induced transparency (EIT) has been studied as a

method to obtain a giant Kerr nonlinearity [221]. There has been an experimen-

tal report of an indirect measurement of a giant Kerr nonlinearity utilising EIT

[177] and an inspiring suggestion to generate cat states with it [222]. However,

this developing technology of EIT has not been exactly at hand to generate

an optical cat state. In short, generating a propagating optical cat state is ex-

tremely demanding with currently available Kerr effect, and a developed scheme

to generate a cat state with small nonlinear effect is required.

As we have pointed out, a signal in an optical fibre loses half of its energy

in about 300km (or more) and this makes currently available noneliear media

almost useless for our purpose. However, if we can reduce the required level of

nonliearity by, e.g, 10 times (or 20 times), such a level of nonliear effect will

be gained in an obtical fibre of 150km (or 75km). Then there will be a good

possibility of producing a cat state using the nonlinear fibre. Our scheme, which

will be studied in this Chapter, is an effort to considerably reduce the required

nonlinear effect to generate a cat state using beam splitters and homodyne

measurements which are efficient tools in quantum optics.
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11.1 Generating a cat state with Kerr nonlinearity and its limitation

11.1 Generating a cat state with Kerr nonlin-

earity and its limitation

A cat state is defined as

|catα,ϕ〉 = N (α, ϕ)(|α〉+ eiϕ| − α〉), (11.1)

where N (α, ϕ) is a normalisation factor, |α〉 is a coherent state of its amplitude

α, and ϕ is a real local phase factor. Note that the relative phase ϕ can be

approximately controlled by the displacement operation for a given cat state

with α� 1 [76, 116]. Under the influence of the nonlinear interaction given by

the Hamiltonian (8.10), the initial coherent state with the coherent amplitude

α evolves to the following state at time τ :

|ψ(τ)〉 = e−|α2|/2
∞∑

n

αne−iφn

√
n!
|n〉, (11.2)

where φn = λtn2 and λ is the strength of the nonlinearity. When the interaction

time τ in the medium is π/λN , coherent state |α〉 evolves [209]

|ψN 〉 =

N∑

n=1

Cn,N | − αe2inπ/N 〉 (11.3)

where Cn,N = eiξn/
√
N . Comparing Eqs. (11.2) and (11.3) for an arbitrary N ,

we find an equation for the arguments ξn’s

1√
N

N∑

n=1

eiξn(−e2inπ/N )k = exp(−iπk2/N), (11.4)

where k = 0, 1, ..., N−1. By solving theN coupled equations given by Eq. (11.4),

the values ξn’s are obtained as [223]

Cn,N =
eiξn√
N

=
1

N

N−1∑

k=0

(−1)k exp[− iπk
N

(2n− k)]. (11.5)

The length L of the nonlinear cell corresponding τ is L = vπ/2λN , where

v is the velocity of light. For N = 2, we obtain a desired cat state of the
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11.2 Generating a cat state with smaller nonlinearity

form (11.1) with ϕ = π/2 [71]. We pointed out that the nonlinear coupling

λ is typically very small that N = 2 cannot be obtained in a length limit in

which decoherence effect can be neglected. It can be shown that the required

length L corresponding N = 2 to generate a cat state called Yurke-Stoler (Y-S)

state is about 1,500km when a typical Kerr nonlinearity is used [207, 224, 209].

Furthermore, usually α � 1 is required for quantum computation using cat

states with small error [76, 77]. For example, α > 20 is required in [77]. Such a

large α may cause even a faster decoherence in a nonlinear medium [111, 125].

11.2 Generating a cat state with smaller non-

linearity

If λ is not large enough, instead of the state (11.1), a different type of coherent

superposition state (11.3) with N > 2 can be obtained. From the state (11.3),

it is necessary to remove all the other coherent component states except two

coherent states of a π phase difference. First, we assume that the state (11.3)

is incident to a 50-50 beam splitter with vacuum as shown in Fig. 11.2. The

initial coherent amplitude α is supposed to be real for simplicity. The state

(11.3), after passing through the beam splitter, becomes

|ψN 〉 =
N∑

n=1

Cn,N | − αe2inπ/N/
√

2〉| − αe2inπ/N/
√

2〉, (11.6)

where all |Cn,N |’s have the same value. The imaginary part of the coherent

amplitude in the state (11.6) is then measured by homodyne detection. By the

measurement result, the state is reduced to

|ψ(1)
N 〉 = Nψ

N∑

n=1

Cn,N〈P | − αe2inπ/N/
√

2〉| − αe2inπ/N/
√

2〉

≡
N∑

n=1

C
(1)
n,N(α)| − αe2inπ/N/

√
2〉, (11.7)

where Nψ is the normalisation factor and |P 〉 is the eigenstate of P̂ = (a−a†)/i
and a and a† are creation and annihilation operators respectively. After the
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Figure 11.1: Scheme to generate a cat state using small Kerr nonlinearity, a
beam splitter, and homodyne detection.

homodyne measurement, the state is selected when the measurement result has

certain values. If |C(1)
N/2,N(α)| and |C(1)

N,N(α)| in Eq. (11.7) have the same nonzero

value and all the other |C(1)
n,N(α)|’s are zero, then the state becomes a desired

cat state. For example, if P = 0 is measured, the coefficients |C (1)
n,N(α)|’s are

the largest when n = N/2 and n = N . The coefficients become smaller as n

is far from the two points and can be close to zero for all the other n’s for an

appropriately large α. The resulting state becomes close to a cat state. If the

fidelity of the obtained state is not satisfactory, another trial can be made in

the same way.

The fidelity is a measure of how close two given states are. We first define

a ‘perfect’ cat state as

|catα/√2,ϕN
〉 = Nc

(
C

(1)
N/2,N |α/

√
2〉+ C

(1)
N,N | − α/

√
2〉
)
, (11.8)

where Nc is the normalisation factor and the equality |C (1)
N/2,N(α)| = |C(1)

N,N(α)|
always holds. The fidelity between the state (11.7) obtained and the perfect cat
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11.2 Generating a cat state with smaller nonlinearity

state (11.8) is then

f(α,N, P ) = |〈catα/√2,ϕN
|ψ(1)
N 〉|2

= N 2
cN 2

ψ

∣∣∣C(1) ∗
N/2,N

N∑

n=1

C
(1)
n,N exp[−α

2

2
(1 + e2inπ/N )]

+ C
(1) ∗
N,N

N∑

n=1

C
(1)
n,N exp[−α

2

2
(1− e2inπ/N )]

∣∣∣
2

. (11.9)

The probability of getting this result is obtained as

P(α,N, δ) =

∫

δ

dPTr[ρ1|P 〉〈P |]

=

∫

δ

dP

N∑

nm

〈−αe2inπ/N/
√

2|P 〉〈P | − αe2imπ/N/
√

2〉

× exp[−α
2

2
(1− e2i(m−n)π/N )] (11.10)

where ρ1 = Tr2[|ψN〉12 12〈ψN |] and δ is the range in which the high fidelity

is obtained. The range δ of P will be determined by the desired level of the

fidelity. Note that the initial coherent amplitude α needs to be larger as N

increases for better fidelity.

We first examine a case that the nonlinear strengh is 10 times weaker

than the required value to produce a coherent superposition state of N = 2 for

α = 20. In this case, we get a superposition of 20 coherent states, i.e., N = 20

instead of N = 2. After the nonlinear medium, the fidelity F between an ideal

cat state and the obtained state is ∼ 0.1. The probability distribution of X,

which corresponds to the conjugate variable of P , is shown in Fig. 11.2(a). After

beam splitting and the homodyne measurement, the state can be drastically

reduced to a cat state, and the fidelity is F = 0.999857 when the measurement

result is P = 0. Fig. 11.2(b) shows two well-separated peaks of the cat state

for the case of P = 0. The range δ, where F > 0.9 is obtained, is shown

in Fig 11.3. In order to calculate the total success probability, all the regions

should be carefully integrated. The success probability for F > 0.9 is then

∼ 1.8%, which means that roughly 50 trials are required to obtain a cat state

of F > 0.9.
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Figure 11.2: (a) The marginal quadrature probability of the state after passing
a low efficient nonlinear medium and (b) the marginal quadrature probability of
the obtained cat state after the beam splitter and homodyne detection. N = 20,
α = 20 and the horizontal axis represents the quadrature variable X. It is clear
from the figures that a cat state with well separated peaks is obtained after the
process.
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Figure 11.3: Fidelity F of the obtained cat state when N = 20 and α = 20.
F > 0.9 is obtained for the certain area of measurement result P .
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Figure 11.4: Maximal fidelity F obtained by a single application (dashed line)
and iterative applications (dotted and solid lines for the second and the third
iterations respectively) of the scheme. N is even.

For N = 20, we have assumed the Kerr nonlinearity weaker by 10 times.

The fidelity is reduced as the nonlinearity decreases, which in effect increases

N . If N = 40, i.e., the nonlinearity is weaker than the required level by 20

times, the maximal fidelity is 0.852349. However, by iterating this process, a

cat state with higher fidelity can be obtained. For example, if another beam

splitter and homodyne measurement are applied to the state (11.7), the state

obtained is

|ψ(2)
N 〉 = N (1)

ψ

N∑

n=1

C
(1)
n,N〈P | − αe2inπ/N/2〉| − αe2inπ/N/2〉

≡
N∑

n=1

C
(2)
n,N(α)| − αe2inπ/N/2〉. (11.11)

It can be easily seen that the resulting state (11.11) is closer to the ‘perfect’

cat state. After this second iteration, the maximal fidelity F ' 0.95 is obtained

and another iteration can give F ' 0.97. More iteration can be applied for even

better fidelity but it causes smaller coherent amplitude.

The success probability p(2) for the second trial can be obtained in the

same way. It is clear that p(2) may be significantly larger than p(1) because |ψ(1)
N 〉

may be much closer to the perfect cat state than |ψN 〉 is. However, the overall

probability is the multiplication of those for all the iterations. The success

probability becomes closer to unity as the homodyne measurement iterates.
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11.3 Alternative scheme using a two-mode non-

linear interaction

Gerry [207] suggested a scheme to generate cat states using a two-mode nonlin-

ear interaction, a Mach-Zehnder interferometer, beam splitters, a single photon

state, threshold photodetectors, and a phase shifter. In his experimental setup,

it is possible to generate a state

|ψκ,ν(β)〉 = Nκ,ν(|β〉+ eiν |βe−iκ〉), (11.12)

where κ = λL/v, L is the length of the Kerr medium, v is the velocity of

light in the medium and Nκ,ν is a normalisation factor. The relative phase ν

is determined by the phase shifter in Ref. [207]. The state (11.12) becomes

the desired cat state when ν = π. An optical fibre of about 3,000km for an

optical frequency of ω ≈ 5×1014rad/sec is required to generate such a cat state

[207, 208]. However, even when ν is small (i.e. ν < π) due to a short length of

the fibre, it is simply possible to transform the obtained state (11.12) to a cat

state (11.1) using a displacement operation1 up to an irrelevant global phase:

|catα,ϕ〉 = D(x)|ψκ,ν(β)〉 (11.13)

where x = −β(1 + eiκ)/2, ϕ = ν + eiκ and α = β + x. The only problem

here is that the coherent amplitude α may be too small enough because of

the weak nonlinearity. However, it is also possible to increase the coherent

amplitude probabilistically using beam splitters and threshold photodetectors.

Let us assume that two ‘small’ cat states |catα,ϕ〉 and |catα,ϕ′〉 are obtained in

this way. First, pass any two obtained cat states (not necessarily identical in

their relative phases) through a 50-50 beam splitter (BS1) as

|catα,ϕ〉a|catα,ϕ′〉b →
|cat√2α,ϕ+ϕ′〉f |0〉g
N (
√

2α, ϕ+ ϕ′)
+
eiϕ

′|0〉f |cat√2α,ϕ−ϕ′〉g
N (
√

2α, ϕ− ϕ′)
, (11.14)

where the normalisation factor is omitted in the right-hand-side. After passing

another 50-50 beam splitter (BS2) with a coherent state |
√

2α〉f , two photode-

1We studied that a displacement operation can be performed using a beam splitter and a
strong coherent field in Chapter 8.
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11.3 Alternative scheme using a two-mode nonlinear interaction

tectors detect photons as shown in Fig. 11.5. If both of the detectors A and

B click simultaneously, a cat state |catα,ϕ−ϕ′〉g, with the coherent amplitude√
2α, is obtained for mode g. This scheme can be iteratively applied to gain

an arbitrarily ‘large’ cat state. The weak nonlinear effects will only reduce the

success probability which is ' 1/2 for α � 1. Suppose that small even cat

states, |catα,0〉, are obtained by this scheme. The success probability Ps for

increasing the coherent amplitude is obtained as

Ps = b〈catα,0|a〈catα,0|f〈
√

2α|B̂†
1B̂

†
2N̂t1N̂t2B̂2B̂1|

√
2α〉f |catα,0〉a|catα,0〉b

=
(e2|α|

2

+ e−2|α|2)(1− e−|α|2)2

2(e2|α|2 + e−2|α|2 + 2)
, (11.15)

where B̂1 is the first beam splitter operator for modes a and b, B̂2 is the second

beam splitter operator for modes f and f ′, and N̂t1 =
∑∞

n=1 |n〉t1〈n|. When β =

40 and the nonlinear strength is 100 times weaker than the required value, one

can gain a small cat state of the absolute value 0.628 of the coherent amplitude.

This small cat state can be increased to 0.889 with the success probability

3.0%. Note that the success probability for each step increases as the amplitude

increases. A cat state with |α| ' 1.33 is obtained with the probability ' 0.003,

i.e., 300 to 400 times of trials are needed to generate such a cat state. We

can see, from the argument in Chapter 2, that this value (|α| ' 1.33) for a

cat state is appropriate to generate an entangled coherent state for Bell-state

measurements and teleportation. A value |α| ' 3.55, which may be used for

quantum computation, can be obtained with the probability ' 10−4. Note that

a probabilistic scheme for producing a cat state can be enough in our scheme for

universal quantum computation as explained in Chapter 8. A cat state with a

large amplitude, e.g., |α| ' 28.43, may be obtained with a very low probability

' 1.7× 10−6 by iterative applications.

This scheme can also be used to recover the reduced coherent amplitude

in our previous scheme presented in Section 11.2. A coherent amplitude is

reduced as α → α/
√

2 during the process of the previous scheme. The process

P, boxed in Fig. 11.5, will probabilistically recover the coherent amplitude as

α/
√

2→ α. Note that the scheme P can increase the quantum nature of a given

cat state including entanglement. Suppose an even cat state which is given to

generate an entangled coherent state [70]. An entangled coherent state can be
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11.4 Remarks
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Small

Gerry’s scheme [204]

Kerr effect

P

Figure 11.5: An alternative scheme to generate a cat state with a small Kerr
effect.

simply generated with a cat state at a 50-50 beam splitter. When α is small,

the entanglement of the generated entangled coherent state is also small [78].

However, it is possible to ‘distil’ some cat states with a larger α from a number

of cat states with a small α by P processes. The obtained cat states can be

used to generate highly entangled coherent states.

11.4 Remarks

The propagating cat state in an optical system is useful for various applications

of quantum information processing. However, weak nonliear effects have been

pointed out as a main obstacle to generate such a state. We have suggested

a scheme to generate a cat state using relatively small nonlinearity compared

with the currently required level using beam splitters and homodyne detection.

It was found that the required nonlinear effect to generate a useful cat state

with α & 20 and F & 0.9 can be reduced by 20 times. An alternative scheme

was suggested to reduce the required nonlinear effect based on the scheme [207]

using a two-mode nonlinear interaction and a single photon state. We have

found that the required nonlinear effect for a cat state generation with α ' 40

can be reduced by 100 times but the success probability becomes low depending

on the coherent amplitude of the desired state. A cat state with a coherent

amplitude α ' 1.33 (α ' 3.55) may be obtained under the above conditions

with the success probability ' 0.003 (' 0.0001).

154



Chapter 12

Conclusion

We have studied quantum information processing using non-classical light in

optical systems. Light fields are useful in quantum information processing and

the optical approach is one of the strongest candidates for realisation of quan-

tum computation and communication. There have been optical approaches

based on single-photons and Gaussian continuous-variable states for quantum

information processing. Our approach utilising optical coherent states and their

entanglement is somehow different from those ones. Even though we considered

quantum systems normally categorised into continuous-variable states, they

were dealt with in a 2 × 2 dimensional Hilbert space. It has merits particu-

larly in simplicity compared with the others for practical implementations of

quantum information processing. We have also studied non-classical nature of

various continuous-variable states which are used as quantum channels for quan-

tum information processing. We have tried to understand nonlocal properties

of the Gaussian and non-Gaussian continuous-variable states.

Quantum nonlocality is easily destroyed in an environment while it is a

key ingredient in quantum information processing. We have been interested in

environmental effects on quantum channels. Quantum non-locality has been

tested for an entangled coherent state. When the entangled coherent state is

embedded in a vacuum environment, its entanglement is degraded but not to-

tally lost. A pure entangled coherent state violates Bell’s inequality regardless

of its coherent amplitude. The higher the initial nonlocality, the more rapidly

quantum nonlocality is lost. The quantum nonlocality persists longer when it

is considered in a 2 × 2 Hilbert space. It has been found that when it deco-
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heres, the entangled coherent state fails the non-locality test, which contrasts

with the fact that the decohered entangled state is always entangled. We have

studied the dynamic behaviour of the nonlocality for the two-mode squeezed

state in the thermal environment. The two-mode squeezed state is found to be

a nonlocal state regardless of its degree of squeezing and the higher degree of

squeezing brings about the larger quantum nonlocality. As the squeezed state

is influenced by the thermal environment the nonlocality is lost. The rapidity

of the loss of nonlocality depends on the initial degree of squeezing and the

average thermal energy of the environment. The more strongly the initial field

is squeezed, the more rapidly the maximum nonlocality decreases. This result

is in agreement with the case of an entangled coherent state and due to the fact

that a macroscopic quantum system is more fragile than a microscopic quantum

system.

There have been theoretical and experimental studies on quantum nonlo-

cality for continuous variables, based on dichotomic observables. In particular,

we have been interested in two cases of dichotomic observables for the light field

of continuous variables: One case is even and odd numbers of photons and the

other case is no photon and the presence of photons. We have analysed various

observables to give the maximum violation of Bell’s inequalities for continuous-

variable states. We have discussed an observable which gives the violation of

Bell’s inequality for any entangled pure continuous variable state. However, it

does not have to be a maximally entangled state to give the maximal viola-

tion of the Bell’s inequality. This is attributed to a generic problem of testing

the quantum nonlocality of an infinite-dimensional state using a dichotomic

observable.

A quantum teleportation scheme and an entanglement concentration pro-

tocol using entangled coherent states have been suggested. A complete Bell-

state measurement, which enables quantum teleportation, computation and en-

tanglement concentration, can be realised with an arbitrarily high precision

using only linear elements. Teleportation of a coherent state qubit can be ac-

complished using an entangled coherent channel, photodetectors, coherent light

sources, and beam splitters. A decohered entangled coherent state in a dissi-

pative environment may be useless for quantum teleportation as it gives the

optimal fidelity of teleportation less than the classical limit 2/3. The telepor-
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tation scheme has been extended and applied to gate operations. It has been

found that universal gate operations are possible for a coherent state qubit.

Single-bit unitary transformations can be performed using beam splitters and

nonlinear media, and a CNOT gate can be constructed based on teleporta-

tion protocol. Efficient readout is possible using beam splitters and coherent

light sources. The quantum computation scheme has been shown to be robust

to detection inefficiency. Alternatively, the universal gate operations can be

achieved by linear optical elements and pre-arranged quantum channels. In this

case, the photo-counting ability to discriminate between odd and even numbers

of photons is required.

An entanglement purification scheme for mixed entangled coherent states

has been suggested to overcome the decoherence of quantum channels. This

scheme is directly applicable to mixed entangled coherent states of the Werner

type, and can be useful for general mixed states using additional nonlinear

interactions. We have applied it to entangled coherent states decohered in a

vacuum environment and found the decay time until which they can be purified.

We have investigated an all-optical set-up to simulate a quantum ran-

dom walk process using a classical light field. It was shown how to realise

quantum random walks on a line by means of beam splitters, phase shifters,

and photodetectors. We have analysed the proposed scheme for different kinds

of input states. The process realised was shown to be equivalent to a coined

quantum random walk for a single-photon state. We have found that any quan-

tum or classical field gives rise to exactly the same pattern with a single-photon

case with respect to the average photon number distribution. From this result,

we have learned that a quantum random walk is understood in terms of the

particle-wave duality of a quantum particle.

Finally, the generation of propagating optical cat states in optical systems

was studied. The propagating cat state is useful for various application of

quantum information processing. However, insufficient nonlinear strength has

been pointed out as the main obstacle to generate such a state. We have

suggested a scheme to generate a cat state using relatively small nonlinearity

compared with the currently required level using beam splitters and homodyne

detection. It was found that the required nonlinear effect to generate a useful

cat state with α & 20 and F & 0.9 may be reduced to less than 1/20. An
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alternative scheme was suggested to reduce the required nonlinear effect based

on the scheme in Ref. [207] using a two-mode nonlinear interaction and a single

photon state. We have found that the required nonlinear effect for the cat state

generation with α ' 40 may be reduced by 100 times but the success probability

becomes low depending on the coherent amplitude of the desired state.

The approach to quantum information processing using coherent states

and their entanglement is still being developed and refined. For example,

Matsko et al. [225] and Paternostro et al. [222] made a meaningful progress

in generating the cat state. Ralph et al. presented an improved and extended

version of the coherent-state quantum computation including an error correct-

ing scheme [226]. The teleportation scheme developed in the dissertation does

not seem to be far from experimental realisation. As we have discussed, there

are a few different approaches and a lot of suggestions for the implementation

of quantum information processing. It is hard to predict which will eventually

survive and which will perish. However, we have seen fruitful by-products out of

each approach including deeper understanding of quantum physics itself. This

dissertation might be understood as one of those endeavours.
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[221] H. Schmidt and A. Imamoǧlu, Opt. Lett. 21, 1936 (1996); M.D. Lukin and
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Appendix A

Rotations around the x-axis for

even and odd cat states

In a few previous papers [116, 117, 227] for a couple of different purposes, the

authors approximated the effect of the displacement operator to be a rotation

around the x axis of the even- and odd-cat state basis assuming large coherent

amplitudes. The action of a classical force was represented by the unitary dis-

placement operator. In this Appendix, we show a mistake in this approximation

and correct it.

Their argument [116, 117, 227] can be explained as follows. Two orthog-

onal cat states are defined as

|+〉 = N+(|α〉+ | − α〉), (A.1)

|−〉 = N−(|α〉 − | − α〉), (A.2)

where | ± α〉 are coherent states of coherent amplitudes ±α and N± are nor-

malization factors. We assume α � 1 for which the normalization factors N±

approach to 1/
√

2. The coherent amplitude α is assumed to be real for simplic-

ity. These assumptions are taken throughout this Appendix following [227].

Consider a displacement operatorD(iε) where ε is taken to be real. Then,
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the effect of the displacement operator on the even cat state is

D(iε)|+〉 = D(iε)
1√
2
(|α〉+ | − α〉)

=
1√
2
(eiαε|α+ iε〉 + e−iαε| − α + iε〉). (A.3)

Here, Munro et al. made an important approximation as [227]

D(iε)|+〉 ≈ 1√
2
(eiθ|α〉+ e−iθ| − α〉) (A.4)

where θ = αε. If approximation (A.4) is satisfactory, then

D(iε)|+〉 ≈ cos θ|+〉+ i sin θ|−〉 ≡ |+′〉 (A.5)

which corresponds to the rotation around the x axis.

The above argument seems even clearer as follows. The fidelity |〈ψ1|ψ2〉|2
between two given states |ψ1〉 and |ψ2〉 is a measure of closeness between the

states. If we assess fidelities between |α〉 and |α + iε〉 and between | − α〉 and

| − α+ iε〉 for α� 1, we obtain

|〈α|α+ iε〉|2 = |〈−α| − α+ iε〉|2 = e−ε
2

, (A.6)

which depends only on ε. Note that only very small amount of ε is required to

make one cycle for α� 1. Therefore, we can clearly say

|α〉 ≈ |α + iε〉, (A.7)

| − α〉 ≈ | − α + iε〉, (A.8)

which seems to be enough to justify Eq. (A.4).

However, even though Eqs. (A.7) and (A.8) are true from Eq. (A.6), one

cannot jump to Eq. (A.4). First, we can directly assess how close the state of

the left-hand side and the state in the right-hand side in Eq. (A.4) are as

|〈+′|D(iε)|+〉|2 = e−ε
2

cos2 αε(1 + e−2α2

)2

≈ e−ε
2

cos2 αε, (A.9)
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where we find an periodic term cos2 αε which is not found in Eq. (A.6). For the

two states to be close, not only ε � 1 but also αε � 1 is required. However,

because α is assumed to be very large, even a small amount of ε can cause a

significant difference between the two states in Eq. (A.9). For Eq. (A.4) to be

true, both α and ε should be small. This is in contradiction to the assumption

α � 1, and even impossible because small α may cause large ε for a given

rotation angle. Therefore, the approximation (A.4) does not hold in general.

Now, we need to obtain a proper approximation of Eq. (A.3) in terms

of |+〉 and |−〉. It should be noted that |+〉 and |−〉 are treated like a two-

dimensional basis in this approach. This means the identity 11 should be defined

as

11 = |+〉〈+|+ |−〉〈−| = |α〉〈α|+ | − α〉〈−α|, (A.10)

which is true under the assumption N± = 1/
√

2. From Eqs. (A.3) and (A.10),

we get

D(iε)|+〉 = 11D(iε)|+〉

=
e−ε

2/2

√
2

[
(e2iαε + e−2α2

)|α〉

+ (e−2iαε + e−2α2

)| − α〉
]

≈ e−ε
2/2

√
2

(e2iαε|α〉+ e−2iαε| − α〉)

≈ cos Θ|+〉+ i sin Θ|−〉 ≡ |+′′〉 (A.11)

where Θ = 2αε. We can simply check the fidelity

|〈+′′|D(iε)|+〉|2 = e−ε
2 |1 + e−2α2

cos 2αε|2 ≈ e−ε
2

(A.12)

which shows that |+′′〉 is the proper approximated state for D(iε)|+〉.

Fig. A.1 shows the fidelity between D(iε)|+〉 and |+〉. It is clear that

Θ = π makes one cycle, where Θ = 2αε. It is in agreement with the fact that

0 ≤ Θ < π makes one cycle for a two-level state |ψ〉 = cos Θ|+〉+ sin Θ|−〉 up

to a global phase.
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Figure A.1: The fidelity F = |〈+|D(iε)|+〉|2 against ε. α = 2 for dashed line
and α = 5 for solid line. Here, Θ = π makes one cycle with Θ = 2αε. It
is in agreement with the fact that 0 ≤ Θ < π makes one cycle for |ψ〉 =
cos Θ|+〉+ sin Θ|−〉 up to a global phase.
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Appendix B

Positivity of P function and

separability for a Gaussian state

Lee et al. analysed separability for a Gaussian state with the positivity of the

P function [154]. They showed that a mixed two-mode squeezed vacuum in the

thermal environment is separable when a positive definite P function can be

assigned to it.

A two-mode Gaussian state ρ̂ of mode b and c is separable when it is

represented by a statistical mixture of the direct-product states;

ρ̂ =

∫
d2ξP(ξ)ρ̂b(ξ)⊗ ρ̂c(ξ) (B.1)

where ρ̂b,c(ξ) are density matrices, respectively, for modes b and c, and P(ξ)

is a probability density function with P(ξ) ≥ 0. The states of ρ̂b(ξ) and ρ̂c(ξ)

can be nonclassical and do not have to have their P functions positive well-

defined. However, because they are Gaussian, it is possible to transform them

to assign positive well-defined P functions by local unitary transformations1.

The separable condition, (B.1), can then be written as

ρ̂′ =

∫
d2ζb

∫
d2ζc

∫
d2ξP(ξ)P (ζb; ξ)P (ζc; ξ)× |ζb〉〈ζb| ⊗ |ζc〉〈ζc| (B.2)

where Pb(ζb; ξ) and Pc(ζc; ξ) are the P functions, respectively, for the fields

1Any local unitary operations do not affect entanglement or separability of a state. By uni-
tary transformations of squeezing and rotation, any Gaussian state becomes to be represented
by its positive well-defined P function [159].
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of modes b and c after some local unitary operations. ρ̂′ is for the two-mode

Gaussian state after the local operations.

We want to prove in this appendix that if and only if a two-mode Gaus-

sian state is separable, a positive well-defined P function P (ζb, ζc) is assigned

to it after some local unitary transformations.

Consider the sufficient condition. If a two-mode Gaussian state ρ̂ is

separable, it can be written as Eq. (B.2) after some local operations. Both

Pb(ζb; ξ) and Pc(ζc; ξ) are positive well-defined and P(ξ) is a probability density

function so ∫
d2ξP(ξ)P (ζb; ξ)P (ζc; ξ) (B.3)

is a normalized positive function, which we can take as the positive well-defined

P function P (ζb, ζc). We have proved that if a two-mode Gaussian state is

separable, it has a positive well-defined P function after some local unitary

operations.

Now let us prove the necessary condition. If the locally-transformed

two-mode Gaussian state is represented by a positive well-defined P function

P (ζb, ζc), the separable condition (B.2) becomes

P (ζb, ζc) =

∫
d2ξP(ξ)Pb(ζb; ξ)Pc(ζc; ξ). (B.4)

Further by some additional squeezing and rotation it is always possible to have

the rotationally-symmetric variance [∆ζi(φ)]2 for any angle φ. After these trans-

formations, the positive well-defined P function P (ζb, ζc) can be written as

P (ζb, ζc) = N exp
[
−
∑

i,j=b,c

ζiNijζ
∗
j +

∑

i=b,c

(ζiλ
∗
i + ζ∗i λi)

]
(B.5)

where N is the normalization constant, Nij a Hermitian matrix, and λi a com-

plex number. The linear terms of ζi are not considered because they do not

affect the proof. In fact, they can always be removed by some local displace-

ment operations. Eq. (B.5) can be written as

P (ζb, ζc) =
DetNij

π2
exp

(
−
∑

i,j=b,c

ζiNijζ
∗
j

)
(B.6)
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where DetNij is the determinant of the Hermitian matrix Nij. To find an

expression in the form of Eq. (B.4), let us introduce an auxiliary field (ξ, ξ∗)

enabling the function P (ζb, ζc) to be represented by a Gaussian integral;

P (ζb, ζc) =
DetNij

π3

∫
d2ξ exp

(
− |ξ|2 − Eb(ζb, ξ)− Ec(ζc, ξ)

)
(B.7)

where

Eb(ζb, ξ) =
(
Nbb + |Nbc|2

)
|ζb|2 − ζbNbcξ

∗ − ζ∗bN∗
bcξ (B.8)

Ec(ζc, ξ) = (Ncc + 1) |ζc|2 + ζcξ
∗ + ζ∗c ξ (B.9)

The integrand in Eq. (B.7) can now be decomposed into three Gaussian func-

tions each of which satisfies the normalization condition because

Nii > 0 and DetNij > 0 (B.10)

for positive well-defined P (ζb, ζc) in Eq. (B.5). Taking

Pb(ζb; ξ) =
Mb

π
exp

(
−Mb|ζb|2 + ζbNbcξ

∗ + ζ∗bN
∗
bcξ −

|Nbc|2
Mb

|ξ|2
)

(B.11)

Pc(ζc; ξ) =
Mc

π
exp

(
−Mc|ζc|2 − ζcξ∗ − ζ∗c ξ −

1

Mc
|ξ|2
)

(B.12)

P(ξ) =
Ms

π
exp

(
−Ms|ξ|2

)
(B.13)

where Mb = Nbb + |Nbc|2, Mc = Ncc + 1, and Ms = DetNij/(MbMc), the P

function is finally obtained in the form of Eq. (B.4). It is clear that P(ξ) is

the positive probability density function and the two-mode Gaussian state is

separable if it can be transformed to have a positive well-defined P function by

some local unitary operations.
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