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Relation between the Greenberger-Horne-Zeilinger–entanglement cost of preparing
a multipartite pure state and its quantum discord
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We investigate how much amount of Greenberger-Horne-Zeilinger (GHZ) entanglement is required in order to
prepare a given multipartite state by local operations and classical communication (LOCC). We present a LOCC
procedure that asymptotically converts GHZ states into an arbitrary multipartite pure state, whose conversion
rate is given by the multipartite discord of the state. This reveals that the GHZ-entanglement cost of preparing a
pure state is not higher than the multipartite discord of the state. It also provides an operational interpretation of
multipartite discord for pure states, namely, the consumption rate of GHZ entanglement in the devised procedure.
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I. INTRODUCTION

Quantum entanglement lies at the heart of notable features
of quantum physics and the power of quantum-information
processing [1–4]. Its quantification is an issue of great
importance. A possible approach is based on the idea that
entanglement is a resource shared between distant parties that
cannot be generated by local operations and classical commu-
nication (LOCC). More specifically, a scale of entanglement
can be created by considering asymptotic conversion (i.e.,
conversion of m copies of a state into n copies of another
state for large n and m) under LOCC. Entanglement is then
quantified as the optimal rate of the asymptotic conversion,
m/n, from a resource state to the given state (or vice versa).

Bennett et al. showed that, in the bipartite case, the
asymptotic conversion between any pure states is reversible
[5], so when quantifying entanglement of bipartite systems,
any choice of a pure entangled state as a resource state results
in an equivalent quantification. The singlet state is a natural
choice for a resource state, and the corresponding conversion
rate is called the entanglement cost (and it is called the
distillable entanglement for the reverse direction) [5–10]. The
entanglement cost of preparing a bipartite pure state has been
shown to equal the entropy of entanglement or, equivalently,
the von Neumann entropy of one of the subsystems [5].

Entanglement of multipartite states can be quantified in
the same way, but different choices of the resource state
may give rise to independent quantifications. For example,
there exist asymptotically inequivalent multipartite states
such as the Greenberger-Horne-Zeilinger (GHZ) state and
the W state. Hence, one may choose a resource state and
correspondingly define a multipartite-entanglement cost as the
optimal conversion rate from the resource state to a given state
[8,11]. However, even achievable rates (i.e., upper bounds for
the optimal rate) are not known for any resource state, except in
the case where the singlets shared among the multiple parties
are used as resource [12]. This can be attributed to the difficulty
of analyzing general LOCC [13]. The LOCC conversion
between multipartite states has been little studied especially
in the asymptotic limit, while there have been studies on
the stochastic LOCC conversion [14,15] and the conversion
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under asymptotically nonentangling operations [16,17] in the
asymptotic limit.

Here, we consider the GHZ-entanglement cost of preparing
a quantum state of an arbitrary number of parties, where the
k-partite GHZ state is defined as

|GHZ〉 = 1√
2

(|0〉⊗k + |1〉⊗k),

with |0〉 and |1〉 denoting orthogonal basis states for local
subsystems. We present a LOCC procedure, LD , for the
asymptotic conversion from GHZ states to a multipartite pure
state ψ , namely,

GHZ⊗nRD
LD−→ ψ⊗n

for sufficiently large n. We find that the conversion rate of
this procedure, RD , is given by the multipartite discord of
state ψ , captured by the relative entropy of discord. This
implies that the optimal rate is upper bounded by the relative
entropy of discord. Our study further provides an operational
interpretation of multipartite discord for pure states, namely,
the consumption rate of GHZ entanglement in the devised
procedure. In the multipartite setting, quantum discord of pure
states is distinct from entanglement (although they are equal
for bipartite pure states), but its roles and meanings are not well
understood compared to those of bipartite discord in several
information tasks [18–23].

II. DEFINITIONS

We consider a multipartite system P = {P1, . . . ,Pk} con-
sisting of k subsystems of an arbitrary dimension. A k-partite
quantum state is called fully separable if it can be written in a
form of

∑
j pjρ1,j ⊗ · · · ⊗ ρk,j . We denote the set of separable

states by S. We also denote an arbitrary orthonormal basis for
the j th subsystem by {|xj 〉}, where xj are integers from 0
to dim(Pj ) − 1. We can then construct a separable basis for
the whole system as {|x1, . . . ,xk〉 = |x1〉 ⊗ · · · ⊗ |xk〉}. The
basis states for the whole system contain no nonclassical
correlation, so we call their classical mixtures classically
correlated states. To clarify, a k-partite quantum state σ

is said to be classically correlated if it can be written as
σ = ∑

x1,... ,xk
p(x1, . . . ,xk)|x1, . . . ,xk〉〈x1, . . . ,xk|. We de-

note the set of classically correlated states by C.
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Apart from the quantification of entanglement based on
the LOCC conversion, there is an axiomatic approach to
measuring entanglement. In this approach, an entanglement
measure is given as a function of the density matrix that
satisfies some desirable properties. One such measure is the
relative entropy of entanglement defined as [24]

ER(ρ) = min
σ∈S

S(ρ||σ ), (1)

where S(ρ||σ ) = −tr(ρ log2 σ ) − S(ρ) is the relative entropy
of ρ to σ and S(ρ) = −tr(ρ log2 ρ) is the von Neumann
entropy of ρ. When dealing with many copies of a state, it
is desirable to consider the regularized version of ER defined
as [25]

E∞
R (ρ) = lim

t→∞
ER(ρ⊗t )

t
.

Using the set of classically correlated states, C, the relative
entropy of discord [26–28] and its regularized versions are
defined as

DR(ρ) = min
σ∈C

S(ρ||σ ), D∞
R (ρ) = lim

t→∞
DR(ρ⊗t )

t
, (2)

respectively. From the definitions, it is evident that
D∞

R � DR and E∞
R � ER . As already mentioned, DR = ER

for any bipartite pure state, but they are generally not equal
for k-partite pure states with k > 2. It has been shown that one
can always find a separable basis {|x1, . . . ,xk〉} such that the
complete set of projectors {�j } = {|x1, . . . ,xk〉〈x1, . . . ,xk|}
satisfies DR(ρ) = S(ρ||∑j �jρ�j ) [26]. We then obtain

DR(ψ) = min
{�j }

[
−

∑
tr(�jψ) log2 tr(�jψ)

]
(3)

for a pure state ψ .
To address the GHZ-entanglement cost, we define the

asymptotic preparation as follows. We say that a LOCC
procedure, denoted by L, asymptotically prepares ψ from
GHZ states at rate R if F (ψ⊗n,L(GHZ⊗m)) → 1 and
m/n → R as n → ∞, where F (ρ,σ ) = tr

√
ρ

1
2 σρ

1
2 is the

fidelity between two quantum states ρ and σ [29].

III. MAIN RESULT

We now provide our main result as follows. First, we
introduce a pure state � that approximates ψ⊗n. It is based
on the asymptotic equipartition property (AEP) [30] which
will be briefly explained. Next, we present a LOCC procedure
that prepares � from a certain number of copies of a GHZ
state, say, m copies. Finally, we prove that F (�,ψ⊗n) → 1
and m/n → D∞

R (ψ) for n → ∞, so they collectively verify
that the LOCC procedure asymptotically prepares ψ at rate
D∞

R (ψ).

A. Introduction of an approximate state

Here we introduce a pure state � that approximates ψ⊗n

[i.e., F (ψ⊗n,�) → 1 for n → ∞]. For simplicity, we only
consider tripartite systems, but the generalization to any k-
partite system is straightforward. We begin with summarizing
the AEP [30]. Consider independent and identically distributed
random variables X(1), . . . ,X(l). Each of the variables has

the same probability distribution p(x) and the Shannon
entropy H . We define a typical set Aε to be a set of se-
quences {xl = (x(1), . . . ,x(l))} that satisfy 2−l(H+ε) � p(xl) �
2−l(H−ε). Then, the AEP states that the typical sequences {xl}
contain most of the probability, and the size of the typical set,
|Aε |, is about 2H . The AEP is summarized as follows. For any
ε > 0,

Pr[xl ∈ Aε] > 1 − ε,

|Aε | > (1 − ε)2l(H−ε),

|Aε | � 2l(H+ε) (4)

for sufficiently large l.
Let us assume that we want to asymptotically prepare a

tripartite state ψ , where the dimensions of the three subsystems
are l̄, m̄, and n̄. We then consider the state φ = ψ⊗t prepared
in a tripartite system P = {P1,P2,P3} where dim(P1) = (l̄)t ,
dim(P2) = (m̄)t , and dim(P3) = (n̄)t . This state can be written
in a separable basis {|x1, . . . ,xk〉} for system P as

|φ〉 = |ψ〉⊗t =
∑

x1,x2,x3

C(x1,x2,x3)|x1,x2,x3〉, (5)

with some coefficients C(x1,x2,x3). We note that {|xj 〉}
can be any orthonormal basis for each subsystem, and we
do not choose any particular separable basis at this point.
The coefficients |C(x1,x2,x3)|2 can be considered a joint
probability distribution of random variables X1, X2, and X3,
so we set p(x1,x2,x3) = |C(x1,x2,x3)|2 and

H = −
∑

|C(x1,x2,x3)|2 log2 |C(x1,x2,x3)|2. (6)

We may consider independent and identically distributed
random variables X

(1)
j , . . . ,X

(l)
j for j = 1, 2, and 3. A typical

set is correspondingly defined as

Aε = {(
xl

1,x
l
2,x

l
3

)
:
∣∣ log2 p

(
xl

1,x
l
2,x

l
3

) − H | � ε
}
. (7)

Then, n = t × l copies of ψ , which is prepared in a system
Q = {Q1,Q2,Q3} = {P ⊗l

1 ,P ⊗l
2 ,P ⊗l

3 }, is represented using the
typical set Aε and its complement Ac

ε as

|ψ〉⊗n
Q =

∑
(xl

1,x
l
2,x

l
3)∈Aε

C
(
xl

1,x
l
2,x

l
3

)∣∣xl
1,x

l
2,x

l
3

〉

+
∑

(xl
1,x

l
2,x

l
3)∈Ac

ε

C
(
xl

1,x
l
2,x

l
3

)∣∣xl
1,x

l
2,x

l
3

〉
. (8)

The approximated state � is defined to consist of only the
terms corresponding to the typical sequences, so

|�〉Q = N
− 1

2
ε

∑
(xl

1,x
l
2,x

l
3)∈Aε

C
(
xl

1,x
l
2,x

l
3

)∣∣xl
1,x

l
2,x

l
3

〉
, (9)

where Nε = ∑
(xl

1,x
l
2,x

l
3)∈Aε

|C(xl
1,x

l
2,x

l
3)|2 is a normalization

factor. As the typical set contains most of the probability, we
see that the fidelity between � and ψ⊗n approaches unity as
n → ∞. In addition, it follows from the AEP that the number
of terms in the expansion of �, |Aε |, is approximately 2lH .

At this point, we note a previous method for bipartite
asymptotic preparation [5] in relation to our approach. In
Ref. [5], one party, say the first party, prepares ψ⊗n

Q1Q
′
1

at their
site and send the compressed Q′

1 part (the compression uses
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the AEP) to the second party using the quantum teleportation
protocol. At the end of the procedure, the two parties share an
approximated state of the same form as �. This method using
the teleportation protocol can be applied only to multipartite
states that have Schmidt decompositions such as α|000〉 +
β|111〉 [31]. On the other hand, our LOCC procedure directly
converts singlets into the state �. It enables us to consider
the approximated state � in multipartite setting, which can
actually be created by LOCC as shown in the next section.

B. Preparation of the approximate state

We now present the LOCC procedure LD that con-
verts log2 |Aε | copies of a GHZ state into �, so
LD(GHZ⊗ log2 |Aε |) = �. We also only consider tripartite
systems, and the generalization to any k-partite system is
straightforward. For convenience of mathematical descrip-
tions, we change the notation as follows. For xl

1, xl
2, and

xl
3 such that (xl

1,x
l
2,x

l
3) ∈ Aε , consider the following sets:

{(xl
1,x

l
2,x

l
3)}, {xl

1}, {xl
2}, and {xl

3}, whose sizes are |Aε |, α,
β, and γ , respectively. We replace (xl

1,x
l
2,x

l
3) with y where

y ∈ {0,1, . . . ,|Aε | − 1}. Similarly, we do the same for other
sets as

{xl
1} → {f : f ∈ 0, . . . ,α − 1},

{xl
2} → {g : g ∈ 0, . . . ,β − 1}, (10)

{xl
3} → {h : h ∈ 0, . . . ,γ − 1}.

Because f , g, and h are completely determined by y, we
denote them by f (y), g(y), and h(y). We can then rewrite the
state � of the system Q as

|�〉Q = N
− 1

2
ε

|Aε |−1∑
y=0

C(y)|f (y),g(y),h(y)〉Q. (11)

The state � can be obtained from m = 
log2 |Aε |� copies
of a GHZ state (
x� is the smallest integer not less than x)
by following four steps of LOCC. Assume that m copies
of a GHZ state are prepared in an ancillary system Q′ =
{Q′

1,Q
′
2,Q

′
3}, where dim(Q1) = dim(Q2) = dim(Q3) = |Aε |.

We can rewrite GHZ⊗m as

|GHZ〉⊗m
Q′ = 2− m

2

∑
zj =0,1

|z1 · · · zm〉|z1 · · · zm〉|z1 · · · zm〉

= 2− m
2

2m−1∑
y=0

|y,y,y〉Q′ ,

where y is the decimal representation of binary strings
z1 · · · zm. Because |Aε | � 2m, we may discard the terms
other than those with 0 � y � |Aε | − 1 (by a simple local
operation), so we have

|Aε |− 1
2

|Aε |−1∑
y=0

|y,y,y〉Q′ .

The first step is to change the coefficients from 2− m
2 to

N
−1/2
ε C(y) as

|Aε |− 1
2

|Aε |−1∑
y=0

|y,y,y〉Q′
Step1−−→ N

− 1
2

ε

|Aε |−1∑
y=0

C(y)|y,y,y〉Q′ .

This can be done by local operations of any party. Consider a
local measurement described by the measurement operators⎧⎨
⎩Mj = N

− 1
2

ε

|Aε |−1∑
y=0

D(y ⊕ j )|y〉〈y|, 0 � j � |Aε | − 1

⎫⎬
⎭,

(12)

where ⊕ denotes addition modulo |Aε |. It is easy to check that
they satisfy the completeness relation

∑
j M†

jMj = I . After
the measurement, if the outcome of the measurement is j , each
of the parties applies a unitary operation U : |y〉 → |y ⊕ j 〉 to
complete the first step. The second step is to create the state
|f (y),h(y),g(y)〉Q in the system Q, which is initially prepared
in |000〉Q.

Step2−−→ N
− 1

2
ε

|Aε |−1∑
y=0

C(y)|y,y,y〉Q′ ⊗ |f (y),h(y),g(y)〉Q.

This is achieved by a local unitary operation on Q1Q
′
1 that

transforms |y〉Q′
1
⊗ |0〉Q1 into |y〉Q′

1
⊗ |f (y)〉Q1 , and similar

local unitary operations on Q2Q
′
2 and Q3Q

′
3.

The third step is to disentangle Q′
2 and Q′

3 as

Step3−−→ N
− 1

2
ε

|Aε |−1∑
y=0

C(y)|y〉Q′
1
⊗ |f (y),g(y),h(y)〉Q. (13)

In order to perform this step, the second and third parties
perform local measurements on their systems using the
measurement operators

{Mj=|Aε |−1J |j 〉〈j |J †},
where J is a complex Hadamard operation, defined as
〈y|J |y ′〉 = exp[2πi yy ′/|Aε |]. Depending on the measure-
ment outcomes, the first party can perform a phase-shifting
operation to complete the third step.

The final step is to disentangle the ancillary system Q′
1 from

Q to obtain �Q as

Step4−−→ N
− 1

2
ε

|Aε |−1∑
y=0

C(y)|f (y),g(y),h(y)〉Q = |�〉Q. (14)

To address the procedure for this step, we introduce a variable
K(y), which is defined as

K(y) = βγf (y) + γg(y) + h(y). (15)

Then, we can consider a linear isometry transformation V on
the system Q′

1 which transforms |y〉 into |K(y)〉. This requires
additional ancillary qubits in Q′

1 so that the dimension of Q′
1

equals K(|Aε | − 1) + 1.
Applying V to the state in Eq. (13) gives

|Aε |−1∑
y=0

C(y)|K(y)〉Q′
1
⊗ |f (y),g(y),h(y)〉Q.
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Next, the first party performs a measurement on the ancillary
system Q′

1 using the operators

{
Mj : Mj= |0〉〈j |J †

[K(|Aε | − 1) + 1]
1
2

, 0 � j � K(|Aε |−1)

}
,

where J̃ is a complex Hadamard operation defined as

〈y|J̃ |y ′〉 = exp{2πi yy ′ [K(|Aε | − 1) + 1]−1}
for 0 � y,y ′ � K(|Aε | − 1) + 1. The completeness relation,∑

j M
†
jMj = I , can be checked from the orthogonality of

the Hadamard operation, J̃ J̃ † = [K(|Aε | − 1) + 1]I . If the
measurement outcome is j , the resulting state is

|0〉Q′
1

|Aε |−1∑
y=0

C(y)〈j |J †|K(y)〉 ⊗ |f (y),g(y),h(y)〉Q

= |0〉Q′
1

|Aε |−1∑
y=0

C(y)e−2πi jK(y) ⊗ |f (y),g(y),h(y)〉Q.

Finally, local phase-shifting operations can remove the
phase exp[−2πi jK(y)] by using Eq. (15). Consider a phase-
shifting operation by the first party that transforms

|f (y)〉 → exp[2πi jβγf (y)]|f (y)〉.
Similarly, consider phase-shifting operations by the second
and the third parties that transform

|g(y)〉 → exp[2πi jγg(y)]|g(y)〉,
|h(y)〉 → exp[2πi jh(y)]|h(y)〉.

Applying those operations completes the fourth step.

C. Asymptotic preparation from GHZ states at a rate
equal to quantum discord

We denote by LD the LOCC procedure described in the
previous section. We have shown that it prepares � from
GHZ⊗
log2 |Aε |�, i.e., LD(GHZ⊗
log2 |Aε |�) = �. In practice, it
can asymptotically prepare ψ from GHZ states at rate D∞

R .
This can be explained as follows. First, the AEP implies that
the fidelity F (�,ψ⊗n) approaches unity as n → ∞, so LD

asymptotically prepares ψ⊗n. Second, the conversion rate,
which is given by n−1
log2 |Aε |�, can be reduced down to
D∞

R (ψ). Recall that the typical set in Eq. (5) depends on the
separable basis {x1,x2,x3}, which we have not specified yet. We
now choose the separable basis so that it gives the minimum
size of the typical set. Let us denote the minimum size by
log2 |A∗

ε | and denote the corresponding Shannon entropy by
H ∗. It then follows from the AEP that log2 |A∗

ε | ≈ lH ∗. In
addition, a comparison between Eqs. (3) and (6) leads to H ∗ =
DR(ψ⊗t ). Putting these together, we have n−1
log2 |A∗

ε�| =
t−1l−1
log2 |A∗

ε |� ≈ t−1DR(ψ⊗t ). Finally, from the definition
of D∞

R , the conversion rate is approximately found to be
D∞

R (ψ) for large t . We thus reach the following theorem.
Theorem. The LOCC procedure LD asymptotically pre-

pares a multipartite pure state ψ from GHZ states at rate

D∞
R (ψ). Namely, for any ε > 0, δ > 0,

F (LD(GHZ⊗
log2 |A∗
ε |�),ψ⊗n) > 1 − ε,

(16)
|n−1
log2 |A∗

ε |� − D∞
R (ψ)| < δ.

for sufficiently large n.
Proof. The LOCC procedure, LD , works for any separable

basis {|x1,x2,x3〉} in Eq. (5). In a given separable basis, the
Shannon entropy of the random variables X1, X2, and X3 is
given as

H = −
∑

|C(x1,x2,x3)|2 log2 |C(x1,x2,x3)|2,

where |C(x1,x2,x3)|2 = tr(|x1,x2,x3〉〈x1,x2,x3|ψ⊗t ). We note
again that the typical setAε depends on the separable basis and
so does the Shannon entropy. We can make H equal DR(ψ⊗t )
by choosing a suitable separable basis.

Using the expression of DR in Eq. (3), we can write

DR(ψ⊗t ) = min
{|x1,x2,x3〉〈x1,x2,x3|}

[
−

∑
tr(|x1,x2,x3〉〈x1,x2,x3|

×ψ⊗t ) log2 tr(|x1,x2,x3〉〈x1,x2,x3|ψ⊗t )

]
.

Therefore, by choosing a separable basis that attains the
minimum in the above equation, we have H = DR(ψ⊗t ). For
clarity, we add a superscript * to the corresponding typical set
and Shannon entropy as A∗

ε and H ∗. Then, it follows from the
AEP that, for any ε′ > 0,

Nε′ > (1 − ε′),
(17)

(1 − ε′)2l(H ∗−ε′) < |A∗
ε′ | � 2l(H ∗+ε′)

for sufficiently large l. The fidelity between ψ⊗n in Eq. (8)
and � = LD(GHZ⊗
log |A∗

ε′ |�) in Eq. (9) is given as

F (�,ψ⊗n) =
∑

(xl
1,x

l
2,x

l
3)∈Aε

|C(xl
1,x

l
2,x

l
3)|2

N
1
2
ε′

= N
1
2
ε′ .

In addition, applying the first inequality in Eq. (17) gives N
1
2
ε′ >

(1 − ε′)
1
2 . By choosing ε′ such that ε′ < 1 − (1 − ε)2 for any

ε, we obtain

F (LD(GHZ⊗
log |A∗
ε′ |�),ψ⊗n) > 1 − ε

for any ε.
As the LOCC procedure asymptotically prepares ψn from

GHZ
log2 |A∗
ε |�, the conversion rate is given by n−1 log2 |A∗|

with n = t l (the ceiling function 
� can be ignored for large n).
Using the second inequality in Eq. (17) and H ∗ = DR(ψ⊗t ),
it is straightforward to show that∣∣∣∣ log2 |A∗

ε′ |
l

− DR(ψ⊗t )

∣∣∣∣ < ε′ − log2(1 − ε′)
l

.

By dividing the above equation by t and choosing ε′ such that
ε′ − l−1 log2(1 − ε′) < δt (there always exists such ε′ > 0 for
any l,t,δ > 0), we have∣∣∣∣ log2 |A∗

ε′ |
n

− DR(ψ⊗t )

t

∣∣∣∣ < δ.
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Finally, DR(ψ⊗t )t−1 approaches D∞
R (ψ) as t → ∞ by the

definition of D∞
R , and it completes the proof of the theorem.

IV. APPLICATIONS AND EXAMPLES

In this section, we present upper and lower bounds for
the GHZ-entanglement cost (equivalently, the optimal rate)
and examine them for several examples. We also compare
the LOCC procedure LD with another procedure that uses
singlets as a resource. Finally, we discuss the application of
LD to general mixed states.

A. Upper and lower bounds for the GHZ-entanglement cost

We denote by Ec the GHZ-entanglement cost. The existence
of LD implies that D∞

R is an upper bound for Ec. In addition,
one can easily show that the regularized version of any
entanglement measure E that is nonincreasing under LOCC
is a lower bound for Ec, provided that E∞(GHZ) = 1 and
it satisfies the continuity condition, i.e., if F (ρ⊗n,σ⊗n) → 1
as n → ∞, then 1

n
|E(ρ⊗n) − E(σn)| → 0 as n → ∞. The

relative entropy of entanglement defined in Eq. (1) satisfies
the continuity condition [32] and E∞

R (GHZ) = 1 that leads to

E∞
R (ψ) � Ec(ψ) � D∞

R (ψ).

For generalized GHZ states,
√

p|000〉 + √
1 − p|111〉, the

two bounds coincide, so that our procedure is optimal and
Ec = D∞

R = −p log2 p − (1 − p) log2(1 − p). In addition, it
is known that GHZ states can be distilled from the generalized
GHZ states at the same rate [31].

The GHZ-entanglement cost can be either greater or less
than 1 as E∞

R and D∞
R can be so. For instance, the GHZ-

entanglement cost of generalized GHZ states is less than or
equal to unity as we have shown. For the state (|000〉 +
| + 11〉)/√2 where |+〉 = (|0〉 + |1〉)/√2, we have E∞

R =
1 from E∞

A:B:C � E∞
AB:C + E∞

A:B (see Refs. [34,35] for the
inequality). In addition, one can easily see that a single
copy of the GHZ state can be converted to a single copy
of the state (|000〉 + | + 11〉)/√2 by LOCC, so Ec = 1.
The regularized discord D∞

R is not known, but DR = 1.5
[35], so that Ec = 1 � D∞

R � 1.5. In the case of the W
state, |W 〉 = (|001〉 + |010〉 + |100〉)/√3, E∞

R = 2 log2 3 −
2 ≈ 1.170 [36] and DR = log2 3 ≈ 1.585, so that 1.170 <

EC < 1.585.

B. Comparison with preparation of states from singlets

For comparison, we consider a LOCC procedure that
prepares a multipartite pure state ψ⊗n

Q from the singlets shared
among Q [12]. In this procedure, a single party, say the first
party, locally prepares the pure state ψ⊗n

Q and uses quantum
teleportation [3] and data compression [33] to distribute the
state. For the tripartite case, it requires nS2 singlets between
Q1-Q2 and nS3 singlets between Q1-Q3, where Si denotes
the von Neumann entropy of the ith subsystem. Therefore,
it requires n(S2 + S3) singlets in total. Considering all the
permutations of Q1, Q2, and Q3, the consumption rate of
singlets is

RT = S1 + S2 + S2 − max{S1,S2,S3}.

Since a singlet is obtainable from a single copy of a GHZ
state, this procedure can also be achieved by consuming GHZ
entanglement at rate RT . We have no proof for D∞

R � RT

for general states. However, it has been shown in Ref. [35]
that DR � RT (so D∞

R � RT ) for a few kinds of three-qubit
states including the generalized W states α|001〉 + β|010〉 +
γ |100〉, and generalized GHZ states α|000〉 + β|111〉. For
instance, for the W state, DR ≈ 1.585 and RT ≈ 1.837. We
also realize that D∞

R = 1
k−1RT for the k-qubit generalized

GHZ states, α|0⊗k〉 + β|1⊗k〉, where we have used RT =
[
∑k

i=1 Si] − max{S1, . . . ,Sk}. In the case of the k-qubit
W state (|00 · · · 1〉 + |00 · · · 10〉 + · · · + |100 · · · 0〉)/√k, one
can check that DR � RT for any k.

C. Application of LD to general mixed states

Before presenting how to prepare general mixed states by
usingLD , we note that the relation EC � D∞

R does not hold for
general mixed states. This can be shown by taking a counter
example of a bipartite state,

(1 − 2p)|�+〉〈�+| + p(|00〉〈00| + |11〉〈11|),
with |�+〉 = √

1/2(|00〉 + |11〉) and 0 � p � 1/2. The
entanglement cost of the state is EC = H2[1/2 + √

p(1 − p)]
[37] where H2(x) = −x log2 x − (1 − x) log2(1 − x), and the
relative entropy of discord is D∞

R = 1 − H2(p). One can find
that EC > D∞

R for any 0 < p < 1/2.
For a general mixed state σ , our procedure can be applied

to prepare the pure states ψi such that σ = ∑
i piψi . Then,

the mixed state σ can be obtained by classically mixing
them. This technique has already been used to generalize the
entanglement cost of bipartite pure states to bipartite mixed
states [7]. In our case, the rate of the GHZ-entanglement
consumption is given by

RD(ρ) = lim
t→∞

rD(ρ⊗t )

t
, (18)

where

rD(σ ) = inf

{∑
i

piDR(ψi) : σ =
∑

i

piψi

}
. (19)

We see that the rate RD vanishes for fully separable states.
For bipartite systems, discord DR(ψi) in Eq. (19) is equal
to the entropy of entanglement, so RD(ρ) is reduced to the
regularized version of the entanglement of formation [6]. It
is known that the regularized entanglement of formation is
equal to the entanglement cost for bipartite states [10].

V. CONCLUSION

We have suggested a LOCC procedure that asymptotically
prepares an arbitrary pure state from GHZ states where
the conversion rate is found to be the multipartite quantum
discord. It reveals that the GHZ-entanglement cost of preparing
a multipartite pure state is not higher than a multipartite
quantum discord of the state. Our work provides an operational
interpretation of multipartite quantum discord in relation to a
multipartite entanglement cost.
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