PHYSICAL REVIEW A 87, 022123 (2013)

Testing genuine multipartite nonlocality in phase space

Seung-Woo Lee,' Mauro Paternostro,? Jinhyoung Lee,'** and Hyunseok Jeong'+#
Center for Macroscopic Quantum Control, Department of Physics and Astronomy, Seoul National University, Seoul, 151-742, Korea
2Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics,
Queen’s University Belfast, BT7 INN Belfast, United Kingdom
3Department of Physics, Hanyang University, Seoul 133-791, Korea
4Centre for Quantum Computation and Communication Technology, School of Mathematics and Physics,
University of Queensland, St Lucia, Queensland 4072, Australia
(Received 22 November 2012; published 27 February 2013)

We demonstrate genuine three-mode nonlocality based on phase-space formalism. A Svetlichny-type Bell
inequality is formulated in terms of the s-parametrized quasiprobability function. We test such a tool using
exemplary forms of three-mode entangled states, identifying the ideal measurement settings required for each
state. We thus verify the presence of genuine three-mode nonlocality that cannot be reproduced by local or nonlocal
hidden variable models between any two out of three modes. In our results, GHZ- and W-type nonlocality can
be fully discriminated. We also study the behavior of genuine tripartite nonlocality under the effects of detection
inefficiency and dissipation induced by local thermal environments. Our formalism can be useful to test the
sharing of genuine multipartite quantum correlations among the elements of some interesting physical settings,
including arrays of trapped ions and intracavity ultracold atoms.
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Quantum nonlocality is one of the most fundamental
features of quantum mechanics. It refers to the correlations
that cannot be explained by local hidden-variable models
that satisfy a set of constraints epitomized by so-called Bell
inequalities [1]. The violation of a Bell inequality reveals
the existence of nonlocality in a given quantum mechanical
state [2—4].

While originally formulated for bipartite systems, Bell-like
inequalities have been extended to the multipartite scenario,
a noticeable example being embodied by the well-known
inequality proposed by Mermin and Klyshko (MK) [S]. How-
ever, the violation of a MK-type inequality by a multipartite
state does not necessarily imply the existence of genuine
multipartite nonlocality, as this test can be flasified by nonlocal
correlations in any reduction of the system’s components. In
order to demonstrate genuine tripartite nonlocality, another
type of Bell inequalities should be thus considered such as the
one formulated by Svetlichny [6], which rules out both local
and nonlocal hidden variable models possibly imposed on any
subparties. It was also noted that a stronger violation of the MK
type can demonstrate genuine nonlocality for the cases with
an even number of parties [7]. Experimental demonstrations
of genuine multipartite nonlocality were firstly achieved
by strong violations of an MK inquality with four photon
polarization entanglements [8]. A violation of Svetlichny-
type inequality was experimentally demonstrated recently
with GHZ-type photon polarization entangled states [9]. A
generalized version of Svetlichny inequality was recently
proposed and studied [10].

In this paper, motivated by the growing experimental
capabilities of controlling and manipulating the state of
tripartite quantum systems, in the optical laboratory [11] and
beyond, we address the formulation of genuine three-mode
continuous variable (CV) nonlocality tests in phase space.
While the phase space provides a natural arena for the
description of the state of multimode CV systems, it also
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provides us with powerful tools for the analysis of the quantum
correlation features within a given state and the possibility to
investigate the quantum-to-classical transition in a transparent,
intuitive way. While, historically, the completeness of quantum
mechanics has been questioned by Einstein, Podolsky, and
Rosen using an argument related to position and momentum
of a CV system [12], the first formulation of a Bell-like
nonlocality test in phase space was provided by Banaszek and
Wodkiewicz using the Wigner and Husimi Q function [13].
This approach has been generalized and extended in several
directions, including the provision of phase-space tests valid
for high-dimensional systems [14—16] and the addressing of
general s-parametrized quasiprobability functions [17-19].
Although a considerable body of work has been produced
to address issues of nonlocality in multimode CV states
[20-26], a self-consistent formulation of genuine multimode
nonlocality tests in phase space is still missing. Our work
addresses this important conceptual problem and solves it
providing useful, highly informative tools that, as we discuss
in the last part of our manuscript, will be very useful to study
physical systems of current experimental relevance. Moreover,
the inequalities that we derive embody additional instruments
for the interpretation of ground-breaking experiments on the
generation of multipartite CV states that, so far, have only
focused on entanglement.

In this paper, we fill this important gap by formalizing
MK- and Svetlichny-type Bell inequalities in terms of the
s-parametrized quasiprobability functions [19], and thus
opening the way to the experimental test of multipartite
nonlocality of CV systems in their phase space. In order
to assert the usefulness of our formal tools, we study in
depth the tripartite nonlocal character of three paradigmatic
states: a three-mode single-photon entangled state, a tripartite
squeezed vacuum state, and the entangled coherent state of
three bosonic modes. By exploiting the generality of our
formulation and exploring the properties of these classes
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of states, we build up complete tripartite-nonlocality phase
diagrams, identifying regimes where the presence of genuine
three-mode nonlocality is guaranteed and investigating its
character in terms of sharing structure of quantum correlations.
We complete our analysis by analyzing the effects of both
local damping and detection inefficiencies on the genuine
tripartite nonlocal nature of a given state, proving that our
inequalities are flexible enough to incorporate such detrimental
effects in a natural way. Although we do not explicitly
address it here, the extension of our formalism to the larger
registers of modes is fully straightforward. Moreover, as we
show in this paper, this investigation holds the promises to
provide a useful tool for the characterization of the quantum
correlation-sharing structure in physical settings of current
enormous technological interests.

The remainder of this paper is organized as follows. Bell-
like inequalities for multipartite scenarios are briefly reviewed
in Sec. I. This is then followed by our formulation of phase-
space tests based on generalized quasiprobability functions,
as presented in Sec. II. In Sec. III we pass to investigate the
violation of such inequality by the above-mentioned classes
of three-mode entangled states, whose tripartite nonlocal
character is studied against relevant sources of detrimental
effectsin Sec. IV. Section V is then devoted to the identification
and brief discussion of a series of physical setups where our
study will be invaluable for the identification of the proper
sharing structure of quantum correlations. Finally, in Sec. VI
we draw our conclusions and highlight potential lines of
developments.

I. GENUINE MULTIPARTITE NONLOCALITY

In this section, we discuss the formal approach to the
derivation of Bell inequalities for the test of multipartite
nonlocality. In order to fix the ideas, we consider explicitly
the case of a tripartite system, although the discussion
here is straightforwardly generalized to the more than three
subsystems.

It is instructive to briefly revise the two-party case, first.
Let us thus assume that two particles, whose state can be
repeatedly and identically prepared, are distributed to two
remote parties, Alice and Bob. Each of them performs a
measurement chosen out of two: A(A’) for Alice and B(B')
for Bob. The corresponding possible outcomes are assigned
as j (j') with j = a,b, respectively, and j € {—1,1}. Under
the assumption of the existence of local hidden variables, the
joint outcome probability after many rounds of measurements
is written as

P(ab|AB) = /d?»p(?»)Px(alA)Px(blB), ey

where X is a shared local variable and P, (j|J) is the probability
that measurement J/ = A, B has outcome j = a,b ataset value
of L. The Bell-CHSH parameter can then be cast in the form
of

B=a(b+b)+db-1b). )

It is straightforward to check that |B| < 2. The violation of
such inequality witnesses the failure of local hidden variable
theories to describe the correlations between the outcomes of
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the measurements performed by Alice and Bob and, thus, the
untenability of the assumptions of locality and realism. It is
well known that if the two distributed particles are prepared in
an entangled quantum state, the Bell-CHSH inequality can be
violated by up to a factor /2.

This reasoning can be extended to the inclusion of a third
party, say Charlie, who performs measurements C and C’ with
outcomes c,c’ € {—1,1} on a third particle. In this case, it is
possible to combine the outcomes of each measurements so as
to build the parameter [5],

M=1Bc+)+ 1B - )
=a'bc+ab'c+abcd —a'b'c, 3)

which is bounded as |M| < 2 according to local hidden
variable theories. Equation (3) embodies the Mermin-Klyshko
(MK) inequality, which can be violated by quantum mechan-
ics, thus showing tripartite quantum nonlocality.

However, any violation of the MK inequality in Eq. (3) does
not guarantee the existence of genuine tripartite nonlocality:
nonlocal correlations between any two parties out of three are
sufficient to exceed the boundary imposed by local hidden
variable theories. To avoid this, the joint probability for
genuine tripartite nonlocality should not be reproduced by
any local hidden variable assigned on the joint measurement
of any two out of three parties. That is, we define the joint
probability,

P(abc|ABC) = /d)»ZP[p(ab)c()»)Px(ablAB)PA(CIC)],
“4)

where P performs the cyclic permutation of the triplets of inde-
ces(abc)and (ABC), P, (ij|1J) stands for the joint probability
of outcomes i, j = a,b,c for the measurements 7,/ = A,B,C,
and p(p) denotes the corresponding probability distribution
density. Building on this, Svetlichny proposed a combination
of measurement outcomes of the form [6],

S=M=xM =dbc+abc+abc —a'bc
+ab'c £a'bcd £a'b'c Fabc. (5)

Again, it can be proven easily that |S| < 4 under the
assumptions behind Eq. (4). The violation of the Svetlichny
inequality (5) thus signals genuine tripartite nonlocality.
Quantum mechanics is know to violate the bounds imposed by
local hidden variables: When the probabilities entering Eq. (5)
are calculated performing measurements over a tripartite GHZ
or a W state, the Svetlichny parameter (S) is larger than 4
(achieving the value 44/2 over a GHZ state).

II. PHASE-SPACE FORMULATION VIA GENERALIZED
QUASIPROBABILITY DISTRIBUTIONS

In this section we reformulate multipartite Bell inequalities
in terms of generalized quasiprobability functions defined in
the phase space of CV systems. Our approach will be based
on the formalism introduced in Refs. [17,18] and provides
the complement to the seminal analysis by Banaszek and
Wodkiewicz [13] of bipartite CV states. The s-parametrized

A

quasiprobability function for a given single-mode state o
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reads [17-19]

W(as) = Tr[pT1(a; 9)], (6)

2
(1l —s)
where fI(oz;s) = Zflozo[(s + /(s — D]"|e,n){et,n|, and
la,n) = D(a)|n) is the n-photon state of a boson described
by annihilation and creation operator @ and af, displaced in
phase space by the Weyl operator D(«) = explaa’ — a*a].
Measurement [T(a;s) can be performed using a photon
number detector preceded by a beam splitter and coherent
probe field entering the other input port of the beam
splitter, whose transmissivity and strength are controllable,
respectively. The real value s is chosen artificially in the
processing of measured data [27]. Then, its expectation value
directly yields the s-parametrized quasiprobability function at
the point displaced by D(«) in phase space [17,27]. Note that
W (a; s) reduces to the P, Wigner, and Husimi Q function for
s = 1,0, — 1, respectively [28].

Suppose that Alice, Bob, and Charlie, independently choose
one of two observables, denoted by Aa, I§;,, C’C, respectively,
where a,b,c = 1,2, where no restriction is placed on the num-
ber of possible outcomes. The local measurement operators
are written as

o, for(J,j)=(A,a)
J; = 0(;;s) with §; =4 B, for(J,j)=(B,b) (7)
Ye for(J,j)=(C,0),

and the Hermitian operator,

(1 — $)IT(e; 8) + s1
201(e; s) — 1

if —1 <5 <0,

8
ifs < —1, ®

O(a;s) = {

with 1 the identity operator. The possible measurement
outcomes of O(«; s) are given by the eigenvalues,

Ay = {(l—s)(%)n—i—s if —1 <s <0,

2(ﬂ)”‘—1 if s < —1,

s—1

€))

and their eigenvectors are the displaced number states. The
maximum and minimum measurement outcomes of O(«;s)
for any nonpositive s are Amax = —Amin = 1. For s =0 we
have O(a;0) = [1(a;0) = 300 (= 1)"|a,n)(a,n|, which is
the displaced parity operator. On the other hand, fors = —1 we
have O(a; —1) = 2|a)(e| — 1, ie., a projector onto coherent
states. The MK and Svetlichny parameters can be constructed
using the measurement operators f j- Indeed, from Eq. (3), the
MK parameter is now

M = Ciiz + Cia1 + Cor1 — Com, (10

where éabc = (Aa ® By, ® C‘C) is the correlation function
for measurement outcomes. As the expectation value of
any local observable is bounded by 1 for any s < 0, the
expectation value of the MK operator given in Eq. (10) is
such that | M| < 2 for any local hidden variable theory. From
Eq. (6), the expectation value of IT(a;s) is proportional to
the s-parametrized quasiprobability function as (IT(a;s)) =
(1l —s)W(a;s)/2. Note that we do not consider the case
s > 0 when the eigenvalues of [1(e; s) are unbound. These
considerations allow us to calculate the explicit form of
the s-parametrized MK parameter for the two ranges of
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values of s considered so far. Such expressions are too
long and uninformative to be given here and are deferred to
Appendix A. Starting from Eq. (5) and the expression in
Eq. (A1) we can easily construct the s-dependent Svetlichny
parameter such that

S, = IM; £ M| < 4. (1)

This is a generalization of the Svetlichny-like inequality
formulated for s-parametrized quasiprobability functions. For
example, it reduces to the Svetlichny inequality formulated
for the Wigner function [26] when s = 0 and for the Husimi
Q function for s = —1. The full form of such Svetlichny
parameters is given in Appendix A. Using the MK and
Svetlichny inequalities in Eq. (Al) and Eq. (11), we can
test genuine three-mode nonlocality for arbitrary systems
represented in phase space.

In the remainder of the paper we apply our phase-space
formalism to the study of a few paradigmatic examples that
will serve as useful benchmarks.

III. TESTING GENUINE NONLOCALITY FOR
THREE-MODE ENTANGLED STATES

Here, we investigate genuine tripartite nonlocality using
our phase-space formulation of Svetlichny-like inequalities
by addressing three exemplary cases of three-mode entangled
photon states. Specifically, we consider the three-mode single-
photon entangled state,

[ 200 + 0Dy | [p
9) = /13 " +ﬁ|1>|0>|0>,

12)

with p € [0,1], which becomes a W state for p = 1 and a two-
mode single-photon entangled state for p = 0. The state can
be generated when a single photon enters a three-mode beam
splitter (tritter). Its s-parametrized quasiprobability function
can be written as

8 le2+1p12 +1y 12
1% ,B,v; = — -2 1=s
s(@.B.y;s) TR
I+s 4 p
X j— [ —
( T—s T a—s2|V3"

Lh_p ’ 13
+ z( —§>(l3+7/) ) (13)

Quantum nonlocality of a two-mode single-photon state has
been demonstrated theoretically [17], but so far there has been
no addressing of the genuinely nonlocal nature of its three-
mode counterpart.

The second example that we consider is the three-mode
squeezed vacuum (3MSV) states introduced in Ref. [21],
which can be generated by combining three single-mode
squeezed states (with identical degree of squeezing r) at a
tritter [21,29]. Its s-parametrized quasiprobability function is
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2

Wamsv(a,B,y;s) =

73(1 + 52 — 25 cosh 2r)372 P [3(1 52

— cosh? 2 2 2
_2scosh2r){3(s cosh2r)(lee|” + |BI” + v %)

+ (o + B7 + v —4aifi — 4By — dviei — ) — BF — v + 4o B + 4B,y + 4y, ) sinh 2” (14)

where 6, and §; denote the real and imaginary parts of
8 = a,B,y.Such Gaussian state has been introduced as the CV
version of the GHZ entangled state [21], although for small
squeezing it contains some residual two-mode entanglement
and it can thus be also regarded as a representative of W-class
entanglement [22]. While the violation of an MK inequality
[21] and the presence of genuine tripartite entanglement [29]
have been shown for a 3MSV, genuine multipartite nonlocality
has not yet been demonstrated. As shown later on in our
manuscript, our analysis fills this important gap.

Finally, we address entangled coherent states (ECS) of the
form,

[ECS) = NI — =)l =8 —¢),  (15)

where ¢ is the amplitude of a single coherent state (we assume
for simplicity that ¢ € R) and NV is a normalization constant.
A scheme for the generation of these states was introduced in
Ref. [30]. Although states |ECS) have been regarded as the
entangled coherent state version of GHZ-class entanglement
[30], it has been also known that, in the limitof { — 0, Eq. (15)
reduces to Eq. (13) with p = 1. Therefore, depending on the
amplitude of the state components, it might be possible to
identify two distinct behaviors of the Svetlichny parameter,
associated with either GHZ or W-class entanglement. The s-
parametrized quasiprobability function of |ECS) is

Wees(a,B,v55)
8N? (Z —plectaeleip et ety el
— e -5

T =) =

523 a2 |8y 2 4 i i i
PRSI [MD (16)

1—5

It would also be tempting to study the ECS states
N7(10)]0Y[Z) + 10)|£)]0) + |£)|0)]0)), sometimes referred to
as W-type ECS [30]. However, the nonlocality of this class of
states cannot be revealed by relying on Bell-like tests based
on local displacement in phase space, as considered here,
and require the use of local operations based on Kerr-like
nonlinearities instead [30].

The three paradigmatic classes of states introduced above
will be now studied against their tripartite nonlocal character.
Later on in this section we consider the behavior of both
MK and Svetlichny-like parameters against the influences
of dissipation affecting such states, which will allow us to
comment on the robustness of genuine tripartite nonlocality.

A. Demonstrating genuine three-mode nonlocality
in phase space

We start investigating the violations of both MK- and
Svetlichny-type inequalities for each of the entangled states

discussed above. As in our formalism quantum nonlocality
is independent of the local measurement setting associated
with parameter s, the violation of a Svetlichny-like inequality
for a suitably chosen s guarantees the presence of genuine
three-mode nonlocality in the specific entangled state being
studied. In the following, we refer to the genuine tripartite
nonlocality exhibited by states belonging to the GHZ- and
W-class entangled states as GHZ-type and W-type nonlocality,
respectively.

The genuine tripartite W-type nonlocal nature of a single-
photon entangled state |¢) for proper choices of p can
be appreciated from the right panel of Fig. 1(a): Both the
MK and Svetlichny inequalities are violated maximally by
a test designed using the Husimi Q function (i.e., for s =
—1). However, while the MK inequality is violated for all
values of s [Fig. 1(a)], left panel), the Svetlichny one is
violated only close to s = —1, implying the relevance of
the choice of suitable local measurements to demonstrate
genuine three-mode nonlocality. Clearly, when p = 0 the state
is solely endowed with two-mode entanglement, which yields
the violation of the MK test only. The Svetlichny parameter

FIG. 1. (Color online) Behavior of the s-parametrized MK and
Svetlichny parameter | M| and |S| for (a) the single-photon W state
|¢) (with variable p), (b) the three-mode squeezed vacuum state (r
being the degree of squeezing), and (c) the GHZ-type ECS (¢ is the
amplitude of each coherent-state component).
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depends monotonically on p and achieves its maximum value
atp = 1.

For the three-mode squeezed vacuum states, the Svetlichny
inequality can be violated only in a region of values very close
to s = 0 [cf. Fig. 1(b), right panel], where the dependence
of & on the degree of squeezing is monotonic and where
observables embodied by local displaced parity operations
(as it is the case for phase-space formulation of Bell-like
tests based on the Wigner function) are optimal. Note that
our study reveals tripartite nonlocality of the 3MSV in a case
where the analysis in Ref. [29] only ensures the existence
of genuine tripartite entanglement. From the observation in
Ref. [22] that the entanglement of any two-mode subsystem
disappears for a sufficiently large degree of squeezing r, we
claim for GHZ-type nonlocality, in this case. For small values
of r, though, W-class entanglement becomes dominant in the
state. For example, it is known that a three-mode squeezed
vacuum state with r >~ 0.5 contains W-type entanglement
dominantly as its residual two-mode entanglement becomes
maximum [22]. This is in agreement with our analysis of
the MK parameter M, whose formulation in terms of the
Q function (s = —1) maximizes the degree of violation of the
MK inequality, as shown in the left panel of Fig. 1(b). However,
note that W-type nonlocality does not appear in this range of r,
implying that not all W-class entanglement can yield genuine
W-type nonlocality in phase space.

For the ECS in Eq. (15), both GHZ and W-type nonlocality
can emerge with an appropriate choice of s, as shown in
Fig. 1(c). For small amplitudes ¢, genuine tripartite nonlocality
is observed for a test built using the Q function. This part of the
tripartite nonlocality phase diagram for an ECS is originated
by the W-class entanglement of a single-photon state and
thus reveals W-type nonlocality. Needless to say, the results
associated with ¢ — 0 are the same as those obtained for
p =1 in state |¢) and shown in Fig. 1(a) (right panel). On
the other hand, GHZ-type nonlocality is achieved in a very
narrow region close to s = 0. In this case, a test based on the
Wigner function (i.e., the use of local parity measurements)
is optimal for demonstrating CV GHZ-type nonlocality. As
shown in Fig. 2, the W- and GHZ-type nonlocal characters
are interchanged at ¢ =~ 0.455; past this point, the W type
(best revealed by taking s = —1, i.e., using a test based
on the Husimi Q function) disappears to leave room for a
GHZ-type character (to be tested by the Wigner function).
Therefore, genuine tripartite nonlocality can be observed
for all ranges of ¢ with suitably chosen local measurement
setting.

IV. EFFECTS OF DETECTION INEFFICIENCY AND
LOCAL DAMPING ON GENUINE NONLOCALITY

Here we investigate the effect of the two important
detrimental mechanisms on the genuine three-mode nonlo-
cality demonstrated in Sec. III. Realistic implementations
of CV nonlocality tests should take into account both the
inefficiency of the detectors used to collect the statistics and
the potential interaction of each local mode participating to
the state being probed with environmental baths. Both effects
can be effectively described as changes of the parameter
s used in our formalism. In particular, as it is shown in
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6.0

FIG. 2. (Color online) Genuine tripartite nonlocality phase dia-
gram for a three-mode ECS. We plot the Svetlichny parameter |S|
against the amplitude of the coherent-state components ¢ . The W-type
and GHZ-type nonlocal characters, best revealed by tests built on the
Husimi (s = —1, dashed line) and Wigner function (s = 0, solid line),
respectively, cross for ¢ >~ 0.455.

Appendix B, the single-mode s-parametrized quasiprobability
function measured by a detector with efficiency n € [0,1] is
given by a 1/7 rescaling of the ideal quasiprobability function
that should then be parameterized by [27]

/

l—s—n
R

n

Therefore, the MK- and Svetlichny-type inequalities under the
effect of detection noise can be formulated by replacing the
quasiprobability distribution in Eq. (A1) and Eq. (11) with the
measured quasiprobability functions, e.g., Ws(«,B,y;s) —
Wi(a, B,v55")/(anpnc)(j = 1,2,3) with 1, . the detection
efficiency of the detectors at Alice’s, Bob’s, and Charlie’s site,
respectively (the marginals being calculated accordingly). For
simplicity, in what follows we will restrict the attention to the
case of 1, .. = n. Similar transformations are enough to take
into account the effects of the interactions of each local mode
with its own thermal reservoir (at equilibrium with 7 thermal
photons) through nonzero temperature amplitude-damping
mechanisms [31] occurring at rate I" (assumed to be the same
for all modes, for the sake of argument). In this scale, we
should operate the replacement,

a7

a By

1
WalerBoyis) = 5 Ws (ﬁﬂﬁ

s/(f)> . (18)

with 7(t) = /1 — r2(t) = ve~T7, 7 the mode-bath interac-
tion time, and

s — r2(t)(1 + 2i)
B (1) '

Equipped with these tools, we can now address the effects of
both detection inefficiency and local damping on the W- and
GHZ-type nonlocality.

In Fig. 3, we plot the effect induced by imperfect de-
tection on the behavior of the Svetlichny parameter for a
three-mode ECS. Linking to our previous considerations, we
focus on the trade-off between W- and GHZ-type nonlo-
cality. We use the trends shown in Fig. 2 as a benchmark
for the functional behavior associated with n < 1. Clearly,

s'(7)
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6.0 T T T T T T T T T T

5]

FIG. 3. (Color online) Tripartite nonlocality phase diagram for
a three-mode ECS against the detection efficiency 1. As in Fig. 2,
dashed (solid) traits are for s = —1 (s = 0).

GHZ-type nonlocality is somehow more prone to the effects of
imperfect detection, as the solid-line traits in Fig. 3 (associated
with Wigner function-based nonlocality tests, i.e., for s = 0)
disappear quickly for even very weakly inefficient detectors.
The W-type nonlocal character appears to be quite more robust:
n 2 0.97 is required to demonstrate GHZ-type nonlocality
for the entangled coherent state with ¢ = 1.0, while W-type
nonlocality for the state with ¢ = 0.1 can be observed with
n 2 0.955. Needless to say, this fragility is partly due to the
large amplitude of the coherent-state components needed to
test GHZ-type nonlocality. Continuing our analysis, we see
that, expectedly, in comparison with the MK parameter, the
Svetlichny one is quite more sensitive. In Fig. 4, we find the
threshold in the detection efficiency that is needed in order to
observe the violation of both MK and Svetlichny inequalities
by a three-mode ECS. The verification of genuine W-type
nonlocality with a W-class ECS state (¢ = 0.1) requires
n 2 0.955, while n 2 0.78 is enough to observe the violation
of the MK inequality. These considerations hold, qualitatively,
also when the effector local damping is considered [cf.
Fig. 5]

Our final confederation in this respect is that the robustness
shown by the MK parameter for a given three-mode state does
not always imply an equally robust Svetlichny parameter. For
example, the three-mode squeezed vacuum state with degree
of squeezing r = 0.5 exhibits maximal W-class entanglement

% 50
@ >° (b)
—GHZ (£=1.0) —GHZ (£=1.0)
30F -=W(=01) - W (£=0.1)
. 45 .
s =W (r=05) & =W (r=0.5)
25
- _'-.-‘-"“‘" I 40 ‘..-e-
20fw il e
07 08 09 095
7 n

FIG. 4. (Color online) Behavior of the MK parameter (a) and the
Svetlichny one (b) against the section efficiency n for a three-mode
ECS (¢ = 1.0,0.1) and a three-mode squeezed state (r = 0.5).
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—GHZ ({=2.0)
.= .-GHZ (¢=1.0)

..... W (£=0.1)

S|

A P N N L

04 0.6 0.8 1.0

T

FIG. 5. (Color online) Dynamics of genuine GHZ-type (¢ = 1,2)
and W-type (¢ = 0.1) nonlocality of a three-mode ECS interacting
with individual thermal baths at equilibrium (mean occupation
number 71 = 0).

[22] and has an associated MK parameter that is more resilient
to detection inefficiencies than the ECS with amplitude ¢ =
0.1 as shown in Fig. 4. However, it does not yield any genuine
W-type nonlocality, even with perfect detectors, in contrast
with the somehow more fragile ECS.

V. PHYSICAL SETTINGS

The progresses made in the last 10 years in the design,
manipulation, and control of mesoscopic quantum systems
consisting of hybrid components has now made possible
the experimental realization of interfaces between devices
as diverse as ultracold atoms and high-finesse cavities [32]
or micromechanical oscillators [33]. On the other hand,
the development of well-acquired techniques for the spacial
confinement of charge atoms has now reached outstanding
levels allowing for the quantum processing of tens of individual
particles [34]. This is very interesting for the purposes of our
study. Indeed, although throughout this paper we have used the
language typical of all-optical implementation of CV systems,
the formal apparatus built in our study applies, needless to
say, to any effective bosonic system, regardless of its physical
embodiment. This makes the state of ensembles of cold and/or
ultracold atoms, micro- or nanomechanical oscillators, and
the vibrational degree of freedom of trapped particles, as
well as the interface between such systems, perfectly suited
to be tested via the phase-space approach described here.
In fact, our formalism holds the potential to embody a very
powerful instrument for the analysis of the sharing of quantum
correlations among the elements of a multipartite hybrid
system comprising effective bosonic modes of various natures,
as well as truly many-body arrays of identical trapped particles
whose vibrational degrees of freedom would embody the
register of bosons to study. In particular, we can explicitly
mention linear [34], as well as planar [35] and multipole
ion traps [36], which are able to accommodate ions trapped
in unidimensional, as well as bidimensional configurations
(so-called ionic crystals: bidimensional structures are formed
either via crystallization of explicit confinement of multi-ion
arrays). In this case, the vibrational degrees of freedom of the
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(c)

FIG. 6. (Color online) Exemplary physical systems where our
phase-space formalism could be applied to investigate genuine
multipartite nonlocality: (a) an ultracold atomic system loaded into
an intracavity double-well potential [39]; (b) a Coulomb crystal of
ions confined on a planar on-chip trap (the dashed triangle identified a
subsystem of three ions whose state can be studied with our proposed
tools. Red (blue) arrows show nearest-neighbor (next-to-nearest-
neighbor) interactions [36]; (c) a mechanical membrane in the middle
of a cavity [40]; (d) a doped microtoroid coupled to a fiber [41]; (e)
a hybrid optomechanical device including a mechanical mode and a
trapped particle [44] or Bose-Einstein condensate [42].

trapped ions, which are effectively interacting due to Coulomb
repulsion, give rise to interesting long-range couplings that are
likely to result in multipartite states whose nonlocal character
can well be studied by the means of our tools [26,37].
Similar considerations hold for ultracold atoms loaded in
an intracavity double-well potential where, in the so-called
two-mode approximation [38], a tripartite bosonic state of
a cavity field and two atomic modes can be established.
Finally, it will be interesting to address the case of multipartite
optomechanical devices comprising a mechanical system
that interacts with multiple optical modes. Another instance
is embodied by hybrid optomechanical systems comprising
vibrating mechanical modes, such as the situations addressed
explicitly in Refs. [40,41], and hybrid configurations including
mechanical systems coupled to ultracold atoms (such as a
Bose-Einstein condensate) [33,42,43] or an optically trapped
dielectric sphere [44]. In Fig. 6 we show the sketch of some
of such instances of physical systems. The details of the
implementation of each of them are discussed extensively
in the references mentioned in the caption. A feature of
such systems is that measurements on the components of
a multipartite state can be implemented efficiently using
state of the art technology. For trapped ions, for instance,
resonance fluorescence can be used to implement, say, phonon-
counting measurements and the interaction between the spin
of an ion and its vibrational state to implement the positive
operator valued measurement in Eq. (6). In the optomechanical
scenario, on the other hand, the state of mechanical systems can
be subjected to indirect measurements by mechanics-to-optics
mapping that write the mechanical state onto that of a probing
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light field [40]. The measurement scheme that is appropriate
for the doped microtoroid setting illustrated in Fig. 6, finally,
is discussed at length in Ref. [41].

VI. CONCLUSIONS

We have formulated Svetlichny-type Bell tests for s-
parametrized quasiprobability functions in phase space and
tested them using interesting three-mode CV states. GHZ- and
W-type nonlocality of the states can be distinguished, with our
tools, by properly adjusting the value of s. GHZ-type nonlo-
cality with many photons appears to be witnessed using local
parity measurements, while single-photon W-type nonlocality
requires on-off measurements (i.e., the Husimi function). This
reflects the fact that testing genuine multipartite nonlocality
would require the pondered choice of local measurement
settings, depending on the type of state being studied, in
contrast to the violation of MK, which occurs for a wide ranges
of values of s.

We observe that not all W-class entanglement can violate a
Svetlichny inequality, indicating that the nonlocal character
of genuinely multimode entangled states does not always
coincide with genuine multimode nonlocality. In studying
the behavior of Svetlichny parameters for tripartite entangled
states, we found that ECSs are useful to demonstrate genuine
three-mode nonlocality in the whole range of amplitudes of the
state components and that, the stronger GHZ-type nonlocality,
the more fragile it is under detrimental effects. Differently, a
pronounced W-type nonlocal character is robust to detection
inefficiency and local damping.

Our results consistently show that multiphoton states are
endowed with very fragile genuinely multipartite nonlocality
content. As our analysis reveals, W-type nonlocality is exhib-
ited by states of a small amplitude (asymptotically, multimode
single-photon states), while GHZ-type nonlocality is inherent
in GHZ-class entangled states of many photons. This explains
why the GHZ-type nonlocality is found to be more prone to
environmental actions.

Our phase-space inequalities embody useful and powerful
tools for the investigation of multipartite quantumness in
quantum technology settings of current experimental interests.
As discussed in this paper, there is a large fan of physical
configurations, involving effective bosons of various physical
embodiments, that can benefit from the application of phase-
space methods for the tests of multipartite nonlocality, a task
that we will pursue in the close future.
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APPENDIX A

In this Appendix we report the explicit form of the s-
parametrized MK parameters for the two ranges of values of s
stated in the main body of the paper. Following the approach
described in Sec. II, we obtain the MK parameters,

731 —s)°
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2 4
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where we have introduced the function,
Dy, (e, B,¥55) = Wala,B,y"s5) + Ws(, 8,5 5)
+ Wi, B.y:s) — Wi, B,y"s5), (A2)
and, say,

Dy, (a,B;5) = Walat, B3 5) + Waler, s 5)

+ Wal,Bs5) — Waled,B's5),  (A3)

which are defined in terms of the set of measurement outcomes
8 = {6,8'} with § = o, B,y, the three-mode correlator,

8 . . .
Wi(a,B,y;s) = mTr[ﬁH(a;S) Q II(B; s) @ I1(y; s)],

and its marginals,
Wz(a,ﬁ;S)=/W3(a,ﬁ,y;S)d2%

Wiass) = / Wi(a.B.y:5)d*Bdy.

Finally, we provide the form of the Svetlichny parameter
expressed in terms of the Wigner and Husimi Q functions,
which reads

3
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APPENDIX B

In this Appendix we provide the formal details behind the
replacements to be operated on the s-parametrized quasiprob-
ability distributions under the effects of inefficient detectors
and local amplitude damping at nonzero temperature.

We start considering the effects of imperfect detection,
which can be in general described using a virtual beam
splitter placed in front of a detector with perfect efficiency.
Detection efficiency is thus associated with the transmittivity
n of the virtual beam splitter, which changes the true photon-
number distribution P(n) of a signal into the measured
quantity P,(m) =2 Pm)(")1 —n)""n™ [45]. Corre-
spondingly, the measured quasiprobability function at the
origin of phase space (i.e., for « = 0) reads

2 s
W,KO,S)—mZ(m) P,,(m)

m=0

W (0;- 1)
=— T 7 B1)
n
The s-parametrized quasiprobability function measured by a
detector with efficiency 7 can thus be identified with a rescaled
quasiprobability function characterized by the inefficiency-
dependent parameter [27],

/

l—s—n
s'=——-.

n

(B2)

Let us now describe the state evolution in local thermal
environments. The scope is to account for such dynamics as
the changes of s. The effect of the local thermal baths can be
modeled by the mixture, at a beam splitter, of the state of the
mode under scrutiny with a thermal field. This helps modeling
the dynamics of the three modes in terms of a Fokker-Planck
equation for the s-parametrized quasiprobability distribution
function reading [46],

IW(a,B,y;s8:7T)
ot

r 0 0

= — —$ 5" |W(x,B,y;s;
5 > [aa + 5 ] (o, B,y:5;7)
S=a,B,y

2

1 0
+r(5 +n> Zyaaaa*w(a’ﬁ’y’s’f)’

d=a,B,

(B3)

where 7 is the system-bath interaction time and I' is the
energy decay rate into the environmental baths each of average
thermal photon number 7i. The evolution can be cast into the
form of a convolution between the quasiprobability function
of the three system modes and those of the three environmental
baths at thermal equilibrium, that is,

Wia,B,y;s;7)
1
:m/dZa/dZﬁ/dZV/na/Wth(al;s)

5 W(a —r(@o’ B—r®p y— r(f)y’;s;o)’
1(t) 1(t) 1(7)

(B4)
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where r(t) and 7(7) have been introduced in the body of the
paper, and

Wh(a;5) = e s (B5)

m2i+1—y)
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is the s-parametrized quasiprobability function for the thermal
state of the average thermal photon number 7. The environ-
mental effects can thus be identified with temporal changes
of the quasiprobability function as stated in Eq. (18), which
concludes our formal assessment.
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