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We investigate the phase enhancement of quantum states subject to nonlinear phase shifts. The optimal phase
estimation of even entangled coherent states (ECSs) is shown to be better than that of NOON states with the
same average particle number 〈n〉 and nonlinearity exponent k. We investigate the creation of an approximate
entangled coherent state (AECS) from a photon-subtracted squeezed vacuum with current optical technology
methods and show that a pure AECS is even better than an even ECS for large 〈n〉. Finally, we examine the
simple, but physically relevant, cases of loss in the nonlinear interferometer for a fixed average photon number
〈n〉.
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I. INTRODUCTION

Quantum metrology is a research field that examines
the characteristic fundamental properties of measurements
under the laws of quantum mechanics [1,2]. The ultimate
goal of this is to achieve measurements at the information
theoretical bounds allowed by the laws of quantum mechanics,
far beyond their classical counterparts. For optical systems
the classic and extremely well studied examples are NOON
states [1–6], whose performance allows them to measure
linear phase shifts at the Heisenberg limit. Several theoretical
studies have recently investigated the role of nonlinearity
to help improve the limits of phase enhancement in linear
systems [7–11], and the first demonstration of this so-called
super-Heisenberg scaling has been shown [12]. The particle-
loss and decoherence mechanisms are, however, not fully
explored in combined linear and nonlinear interferometers,
even theoretically [13–20].

It is not only NOON states that allow linear phase
measurements at the Heisenberg limit. Entangled coherent
states (ECSs) [21–28] are also able to do this [29–31] and
can outperform NOON states in the region of very modest
particle numbers with a linear phase operation [32,33]. An
important case of entangled coherent states is the two-mode
path-entangled state, a state analogous to a NOON state but
with one of two modes containing a coherent state rather than
a Fock state [30]. This particular ECS can be represented as a
superposition of NOON states with different photon numbers
[29]. Using linear optical elements, the phase sensitivity of
ECSs outperforms that of NOON and states that are created by
passing a number-squeezed state through a beam splitter [34],
both without [29–31] and with losses [32], because coherent
states maintain their properties in the presence of loss. Given
all this recent work, a natural question arises regarding the
comparison of the phase enhancement for ECSs to NOON and
other states in the case of nonlinear phase shifts [7].

There is significant motivation for being able to optimally
measure the strength of uncalibrated nonlinearities. As already
mentioned, known and calibrated nonlinearities have metrol-
ogy potential for enhancing the estimation of the linear phase

[7–11]. Furthermore, calibrated nonlinearities have potential
for nonabsorbing single-photon detection [35–37] and optical
quantum computing [38].

In this paper we are therefore going to investigate the
nonlinear phase enhancement resulting from a generalized
nonlinearity characterized by an exponent k (k > 0) on
four quantum states: NOON, even and odd ECSs, and an
approximated ECS (AECS). The AECS is created from
a photon-subtracted squeezed state and is experimentally
feasible to realize [39,40]. Potential enhancements will be
quantified with the quantum Fisher information [41,42]. To
begin we will consider a two-mode pure state |ψ〉12 and a
generalized nonlinear phase shifter U (φ,k) applied to one
mode given by

U (φ,k) = eiφ(a†
2a2)k , (1)

where a
†
i (ai) is a creation (annihilation) operator in spatial

mode i [43] (see the details in Sec. II). The exponent k

represents the order of the nonlinearity. For example, k = 1
corresponds to a linear phase shift on the state, k = 2 is a Kerr
phase shift, and k �= 2 gives a more general nonlinear effect
in a phase operation. With optical interferometric scenarios in
mind, we consider the case of applying the phase operation
to just one mode, although it should be noted that other cases
can be envisaged [44]. When the generalized phase operation
U (φ,k) is applied to mode 2 of |ψ〉12, the resultant state is
equal to

|ψk(φ)〉12 = [1 ⊗ U (φ,k)]|ψ〉12. (2)

Now, according to phase estimation theory [41,42], the phase
uncertainty is bounded by the quantum Fisher information,

δφ � 1√
μF

� 1√
μFQ

, (3)

where F and μ denote classical Fisher information and the
number of measurements, respectively, and the value of FQ

for pure states is simply given by

FQ = 4[〈ψ̃k|ψ̃k〉 − |〈ψ̃k|ψk(φ)〉|2] = 4(�nk)2, (4)
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with |ψ̃k〉 = ∂|ψk(φ)〉/∂φ and (�nk)2 = 〈(nk)2〉 − 〈nk〉2

(〈nk〉 = 12〈ψ |(a†
2a2)k|ψ〉12). It is important to note that 〈n1〉

denotes an average (or mean) photon number. For a specific
measurement scenario, the number of measurements μ plays
a key role in reaching optimal phase estimation [45–47],
and particularly, parity measurement using the maximum-
likelihood method shows a good approximation of optimal
phase estimation for pure states [32] (see the details in
the Appendix). However, we here focused on the optimal
measurement setup, which provides a saturation lower bound
with F = FQ assumed by μ = 1 [32,48].

To allow a fair comparison of the phase sensitivity among
the various different quantum states under consideration, we
will use the same average photon number in one of two modes
as the physical resource count for the states [29,43,49,50].
For pure states, we shall demonstrate an inequality for the
sensitivity among the three states: NOON (least sensitive),
odd ECS, and even ECS (most sensitive). Furthermore we
will show that in the limit of large 〈n1〉 the AECS is slightly
better than the other three states. We shall also consider a small
amount of loss for the dispersive and nonlinear interferometer
arm because the nonlinear medium providing the phase
operation will generally also provide a scattering effect (e.g.,
particle losses) [51]. We shall demonstrate that, analogous to
the linear case (k = 1) [32,33], the phase enhancement of ECSs
still outperforms that of NOON states, even for nonlinear cases
(k �= 1).

For a physical realization, it is known that the ideal ECS
can be generated by mixing through a 50:50 beam splitter (BS)
a coherent state and a coherent state superposition (CSS) [28],
given by

|CSS±(α)〉 = N±
α (|α〉 ± |−α〉), (5)

where |α〉 is a coherent state with amplitude α and N±
α =

1/
√

2(1 ± e−2|α|2 ). Since the CSS with small α has been
already demonstrated in experiments [52–55], the scheme
of building AECSs with a modest photon number may
become experimentally feasible with very high fidelity in
the near future [56]. Several experiments have demonstrated
that nonlinear phase operations can be realized in various
setups. For example, self-Kerr phase modulation (k = 2) has
been measured as a function of electric-field amplitudes in
water, fibers, nitrobenzene, Rydberg states, etc. [51,57,58].
Superconducting systems with strong interaction could be a
possible candidate of nonlinear phase shifters for k = 3 [59].
Notably, the phase shift dependent upon the applied field
clearly follows theoretical predictions in the case of a Rydberg
electromagnetically induced transparency medium (see Fig. 3
in Ref. [51]).

The remainder of this paper is organized as follows. In
Sec. II, the mathematical formalism for generalized phase
shifters is described. The phase enhancements of pure ECSs
is discussed in the case of ideal preparation in Sec. II A.
A feasible approach to implementing the AECS is given in
Sec. II B. In Sec. III we also investigate the effects of loss
on the phase enhancement behavior. Finally, in Sec. IV we
summarize and discuss our results.

II. OPTIMAL PHASE ESTIMATION USING
NONLINEARITY IN PURE STATES

Let us first discuss the validity of Eq. (1) for general k. The
generalized phase operation is formed by

U (φ) = exp[iĤ (φ) t/h̄], (6)

where the total Hamiltonian is equal to

Ĥ (φ) = Ĥ0 + Ĥint(φ), (7)

consisting of the unperturbed Hamiltonian represented by

Ĥ0 =
∫

d3r

[
1

2μ0
|B̂|2 + ε0

2
|Ê|2

]
= h̄ω

(
a†a + 1

2

)
(8)

for mode frequency ω and an interaction Hamiltonian given
by expanding the polarization of the nonlinear medium,

Ĥint(φ) =
∫

d3r [Ê · P̂ ] =
∫

d3r Ê

⎡
⎣ ∞∑

j=1

χ (j )

j + 1
(Ê)j

⎤
⎦ ,

(9)

where χ (j ) is the j th order susceptibility of the medium [60].
A single-mode electric field is given by

Ê = i

√
h̄ω

2ε0
[au(r) − a†u∗(r)], (10)

where u(r) is the mode function. Due to the lack of phase
matching, the single-mode assumption, and the rotating wave
approximation, we may neglect the terms in χ (2x) (x is a
positive integer) [60], and then,

U (φ,k) = exp

[
iωt

(
a†a + 1

2

)] ∞∏
k=1

exp[iφ(k)(a†a)k], (11)

where the phase parameter of the nonlinearity k is

φ(k) = t

∫
d3r

∞∑
x=1

F(χ (2x−1)). (12)

We note that F(χ (2x−1)) is a function of χ (2x−1). Therefore,
the expression of the nonlinear phase operation in Eq. (1) is
appropriate for fixed k.

A well-known example of a nonlinear phase operation is
given by the Kerr interaction for k = 2 [29,30,61]. In an
interaction picture that removes the linear dynamical phase,
the nonlinear component is

U (φ,2) = exp[iφ(2)(a†a)2], (13)

with

φ(2) = t

∫
d3r

(
3

2
χ (3) + 5χ (5)

)
, (14)

where the interaction Hamiltonian is truncated after the fifth-
order susceptibility χ (5).

A. Ideal (theoretical) cases

We now need to review and calculate the phase enhance-
ments using the quantum Fisher information for pure (no loss)
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cases of the NOON state and ECSs. The NOON state is defined
as [4]

|ψN 〉12 = 1√
2

(|N〉1|0〉2 + |0〉1|N〉2), (15)

where |N〉 is a number state with photon number N . After
a generalized phase shifter U (φ,k) is applied in mode 2,
the resulting state is given by |ψk

N 〉12 = [1 ⊗ U (φ,k)]|ψN 〉12.
From Eq. (4), the quantum Fisher information of the pure
NOON states with a nonlinearity of order k is given by
F

Q

Nk = N2k and

δφNk >
1

Nk
. (16)

Similarly, the even and odd ECSs are defined by

|ECS±(α±)〉 = N±
α± [|α±〉1|0〉2 ± |0〉1|α±〉2], (17)

with amplitude α+ (α−) for an even (odd) ECS and N±
α± =

1/
√

2(1 ± e−|α±|2 ). After the phase shifter U (φ,k) is performed
in mode 2, we find that the resulting state is given by

|ECSk
±(α±,φ)〉12 = [1 ⊗ U (φ,k)]|ECS±(α±)〉12. (18)

The quantum Fisher information is then given by

F
Q

Ek±
= 4fα±

⎡
⎣ ∞∑

n=0

n2k(α±)2n

n!
− fα±

( ∞∑
n=0

nk(α±)2n

n!

)2
⎤
⎦

(19)

for fα± = e−|α±|2 (N±
α± )2 and

δφEk± >
1√
F

Q

Ek±

. (20)

In order to compare the phase sensitivity of the different
states, we take into account the same average particle number
of the states [29,43,49,50] in an arm,〈

n1
N

〉 = 〈
n1

E±

〉 = N

2
= (N±

α± )2|α±|2, (21)

where 〈n1
E±〉 = 〈ECS±(α±)|a†

2a2|ECS±(α±)〉 and, in general,
α+ �= α−. In Fig. 1, the values of the optimal phase estimation
are plotted for the three quantum states and are satisfied with
the inequality

δφNk � δφEk− � δφEk+ (22)

for any N and k. The first inequality δφNk � δφEk− shows the
pattern of the difference δφNk − δφEk− for k = 1,2,3 in Fig. 2.
Note that δφEk± approaches δφNk because |ECS±(α)〉 ≈ |ψN 〉
for larger N and that δφEk± is a continuous value, while δφNk

exists discretely due to integer N .

B. Preparation of an approximate ECS

We now present an optical setup to create an AECS with
a very high fidelity to an odd ECS, based on current optical
technology methods. We also compare the phase enhancement
of the AECS with the other states. As shown in Fig. 3, two
steps are required for AECS preparation. First, we create a
photon-subtracted quantum state, with high fidelity to an odd
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FIG. 1. (Color online) The inequality δφNk � δφEk− � δφEk+ with

respect to N = 2〈n1
N 〉 = 〈n1

E±〉 (k = 1,2,3).

CSS, given by the scheme in Ref. [56]. The generation of
squeezed vacuum states can be given by degenerate parametric
down conversion utilizing nonlinearity [28], and a series of
experimental results shows that modest strengths of squeezing
through second-harmonic generation are achievable with the
current technology [62–64]. The scheme of single-photon sub-
traction through an unbalanced BS from a squeezed vacuum
has been already demonstrated [39,40]. Finally, generation of

N

ΔΦN E
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FIG. 2. (Color online) Difference of the optimal phase estimation
between |ψN 〉 and |ECSk

−(α−)〉, such as δφNk − δφEk− for k = 1,2,3.
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FIG. 3. (Color online) Schematics of generating |AECS(r,αA)〉
from a squeezed vacuum S(r)|0〉 and a coherent state |α〉. After
single-photon subtraction at stage 1, state |ACSS(r)〉 is very similar
to |CSS−(α)〉. The coherent state in stage 2 has the same amplitude
of the old CSS (BSη and D are an unbalanced BS with a transmission
rate η and a single-photon detector).

the odd ECS follows from the well-known technique of mixing
a traveling CSS with a controlled coherent state through a
50:50 BS.

In Fig. 3, the schematics shows how to generate
|AECS(r,αA)〉 from a squeezed vacuum S(r)|0〉 and a coherent
state |α〉 (S(r) = exp{− r

2 [a2 − (a†)2]} and r is a squeezing
parameter). It was shown that the fidelity between a squeezed
single-photon state S(r)|1〉 and an odd CSS |CSS−(α)〉 with
small α is extremely high [56] and that a photon-subtracted
squeezed-vacuum state aS(r)|0〉 is identical to S(r)|1〉 [65].
We begin by preparing a squeezed vacuum S(r)|0〉 and then
performing single-photon subtraction by using BSη (η is the
transmission rate) and a single-photon detector. The resultant
state is called an ACSS and possesses a very high fidelity
compared with the ideal odd CSS. In detail, when a single
photon is detected, the resultant state |ACSS(r0)〉 = aS(r0)|0〉
(r0 = arcsinh[2α0/3]) is given by

|ACSS(r0)〉 = fr

∞∑
k=0

√
(2k + 1)!

2kk!
(tanh r0)k|2k + 1〉 (23)

for fr = (1 − tanh2 r0)3/4 with the maximized fidelity between
|ACSS(r0)〉 and |CSS−(α0)〉.

In the second stage, the odd AECS can be built with the
generated ACSS |ACSS(r0)〉1 mixed with an extra coherent
state |α0〉2 through a 50:50 BS. The state is written as

|AECS(r0,αA)〉 =
∞∑

m=1

m−1∑
m′=0

[Hm,m′ (|m〉|m′〉 − |m′〉|m〉)],

≈ |ECS−(α−)〉, (24)

where Hm,m′ is the coefficient of the state in a Fock basis (αA =√
2α0). As shown in Fig. 4, the resultant state |AECS(r0,αA)〉 is

approximately equivalent to the desired odd ECS |ECS−(α−)〉
with high fidelity (≈0.975) if α− = αA ≈ 1.9807. The state
|AECS(r0,αA)〉 consists of the ideal ECS (m′ = 0) and the
unbalanced photon states, called m and m′ states (m′ �= 0) [66].
In other words, the outcome state contains a superposition of
NOON states for m′ = 0, and it also includes the states pos-
sessing unbalanced photon numbers in both modes for m′ �= 0.

Hm,m'

5
10

15
20

m

5

10

m'

0.0

0.1

0.2

0.3

FIG. 4. (Color online) The coefficient H (m,m′) of
|AECS(r0,αA)〉 (αA ≈ 1.9807). The major contribution of the
NOON state and the minor of m and m′ states is clear. Blue (dark
gray) indicates a positive value, and red (light gray) indicates a
negative value.

Then, after the generalized phase shifter U (φ,k) in mode 2,
we can estimate the phase enhancement of the final state given
by |AECSk(r0,αA,φ)〉 = [1 ⊗ U (φ,k)]|AECS(r0,αA)〉.

For the phase enhancement of the AECS compared with
ideal ECSs, the value of 〈n1

EA
〉 = 〈AECS |a†

2a2|AECS〉 should
be N/2 in Eq. (21). As shown in Fig. 1, it is true that the
results from AECS are very close to those from ideal odd
ECSs for k = 1,2 but are slightly better than those of the
other states at k = 3 for a modest number of N (see thin
black lines in Fig. 1). This is because the detailed shape of the
AECS is slightly different from the ideal odd ECS. In Fig. 5,
this advantage of the phase enhancement can be explained
by the fact that the distribution of H (m,0) is narrower but
has a longer tail in the AECS compared to a coherent state
|2.0〉, indicating a photon distribution of |ECS±(α±)〉, for the
same average photon number. The m and m′ states might
provide a minor contribution of phase enhancement in the
AECS.
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FIG. 5. (Color online) The amplitude of Hm,0(αA) (Amp) for
αA = 2.0 and that of coherent state |2.0〉 with respect to photon
number m. Both states contain the same average photon number.
This implies that the AECS reaches the peak amplitude in smaller m

and has a longer tail than the coherent state.
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III. SMALL LOSS CASES IN A NONLINEAR
PHASE OPERATION

The phenomenon of imperfect phase operations may lead
to small particle losses in the arm. In particular, losses
of particles could occur in the nonlinear phase operation
itself. However, for the metrology, detection, and quantum
information applications mentioned in the Introduction, it is
important that losses, while realistically nonzero, are only
small. The focus of our interest here is thus this low-loss-
application regime. For the comparison of phase enhancement
in lossy states, we choose the fixed average photon number of
the states, such as〈

n1
N

〉 = 〈
n1

E+

〉 = 〈
n1

E−

〉 = 〈
n1

EA

〉 = 2.0, (25)

which implies N = 4. For example, |AECS(r0,2.0〉 and
|ECS−(1.9807)〉 have the same average photon number, such
as 〈n1

E−〉 = 〈n1
EA

〉 = 2.
Adding a BS with vacuum input can mimic this lossy

condition in the dispersive interferometer arm after the
nonlinear phase shift (T is the transmission rate of the BS),
while injecting a BS before the nonlinear phase operation is
reasonable if the mixed state comes from environmental losses
in the preparation stage [16]. Here, we examine the phase
enhancement of mixed states by generalizing the results of
Ref. [16], for example,

δφ � 1√
FQ

� 1√
C

Q
k

, (26)

where C
Q
k = 4(〈Hk

1 〉 − 〈Hk
2 〉2) for any k [67]. In particular,

this equation shows an excellent match with the exact value
of the quantum Fisher information in the small-loss region
(T ≈ 1) [16]. For k = 1, the bound CQ is given by

C
Q
1 = 4[T 2(〈n2〉 − 〈n〉2) + T (1 − T )〈n〉], (27)

and for k = 2,

C
Q
2 = 4{T 4 〈n4〉 + 6T 3(1 − T ) 〈n3〉

+ T 2(1 − T )(3 − 11T )〈n2〉 + T (1 − T )

× (1−6T +6T 2)〈n〉−[T 4〈n2〉2 + 2T 3(1 − T )〈n〉〈n2〉
+ T 2(1 − T )2〈n〉2]}. (28)

As shown in Fig. 6, the ECSs, including AECS, significantly
outperform NOON states (thick solid lines) for k = 1,2 in a
small photon-loss window. For NOON, even and odd ECSs,
and AECSs, the expectation values in Eqs. (27) and (28) are
given by

〈nk〉 = Nk/2, (29)

〈
nk

E±

〉 = fα±

∞∑
n=0

nk(α±)2n

n!
, (30)

〈
nk

EA

〉 = 〈AECS(r,αA)|(a†
2a2)k|AECS(r,αA)〉.

=
∞∑

m=1

m−1∑
m′=0

{(Hm,m′)2[mk + (m′)k]}. (31)
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FIG. 6. (Color online) The bound of the optimal phase sensitivity

(1/
√

C
Q

k ) with small lossy conditions for k = 1,2 (T is the transmis-
sion rate of the BS mimicking photon losses). The thick solid line
is for NOON states, and the thin solid line is for AECS, which is
very similar to the dashed lines for even (short-dashed line) and odd
(long-dashed line) ECSs. The classical precision limit (uncorrelated
states) does not depend on the nonlinearity k, and its value starts
above 0.5 for 〈n1〉 = 2.0.

Therefore, these results show that ECSs still outperform the
phase enhancement achieved by NOON states in the region of
small losses after the nonlinear phase operation (k = 2).

IV. SUMMARY AND REMARKS

In summary, we have analyzed phase enhancement of ECSs
for nonlinear phase shifts using quantum Fisher information
to quantify the results. As shown in linear optical elements
[32,33], the phase sensitivity of ECSs outperforms that of
NOON states for modest average photon numbers, converging
to the limit of NOON states for large average photon numbers.
We have presented the form of generalized (nonlinear) phase
operations in terms of the power of number operators and
obtained an inequality for the phase enhancement of NOON
states and odd and even ECSs, all with respect to the same
average photon number as a physical resource. We have also
investigated the feasibility of creating an AECS in optical
setups based on current technology and examined its phase
sensitivity. Finally, we have shown that the behavior of the
phase sensitivity for ECSs significantly outperforms that for
NOON states for the k = 2 nonlinear example in the presence
of small losses.
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FIG. 7. (Color online) Phase uncertainties of even ECSs and
NOON states using the maximum-likelihood method (ML) and
quantum Fisher information with N = 4 in Eq. (21). The phase
sensitivities are indicated as red crosses for ECSs with ML, blue
triangles for NOON states with ML, black circles for ECSs given
by 1/

√
μF

Q

E+ , and green squares for NOON states with 1/
√

μF
Q

N .
We observe that ECSs always have better phase sensitivity than
NOON states in cases of both ML and F Q for the same number
of measurements μ.

The fidelity between the odd ECS |ECS−(α−)〉 and AECS
|AECS(r0,αA)〉 is very high, but in general the AECS has more
degrees of freedom with r and α (see Fig. 3). Thus, there
is an opportunity to generate other useful quantum states,
different from ECSs, by tuning r and α, which could give
further improvements. Similarly, one may consider using the
approximate even CSS generated in Ref. [40] instead of using
the odd CSS obtained by subtracting a single photon [39]. In
addition, even though it is known that the self-Kerr-type non-
linear interaction can be performed with small losses in tunable
three- or four-level systems [68], it is still an open question as
to whether useful higher-order nonlinear phase operations can
also be performed minimizing loss mechanisms.
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APPENDIX: OPTIMAL PHASE ESTIMATION OF ECS
AND NOON STATES USING THE

MAXIMUM-LIKELIHOOD METHOD

We perform numerical simulations of optimal phase es-
timation in both pure ECSs and NOON states for k = 1.
This shows that the bounds of phase uncertainty given by
quantum Fisher information are smaller than those given by
maximum-likelihood analysis using parity measurements. We
assume that a small unknown parameter (φ = 0.01 � 1) is
encrypted in the states with linear phase generator U (φ) =
exp[ia†aφ] and repeated photon number parity measurements
μ times after the states pass through a 50:50 beam splitter.
The maximum-likelihood estimator is adopted from Ref. [13],
and the half width at half maximum of the estimator function
is calculated as the uncertainty of the estimated phase to be
compared with the phase estimation given by quantum Fisher
information δφ � 1/

√
μFQ.

In Fig. 7, the phase uncertainties are shown with respect to μ

using the maximum-likelihood method (ML) and the quantum
Fisher information (QF). The average photon numbers of the
ECSs and NOON states are fixed at N = 4. As we enlarge μ

from 200 to 7000, the phase uncertainties using both ECSs and
NOON states monotonously decrease, and the ECSs show a
smaller phase uncertainty than the NOON states. Note that the
cases of ML with parity measurements approach but do not
reach the saturation of the bounds given by QF because the
parity measurement is not the optimal measurement setup [32].
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