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Bell-inequality tests with entanglement between an atom and a coherent state in a cavity
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We study Bell-inequality tests with entanglement between a coherent-state field in a cavity and a two-level
atom. In order to detect the cavity field for such a test, photon on-off measurements and photon number
parity measurements, respectively, are investigated. When photon on-off measurements are used, at least
50% of detection efficiency is required to demonstrate violation of the Bell inequality. Photon number parity
measurements for the cavity field can be effectively performed using ancillary atoms and an atomic detector, which
leads to large degrees of Bell violations up to Cirel’son’s bound. We also analyze decoherence effects in both field
and atomic modes and discuss conditions required to perform a Bell inequality test free from the locality loophole.
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I. INTRODUCTION

Einstein, Podolsky, and Rosen (EPR) presented an argu-
ment known as the EPR paradox [1], which triggered the
debate on quantum mechanics versus local realism. Bell’s
theorem [2] enables one to perform experiments in which
failure of local realism is demonstrated by the violation of
Bell’s inequality. Various versions of Bell’s inequality have
been developed, including Clauser, Horne, Shimony, and Holt
(CHSH)’s [3], and a substantial amount of experimental effort
has been devoted to the successful demonstration of violation
of Bell’s inequality. So far, many experiments have been
performed to show violation of Bell-type inequalities, and
most physicists now seem to believe that local realism can
be violated.

On the other hand, all the experiments performed to date
are subject to some loopholes, so the experimental data
can still be explained somehow based on a classical (often
impellent) argument. Experiments using optical fields [4–7]
typically suffer from the “detection loophole” [8], and recent
experiments using atomic states [9,10] with the maximum
separation of ∼1 m [10] suffer from the “locality loophole”
[11]. While most of Bell inequality tests have been performed
using entangled optical fields [4–7], it is an interesting
possibility to explore Bell inequality tests using atom-field
entanglement [12–16], particularly for a loophole-free test.
In fact, there exist theoretical proposals for a loophole-free
Bell inequality test using hybrid entanglement between atoms
and photons [14,17,18] and relevant experimental efforts
[10,15,19] have been reported.

In this paper, we study Bell inequality tests with an
entangled state of a two-level atom and a coherent-state field.
When the amplitude of the coherent state is large enough, such
an entangled state is often called a “Schrödinger cat state” (e.g.,
in Ref. [20]) as an analogy of Schrödinger’s paradox where
entanglement between a microscopic atom and a classical
object is illustrated [21]. Entanglement between atoms and
coherent states has been experimentally demonstrated using
cavities [22–24].
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In our study, photon on-off measurements and photon
number parity measurements, respectively, are employed in
order to detect the cavity field. We find that when photon
on-off measurements are used, at least 50% of detection
efficiency is required to demonstrate violation of the Bell-
CHSH inequality. One may effectively perform photon number
parity measurements for the cavity field using ancillary probe
atoms and an atomic detector so that nearly the maximum
violation of the Bell-CHSH inequality can be achieved.

The remainder of this paper is organized as follows. In
Sec. II, we briefly discuss the atom-field entanglement under
consideration and review basic elements of Bell inequality
tests in our framework. We then investigate the Bell-CHSH
inequality with photon on-off measurements and parity mea-
surements, respectively, in Sec. III. Section IV is devoted to the
investigation of the Bell-CHSH inequality test using indirect
measurements within a “circular Rydberg atom-microwave
cavity” system. In Sec. V, we analyze decoherence effects
in both field and atomic modes. This analysis enables us
to provide quantitative information on the requirements to
perform a loophole-free Bell test. We conclude with final
remarks in Sec. VI.

II. BASIC ELEMENTS FOR BELL INEQUALITY TESTS

We are interested in testing the Bell-CHSH inequality with
an atom-field entangled state:

|�〉AC = 1√
2

(|e〉A|α〉C + |g〉A| − α〉C), (1)

where |e〉A (|g〉A) is the excited (ground) state for the atomic
mode A and | ± α〉C are coherent states of amplitudes ±α for
the field mode C. States (1) for reasonably large values of α

are considered entanglement between a microscopic system
and a classical system [20,25–27]. There have been studies on
Bell inequality tests with this type of entangled state [20] and
similar states such as entanglement between an atom and a
single photon [12–15] and entanglement between coherent
states [25,28–36]. Experimental demonstration of state (1)
has been performed using a system composed of a circular
Rydberg atom and a microwave cavity field [22–24].
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In order to test a Bell type inequality, a bipartite entangled
state should be shared by two separate parties. After sharing
the entangled state, each of the two parties may locally perform
appropriate unitary operations and dichotomic measurements.
Violation of the Bell-CHSH inequality can be obtained by
choosing certain values for the parameters of the unitary oper-
ations. The correlation function is defined as the expectation
value of the joint measurement

E(ζ,β) = 〈ÊA(ζ ) ⊗ ÊC(β)〉, (2)

where ÊA(ζ ) = Û
†
A(ζ )�̂AÛA(ζ ) is a dichotomic measurement

�̂A combined with unitary operation ÛA(ζ ) parameterized by
ζ and ÊC(β) can be defined accordingly. The Bell function B
is then defined as

B = E(ζ,β) + E(ζ ′,β) + E(ζ,β ′) − E(ζ ′,β ′), (3)

which should obey the inequality forced by local realism, i.e.,
|B| � 2. The maximum bound for the absolute value of the
Bell function is 2

√
2, known as Cirel’son’s bound [37].

An atomic dichotomic measurement can be represented by
a 2 × 2 matrix,

�̂ =
(

1 0
0 −1

)
, (4)

where we choose the basis as {|e〉, |g〉}. We define the
displaced dichotomic measurement �̂(ζ ) with the atomic
displacement operator D̂(ζ ) as

�̂(ζ ) = D̂(ζ )�̂D̂†(ζ ) (5)

with

D̂(ζ ) = exp [ζ σ̂+ − ζ ∗σ̂−] =
(

cos |ζ | ζ

|ζ | sin |ζ |
− ζ ∗

|ζ | sin |ζ | cos |ζ |,

)
,

ζ (θ,φ) = −θ

2
e−iφ, (6)

and 0 � θ � π and 0 � φ � 2π , where σ̂± are the standard
ladder operators in the two-dimensional Hilbert space. We
note that D̂(ζ ) corresponds to a single qubit rotation for an
atomic qubit and it can be achieved by applying a Ramsey
pulse to the atom [38]. We consider measurement �̂(ζ ) for
the atomic mode A throughout the paper, while some different
measurement schemes are considered for the field mode C.

III. BELL-CHSH INEQUALITY TESTS WITH
ATOM-FIELD ENTANGLEMENT

A. On-off measurement for field mode

We, first, investigate the Bell-CHSH inequality with photon
on-off measurements and the displacement operator for the
cavity field mode. The displaced on-off measurement for the
field C is

ÔC(β) = D̂C(β)

( ∞∑
n=1

|n〉〈n| − |0〉〈0|
)
D̂†

C(β), (7)

where D̂C(β) = exp[βâ
†
C − β∗âC] is the displacement opera-

tor with the field annihilation (creation) operator âC (â†
C) and

β as the displacement parameter for field C.

We model a photodetector with efficiency η by a perfect
photodetector together with a beam splitter of transmissivity√

η in front of it [39]. The signal field C is mixed with the
vacuum state |0〉v at a beam splitter. The beam splitter operator
between modes C and v is B̂Cv = exp[(cos−1 √

η)(â†
Câv −

âC â†
v)/2] [40], where âv (â†

v) is the field annihilation (creation)
operator for the ancilla mode v. After passing through the beam
splitter, the atom-field entangled state |�〉AC is changed to a
mixed state as

ρ
η

AC = Trv[B̂Cv(|�〉〈�|)AC ⊗ (|0〉〈0|)vB̂†
Cv]

= 1

2
{|e〉〈e| ⊗ |√ηα〉〈√ηα|+|g〉〈g| ⊗ |−√

ηα〉〈−√
ηα|

+ e−2(1−η)|α|2 |e〉〈g| ⊗ |√ηα〉〈−√
ηα|

+ e−2(1−η)|α|2 |g〉〈e| ⊗ | − √
ηα〉〈√ηα|}AC. (8)

The correlation function with the photon detection efficiency
η is the expectation value of �̂A(ζ ) ⊗ ÔC(β) for state (8) as

EO(ζ,β; η) = Tr
[
ρ

η

AC�̂A(ζ ) ⊗ ÔC(β)
]

= − e−|β|2−|α|2η−2|α||β|√η cos 
 cos
θ

2

+ e−|β|2−|α|2η+2|α||β|√η cos 
 cos
θ

2
(9)

+ e−2|α|2 cos φ sin
θ

2

− 2e−2|α|2−|β|2+|α|2η cos(φ − 2|α||β|
×√

η sin 
) sin
θ

2
,

where α = |α|ei
α , β = |β|ei
β , and 
 = 
β − 
α with real
phase parameters 
α and 
β . The Bell function is immediately
obtained using Eqs. (3) and (9).

Using the method of steepest descent [41], we numerically
find optimized values, |BO|max, i.e., absolute values of the
Bell function maximized over variables ζ , ζ ′, β, and β ′. We
plot the results against amplitude |α| for various choices of
the detection efficiency from η = 0 to η = 1 (from bottom to
top), where η differs by 0.1 between closest curves in Fig. 1.
Assuming a real positive value of α, we find that the optimizing
conditions can also be obtained as

ζ = π

2
,ζ ′ = 0,β = −β ′ = |β|, (10)

where |β| satisfies

2|β|e2(η−1)|α|2 = e−2|α||β|√η(|β| + |α|√η)

− e2|α||β|√η(|β| − |α|√η). (11)

As expected, the perfect detection efficiency, η = 1, gives the
higher violation up to |BO|max ≈ 2.61 when |α| ≈ 0.664. A
Bell violation of |BO|max ≈ 2.39 (|BO|max ≈ 2.14) is obtained
for η = 0.8 (η = 0.6) when |α| ≈ 0.673 (|α| ≈ 0.692).

When |α| = 0, no violation occurs because state (1)
contains no entanglement. As |α| increases, the Bell vio-
lation becomes higher until |α| ∼ 0.7. However, as shown
in Fig. 1, as |α| keeps increasing, the degree of the Bell
violation decreases toward zero even though the state has
larger entanglement. This result is due to the fact that
when |α| is large, the probability of detecting the vacuum
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FIG. 1. (Color online) Numerically optimized values of Bell
functions BO with displaced on-off measurements against amplitude
α of state (1). The detection efficiency ranges in value from η = 0
(lower curve) to η = 1 (upper curve), with intervals of 0.1 shown by
the family of curves. The horizontal line corresponds to the case of
η = 0.5, which coincides with the classical limit of the Bell-CHSH
inequality.

for the field mode diminishes. Obviously, if photon on-off
detection excludes one of the two possible results, violation
of the Bell-CHSH inequality will not occur regardless of
the degree of entanglement. This is in agreement with a
previous result in Ref. [30] where the Bell-CHSH inequality
with entangled coherent states, |α〉| − α〉 − | − α〉|α〉 (without
normalization), was considered with on-off detection.

It should be noted that in Fig. 1, the Bell function for
η = 0.5 overlaps with the horizontal line that indicates the
classical limit 2. In fact, the photon detector efficiency should
be higher than 0.5 in order to see a Bell violation as shown in
Fig. 2(a). Figure 2(b) shows that the optimizing values of |α|
are within the range of 0.66 < |α| < 0.71 for any of η � 0.5.
We also note a previous result [16] that efficiency of 0.43
can be tolerated if a different type of Bell inequality [42] is
used with a nonmaximally entangled state and a perfect atomic
measurement.

B. Photon number parity measurement for field mode

We now consider the displaced photon number parity
measurement for the field mode

�̂C(β) = D̂C(β)

( ∞∑
n=0

|2n〉〈2n|

− |2n + 1〉〈2n + 1|
)
D̂†

C(β). (12)

Using Eq. (1) and the measurement operators defined above,
it is straightforward to get

E�(ζ,β) = 〈�̂A(ζ ) ⊗ �̂C(β)〉
= e−2|β|2 sin θ cos[4|α||β| sin 
 − φ]

+ e−2(|α|2+|β|2) cos θ sinh[4|α||β| cos 
], (13)

and the corresponding Bell function, B�. We present the
numerically optimized Bell function, |B�|max, against |α|
in Fig. 3, where Bell violation occurs for any nonzero α.
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FIG. 2. (a) Numerically optimized values of Bell function BO
with displaced on-off measurements against detection efficiency η.
The local realistic bound, 2, is violated for η � 0.5. (b) Plot of
optimizing values of |α| with respect to η.

Note that the atomic displacement operator corresponds to
a single-qubit rotation for the atomic mode. It was argued that
the field displacement plays a similar role to approximately
rotate a coherent-state qubit [30]. If we restrict the atomic
displacement parameters (ζ and ζ ′) to be real, our test becomes
identical to the one in Ref. [20] and the result corresponds to
the dashed curve in Fig. 3. However, it is not sufficient to
reveal the maximal violation of the atom-field entangled state
(1). In our numerical analysis, B� is optimized with respect
to complex ζ , ζ ′, β, and β ′ that results in the solid curve in
Fig. 3. Assuming that α is a real positive value, the optimizing
conditions for B� are found as

ζ = −π/4,ζ ′ = iπ/4,β = −β ′ = i|β|, (14)

where |β| satisfies

(|α| − |β|)/(|α| + |β|) = tan 4|α||β| (15)

and is nearest to zero. As amplitude |α| increases, the degree
of Bell violation rapidly gets larger up to Cirel’son’s bound
2
√

2.

IV. APPROACH USING INDIRECT MEASUREMENT

In this section, we discuss physical implementations
of the Bell-CHSH inequality test using displaced parity
measurements in a “circular Rydberg atom-microwave cavity”
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FIG. 3. Numerically optimized values of Bell function B� with
displaced parity measurements against |α|. The solid curve corre-
sponds to the absolute values of the Bell function maximized over
arbitrary ζ , ζ ′, β, and β ′, while the dashed curve corresponds to those
values maximized over arbitrary β and β ′ but real ζ and ζ ′.

configuration. Generation schemes for atom-field entangled
states [Eq. (1)] have been theoretically studied and experimen-
tally implemented [38,43–45]. In the case of a scheme based
on the off-resonant interaction [38], the required interaction
Hamiltonian is

ĤI = h̄χ [(â†â + 1)|e〉〈e| − â†â|g〉〈g|], (16)

and χ = �2/(4δ) is the coupling constant determined by the
vacuum Rabi frequency � and detuning δ [38]. As shown in
Fig. 4, π/2 Ramsey pulse with phase −π/2 (RA) is applied
to a circular Rydberg atom (A) prepared in the excited state
|e〉A [46], which results in an atomic superposition state:
|φ−i〉A = (|e〉A − i|g〉A)/

√
2. A strong dispersive interaction

in Eq. (16) between atom A and the cavity field then
produces the atom-field entangled state (1) for interaction time
t = π/(2χ ) [38].

Direct measurements of the light field in the
microwave cavity are difficult to achieve, while
indirect methods for parity measurements of the cavity
field may be more feasible [12,24,38,47]. A circular
Rydberg atom (B) in Fig. 4 initially prepared in state

RA

Atom A

Atom B

RD '

RD

D '

D

RB

Cavity field

Atomic

detector

C

Rx :  Ramsey pulse

(x = A, B, D, D ')

path for atom A
path for atom B

Atomic

detector

FIG. 4. (Color online) Schematic of the proposal. The horizontal
arrow is to describe the entangled state (1) generation (with RA and C)
and measurement for atom A. The vertical arrow depicts the indirect
parity measurement of the cavity field using ancillary atom B.

|e〉B evolves to a superposition state |φ−i〉B by π/2
Ramsey pulse with phase −π/2 (RB), and the total state
is |�tot〉ABC = |�〉AC |φ−i〉B . The displacement operation,
D̂†

C(β) = D̂C(−β), is then applied to the field right before
atom B enters the cavity, and the same type of interaction
as Eq. (16) between modes B and C follows. One may
indirectly detect the cavity field by appropriately choosing
the interaction time t = π/(2χ ) between atom B and the
field before detecting the atom. The interaction time may
be controlled by selecting the velocity of atom B. The final
measurement for atom A, represented by �̂A(−πe−iφ/4), is
performed using π/2 Ramsey pulse of phase π − φ (RD)
and atomic detector D. The measurement on atom B, i.e.,
�̂B(−π/4), for indirect probing is performed with the help of
π/2 Ramsey pulse with π phase (RD′) and atomic detector
D′. The measurement operator is then represented as

ϒ̂B,C(β,t) = ÛB,C(β,t)
†ÔB,CÛB,C(β,t), (17)

where

ÔB,C = [|+〉〈+| − |−〉〈−|]B ⊗ 11C,

ÛB,C = e
−iĤI t/h̄

B,C D̂†
C(β),

and |±〉= (|e〉 ± |g〉)/√2. The correlation function
E(ζ,β,t) = 〈�̂A(ζ ) ⊗ ϒ̂B,C(β,t)〉 is calculated using state
|�tot〉ABC as

E(ζ,β,t) = 1
2 cos θe(|α|2+|β|2−2|α||β| cos 
)(−1+cos 2χt) cos[(|α|2 + |β|2 − 2|α||β| cos 
) sin 2χt]

− 1
2 cos θe(|α|2+|β|2+2|α||β| cos 
)(−1+cos 2χt) cos[(|α|2 + |β|2 + 2|α||β| cos 
) sin 2χt]

+ 1
2 sin θe−|α|2−|β|2−(|α|2−|β|2) cos 2χt−2|α||β| sin 
 sin 2χt cos[φ − (|α|2 − |β|2) sin 2χt + 2|α||β| sin 
(−1 + cos 2χt)]

+ 1
2 sin θe−|α|2−|β|2−(|α|2−|β|2) cos 2χt+2|α||β| sin 
 sin 2χt cos[φ + (|α|2 − |β|2) sin 2χt + 2|α||β| sin 
(−1 + cos 2χt)]

(18)

and the Bell function, Bϒ , is accordingly obtained. As
expected, the optimizing conditions for |Bϒ |max are identical
to those for |BO|max in Eqs. (14) and (15) with an additional

condition, t = t ′ = π/2χ . Our numerical study confirms that
the optimized Bell function |Bϒ |max plotted with the above-
mentioned conditions in Fig. 5 exactly overlaps with the solid
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FIG. 5. Numerically optimized values of Bell function Bϒ with
indirect measurements against |α|. The result is found to be identical
to the one using direct parity measurements shown as the solid curve
in Fig. 3.

curve in Fig. 3 as shown. This result is due to the fact that
the indirect measurement (17) is basically equivalent to the
displaced parity measurement (12) on the cavity field when t

is chosen to be π/(2χ ) [47], i.e., the measurement on atom
B in the basis {|+〉,|−〉} after the interaction time t = π/(2χ )
is equivalent to the parity measurement on the cavity field. In
fact, it can be shown that the correlation functions (18) with
t = π/(2χ ) and (13) are identical. Of course, if we restrict
ζ to be real, the optimized plot of the Bell function |Bϒ |max

approaches the dashed curve in Fig. 3.

V. DECOHERENCE AND LOOPHOLES

It is not difficult to predict that decoherence effects due to
the cavity-field dissipation and the spontaneous emission of
the atoms will obstruct Bell violations. This is particularly
important when one intends to demonstrate a Bell viola-
tion free from the loopholes. In this section, we consider
decoherence effects with realistic conditions for the Bell-
CHSH inequality test using parity measurements and suggest
quantitative requirements to perform a loophole-free Bell
test.

A. Decoherence effects in the cavity-atom system

There are two main effects that cause decoherence in
our Bell inequality test, i.e., spontaneous emissions from
atoms and cavity field dissipations. In the atom-cavity system
under consideration, one (or both) of these two effects
may occur. The master equation which determines the time
evolution of the density operator, ρ̂(t), under the atom-field
interaction with spontaneous emissions and cavity dissipations
is

dρ̂(t)

dt
= 1

ih̄
[ĤI ,ρ̂(t)] + Lρ̂(t), (19)

with the Linblad decohering term L defined as

Lρ̂ ≡ κ(2âρ̂â† − â†âρ̂ − ρ̂â†â)

+γ (2σ̂−ρ̂σ̂+ − σ̂+σ̂−ρ̂ − ρ̂σ̂+σ̂−), (20)

CAtom A

RA RD

Cylindrical cavity

Cavity field C

t4
t3 t5

t1 t2 t1

Atom A

ˆ
C ( )†  applied to cavity field C

when atom A passes here.

FIG. 6. (Color online) Sideview of the atom A’s path with
intervals of time. Each interval denotes an amount of time required
for atom A to pass through the region related with atomic velocity v.
We note that the distance l = v × (t4 + t5), which corresponds to the
length of the cylindrical cavity, is a crucial factor in a loohole-free
Bell inequality test.

where κ is the dissipation rate of cavity field and γ is the
spontaneous emission rate.

It is known that the spontaneous emission rate of an atom
can be significantly reduced by engineering the shape of the
cavity that contains the atom [48,49]. A complete inhibition
of spontaneous emission was suggested using a cylindrical
metal cavity with a diameter shorter than 1.8412c/ω0, where
ω0 is the transition rate between atomic states |e〉 and |g〉 and
c is the speed of light [49]. For our setup, the transition rate
can be taken from Ref. [24] as ω0 = 51.1 GHz. This means
that the diameter should be smaller than 3.44 mm, that is,
experimentally achievable. As seen in Fig. 6, a long cylindrical
cavity may be used between cavity C and Ramsey zone RD to
inhibit spontaneous emission.

The spontaneous emission rate γc inside the cavity C in
Fig. 4 also generally differs from the spontaneous emission
rate γ0 in the vacuum. It is known that γc can be calculated
by approximating the cavity in the one dimension while
considering the effect of the atomic motion as described in
Ref. [50]. In our case, γc = 4.08 Hz is obtained based on the
result of Ref. [50] from the spontaneous emission rate in the
vacuum, γ0 = 1/(2T0) (T0 = 36 ms is the atomic life time in
the vacuum [38]) and related realistic parameters in a recent
experiment [24].

Considering the discussions above, we present a timeline
of decoherence effects in Fig. 7 together with time intervals
required to pass through certain parts of the apparatus as
follows (also depicted in Fig. 6): t1 is a half of the time required
for an atom to pass through a cavity used for Ramsey pulse
application, t2 is a half of the time required for an atom to pass
through Ramsey pulse and the main cavity (C) without cavity
waist, t3 for an atom to pass through the main cavity(C)’s waist
(π/2χ ), t4 for atom A to pass through the long cylindrical
cavity before the field displacement operation on the cavity
field, t5 for atom A to pass through the remainder of the long
cavity after the field displacement operation, and t6 for atomic
detection at D or D′.

Let us, first, consider the pathway of atom A, which
corresponds to the top line of Fig. 7. Atom A undergoes
spontaneous emission before and after the Ramsey pulse RA

with rate γ0 (diagonally hatched part). Atom A then interacts
with the cavity field with dissipation rate κ under spontaneous
emission (γc), which is represented by the horizontally hatched
part. After the atom-field interaction, atom A passes through
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RA C

Atom A

Atom B

t1

0
'

RD

RB C

Cavity field C

RD ' D '

D

t2

t4 t5

t3

c

t1 t2 t2 t1

t1

3t

FIG. 7. (Color online) A timeline for decoherence with dynamical
parameters related in each regions (from left to right). The top line is
for atom A, the middle for cavity field C, and the bottom for atom B.
The times when Ramsey pulses are applied are described as vertical
dashed lines. We consider a Ramsey pulse application as an instant
event as a Ramsey pulse lasts as short as 1 μs order [45]. Regions
are differently hatched depending on the types of dynamics. In the
diagonally hatched regions, atoms A and B travel in free spaces with
the spontaneous emission rate γ0 before and after Ramsey pulses as
shown in Fig. 4. In the cross-hatched region, atom A travels in a
cylindrical cavity with the inhibited spontaneous emission rate γ ′. In
the vertically hatched region, the cavity dissipation with rate κ occurs
in the cavity (C) field. The horizontally hatched regions correspond
to the dynamics of the atom-field interaction ĤI in the main cavity
C together with spontaneous emission γc and cavity dissipation κ .
Abbreviations C, D, D′, RA, RB , RD , and RD′ are consistent with
those in Fig. 4.

the cylindrical cavity experiencing inhibited spontaneous
emission (γ ′). Finally, atom A comes out of Ramsey pulse
RD experiencing spontaneous emission (γ0) and is registered
at detector D. In the meantime, cavity field C which has
interacted with atom A undergoes field dissipation (κ) while
atom A is passing through cylindrical cavity. Cavity field
C then begins to interacts with atom B under spontaneous
emission (γc) and field dissipation (κ) after displacement
operation on it. Atom B, used for an indirect measure-
ment, experiences spontaneous emission (γ0) around Ramsey
pulse RB , interaction with the cavity field (C) with sponta-
neous emission (γc), and spontaneous emission (γ0) before
detection D′.

Here, we take the photon storage time TC = 0.13s (κ =
1/(2TC)), � = 2π × 49 kHz and δ = 2π × 65 kHz (χ =
�2/(4δ) ≈ 58 kHz) from recent experiments [24]. The so-
lution of the master equation for the cavity dissipation alone
with HI was examined in Ref. [51]. In the appendix, we obtain
the solution of Eq. (19) and find an explicit form of the density
operator and the correlation function. The Bell function can
be constructed using the correlation function in Eq. (B13)
of the appendix. Note that we have assumed perfect Ramsey
pulses during the procedures. Considering cavity dissipation,
we employ the same optimizing conditions (14) except that
|β| is chosen to be the values that satisfy

|α|e−κ(t4+t3) − |β|
|α|e−κ(t4+t3) + |β| = tan(4|α|e−κ(t4+t3)|β|) (21)

and is nearest to zero.

l 0.1 m

l 0.5 m

l 1 m

l 2.25 m

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1.0

1.5

2.0

2.5

m
ax

FIG. 8. The Bell function under realistic conditions discussed in
Sec. V B are plotted with optimizing conditions in Eqs. (14) and
(21) for several different cases of separation l. As the separation l

increases, the maximum values of the Bell function decrease. The
decoherence effects become heavier as |α| increases.

B. Bell violation and separations under practical conditions
without a cylindrical cavity

Let us, first, consider Bell violation depending on the sep-
aration l = v × (t4 + t5) between both parties without using a
cylindrical cavity (thus, γ ′ = γ0). We choose some practical
time-interval parameters as t1 = 80.0 μs, t2 = 166.5 μs,
t3 = 27.1 μs, t6 = 20 μs and velocity of an atom v = 250 m/s
[24,52]. The Bell function with several choices of l are plotted
in Fig. 8. The Bell function approaches the value near 2.7 when
l = 0.1 (meter), but it decreases as l gets larger. Clear Bell
violations appear for l � 2 (meter), however, this is insufficient
for a spacelike separation as we shall discuss in the next
subsection.

C. Requirements for a Bell test free from the locality loophole
with a cylindrical cavity

In principle, a Bell test free from the locality loophole
can be performed using a long cylindrical cavity with a low
spontaneous emission rate (γ ′) and the main cavity with a low
dissipation rate (κ). In order to close the locality loophole,
the measurement event for atom A should not affect the
measurement event for the cavity field C, and vice versa [11].
In other words, the measurement event for atom A should
be outside of the “back light cone” from the detection event
D′ in Fig. 4. In the same manner, the measurement event for
the cavity field C should not be in the back light cone from
the detection event D. For simplicity, let us first suppose that
each measurement process takes place at a single location (D
and D′). In our Bell test, the time tA required to measure
atom A is smaller than the time required to measure field C

(tC) due to the indirect measurement scheme for field C. We
assume that the measurement event for the field C precedes
to the measurement event for atom A by T (the opposite case
will require a longer separation between the two parties). The
conditions required to close the locality loophole then are

d � c(T + tA),

d � c(tC − T ), (22)
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where d is the distance between D and D′ and c is the speed
of light.

In order to apply the locality-loophole-free conditions (22)
to our Bell test setup in a more rigorous manner, one needs
to consider locations of the local measurement elements. In
Fig. 7, one can find that the measurement time for atom A (tA)
consists of the times for RD (t1) and D (t6) and that for the field
(tC) consists of the times for C (t3), R′

D (t2 + t1), and D′ (t6). A
measurement event for each party actually does not take place
at a single location, and both of the measurements are not even
on a straight line. Therefore the distance d in Eqs. (22) needs
to be replaced with the distances from the final detector of one
party to the location where the measurement of the other party
begins. A careful consideration leads to the conclusion that the
following inequalities should be satisfied:

v(t3/2 + t4 + t5 + t1 + t6) � c(t5 + t1 + t6),

v
√

(t3/2 + t2 + t1 + t6)2 + (t3/2 + t4 + t5)2 (23)

� c(t3 + t2 + t1 + t6 − t5).

Using the feasible values of t1, t2, t3, t6 and v in the previous
subsection, we find the minimum values t4 = 236.0 s and t5 =
96.8 μs with which the equalities hold for Eqs. (23). The
minimum distance required for a Bell test free from the locality
loophole then is found to be l = 52.99 km [24].

We, finally, consider conditions of the atomic life time
Tatom = 1/(2γ ′) and the photon storage time Tc = 1/(2κ)
required for a Bell test free from the locality loophole. In Fig. 9,
we plot the Bell function constructed using Eq. (B13) in the
appendix with respect to the photon storage time in the main
cavity and amplitude |α| of the atom-field entanglement. Here,
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FIG. 9. (Color online) Contour plots of the Bell function with
respect to photon storage time TC in the main cavity and amplitude
|α| of the entangled state. The atomic life time in cylindrical cavity
Tatom is fixed at 1000, 2000, 4000, and ∞ (seconds). The minimum
distance condition l = 52.99 (km) for a loophole-free Bell test
was assumed. Higher inhibition of spontaneous emission in the
cylindrical cavity reduces the required photon storage time in the main
cavity.

the extended lifetime of the atom in the cylindrical cavity was
assumed to be Tatom =1000, 2000, 4000, and ∞ (seconds). The
distance l was assumed to be the minimum distance required
for a loophole-free Bell test (52.99 km). For example, when
Tatom = 2000 (seconds), the photon storage time TC ∼ 1160
(seconds) at |α| ∼ 0.47 is required to see a Bell violation.
If complete inhibition of the spontaneous emission in the
cylindrical cavity is possible, (i.e., Tatom = ∞), TC ∼ 590 at
|α| ∼ 0.3 is required. Obviously, the stronger inhibition of
the spontaneous emission in the cylindrical cavity relaxes the
requirement of the photon storage time in the main cavity
to see Bell violations. However, it still requires at least a few
hundreds of seconds for the photon storage time to demonstrate
a loophole-free Bell violation, while it is only about 0.13 s at
present [53]. It would also be extremely challenging to build
a long cylindrical cavity that strongly inhibits the spontaneous
emission of atom A during such a long lifetime.

VI. REMARKS

We have investigated Bell-CHSH inequality tests with
entanglement between a two-level atom and a coherent-state
field in a cavity. In order to detect the cavity field for
these tests, photon on-off measurements and photon number
parity measurements, respectively, have been attempted. When
photon on-off measurements with the perfect efficiency are
used, the maximum value of the Bell violation is |BO| ≈ 2.61
at |α| ≈ 0.664. In order to see a violation of the Bell-CHSH
inequality, at least 50% of detection efficiency is required.
When photon parity measurements are used, the value of
the Bell-CHSH violation rapidly increases as α gets larger,
and it approaches Cirel’son’s bound for α � 1. Although
precise direct measurements of cavity fields are experimentally
difficult, photon number parity measurements for the cavity
field can be effectively performed using ancillary probe atoms
and atomic detectors. We have fully analyzed decoherence
effects in both field and atomic modes and discuss conditions
required to perform a Bell inequality test free from the locality
loophole.

Our proposal may be considered an attempt to analyze a
Bell inequality test using entanglement between a microscopic
system and a mesoscopic classical system. Since atomic
detectors are known to be highly efficient [54], it may also
be a reasonable target to perform this type of experiment in
a way free from the detection loophole. In principle, a Bell
inequality test free from the locality loophole in our framework
using atom-field entanglement may be performed using a
long cylindrical cavity for the atom with a low spontaneous
emission rate [49]. However, our analysis shows that it would
be extremely demanding to perform a Bell inequality test
free from both the locality and detection loopholes in this
framework since the main cavity for field with a low dissipation
rate would be necessary together with a long cylindrical
cavity.
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APPENDIX A: SOLUTIONS OF THE MASTER EQUATION
FOR MATRIX ELEMENTS

We first find general solutions of the master equation
[Eq. (19)] for three types of decoherence processes step by
step, i.e., spontaneous emission of an atom, cavity dissipation,
and atom-field interaction with spontaneous emission and
cavity dissipation.

1. Spontaneous emission for atom

A density operator of a two-level atom, ρ̂A(t), can be
expressed as a matrix form,

ρ̂A(t) =
(

ρA,ee(t) ρA,eg(t)
ρA,ge(t) ρA,gg(t)

)
, (A1)

where ρA,ij (t) = 〈i|ρ̂A(t)|j 〉. When an atom with a initial
density matrix, ρ̂A(0), goes through the spontaneous emission
process for time t , its density matrix is straightforwardly
obtained using Eq. (19) with χ = 0 and κ = 0 as

ρ̂A(t) = ŜA(γ,t)[ρ̂A(0)]

=
(

e−2γ tρA,ee(0) e−γ tρA,eg(0)
e−γ tρA,ge(0) ρA,gg(0) − ρA,ee(0)(e−2γ t − 1)

)
,

(A2)

where superoperator Ŝ(γ,t) is defined for later use.

2. Dissipation for cavity field

In order to find the time evolution of the coherent-state part
the density operator, it is sufficient to find the time evolution of
an operator component |μ〉〈ν|, where |μ〉 and |ν〉 are coherent
states of amplitudes μ and ν. This solution for time t under
the master equation [Eq. (19)] with χ = 0 and γ = 0 is well
known as [55,56]

exp

[
− (|μ|2 + |ν|2 − 2ν∗μ)(1 − exp(−2κt))

2

]
× |μe−κt 〉〈νe−κt |. (A3)

3. Atom-field interaction with spontaneous emission
and cavity dissipation

The density matrix ρ̂(t) for an atom-field state can be
considered in a (2 × ∞ )-dimensional space, since we assume
a two-level atom. It is possible to decompose the master
equation [Eq. (19)] in {|e〉,|g〉} basis with the density matrix
elements ρ̂C,ij (t) = 〈i|ρ̂(t)|j 〉. We then obtain equations

d

dt
ρ̂C,ee = L̂eeρ̂C,ee − 2γ ρ̂C,ee

= −iχ [â†â,ρ̂C,ee] + κ(2âρ̂C,eeâ
† − â†âρ̂C,ee

−ρ̂C,eeâ
†â) − 2γ ρ̂C,ee, (A4)

d

dt
ρ̂C,gg = L̂ggρ̂C,gg + 2γ ρ̂C,ee

= iχ [â†â,ρ̂C,gg] + κ(2âρ̂C,ggâ
† − â†âρ̂C,gg

−ρ̂C,ggâ
†â) + 2γ ρ̂C,ee, (A5)

d

dt
ρ̂C,eg = L̂egρ̂C,eg − iχρ̂C,eg − γ ρ̂C,eg

= −iχ (â†â + 1)ρ̂C,eg − iχρ̂C,egâ
†â (A6)

+κ(2âρ̂C,egâ
† − â†âρ̂C,eg − ρ̂C,egâ

†â) − γ ρ̂C,eg,

d

dt
ρ̂C,ge = L̂geρ̂C,ge + iχρ̂C,ge − γ ρ̂C,ge

= iχρ̂C,ge(â†â + 1) + iχâ†âρ̂C,ge (A7)

+κ(2âρ̂C,geâ
† − â†âρ̂C,ge − ρ̂C,geâ

†â) − γ ρ̂C,ge.

We define the following superoperators for simplicity: M̂ =
â†â·, P̂ = ·â†â, and Ĵ = â · â† . Then L̂ee, L̂gg , L̂eg , and L̂ge

can be expressed as

L̂ee ≡ 2κĴ − rM̂ − r∗P̂, (A8a)

L̂eg ≡ 2κĴ − rM̂ − rP̂, (A8b)

where r ≡ κ + iχ and L̂gg and L̂ge are obtained by substitut-
ing χ with −χ in L̂ee, and L̂eg , respectively. A master equation
of the form dρ̂/dt = L̂ρ̂ + cρ̂, where c is a constant and L̂ is
a superoperator, can be solved with a usual exponential form
exp [(L̂ + c)t]ρ̂.

a. Solution for ρ̂C,ee

The solution of Eq. (A4) is

ρ̂C,ee(t) = exp[(L̂ee − 2γ )t]ρ̂C,ee(0) = e−2γ t eL̂eet ρ̂C,ee(0),

(A9)

where the factorization can be done by the similarity transfor-
mation [57]. Now we need to factorize eL̂eet . This is solved
with an ansatz (a technique can be found in Ref. [56])

ρ̂C,ee(t) = exp[−2γ t] exp[(−rM̂ − r∗P̂)t]

× exp[f (t)2κĴ ]ρ̂C,ee(0), (A10)

where f (t) = (1 − e−2κt )/(2κ). For an initial state ρ̂C,ee(0) =
|μ〉〈ν|,
ρ̂C,ee(t) = exp[−2γ t + �(κ,0,μ,ν,t)]|μe−rt 〉〈νe−rt | (A11)

with

�(κ,χ,μ,ν,t) : = −1

2
(|ν|2 + |μ|2)(1 − e−2κt )

+κ

r
(1 − e−2rt )ν∗μ. (A12)

b. Solution for ρ̂C,gg

In order to solve Eq. (A5), we first assume γ = 0.
A homogeneous solution is obtained from Eq. (A11) by
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substituting χ with −χ as

ρ̂h
C,gg(t) = exp[�(κ,0,μ,ν,t)]|μe−r∗t 〉〈νe−r∗t |. (A13)

It is then obvious to see that the general solution ρ̂C,gg(t) with
γ 
= 0 is

ρ̂C,gg(t) = ρ̂h
C,gg(t) + 2γ

∫ t

0
dt ′ρ̂C,ee(t ′)

= exp[�(κ,0,μ,ν,t)]|μe−r∗t 〉〈νe−r∗t |
(A14)

+2γ

∫ t

0
dt ′ exp[−2γ t ′

+�(κ,0,μ,ν,t ′)]|μe−rt ′ 〉〈νe−rt ′ |.

c. Solution for ρ̂C,ge

The solution of Eq. (A7) is

ρ̂C,ge(t) = exp[(L̂ge + iχ − γ )t]ρ̂C,ge(0)

= e(iχ−γ )t eL̂get ρ̂C,ge(0). (A15)

Factoring eL̂eg t with an ansatz

ρ̂C,ge(t) = exp[(iχ − γ )t] exp[(−rM̂ − r∗P̂)t]

× exp[g(t)2κĴ ]ρ̂C,ee(0), (A16)

where g(t) = (1 − e−2r∗t )/(2r∗). For ρ̂C,ge(0) = |μ〉〈ν|,
ρ̂C,ge(t)=exp[(iχ − γ )t+�(κ, − χ,μ,ν,t)]|μe−r∗t 〉〈νe−rt |.

(A17)

d. Solution for ρ̂C,eg

The solution of Eq. (A6) is obtained from Eq. (A17) by
substituting χ with −χ as

ρ̂C,eg(t)=exp[(−iχ − γ )t+�(κ,χ,μ,ν,t)]|μe−rt 〉〈νe−r∗t |.
(A18)

APPENDIX B: DERIVATION OF THE DENSITY MATRICES
FOR ATOM-FIELD ENTANGLEMENT AND THE

CORRELATION FUNCTION

1. Atom-field entanglement generated under decoherence effects

First, atom A initially prepared in |e〉A undergoes the
spontaneous emission for the time t1. After applying the first
Ramsey pulse, RA = D̂A(−iπ/4), explained in Sec. IV, atom
A again undergoes the spontaneous emission for time t2. Using
Eqs. (A2) again, it becomes

ŜA(γ0,t2)[D̂A(−iπ/4)|{ŜA(γ0,t1)[(|e〉〈e|)A]}D̂†
A(−iπ/4)]

=
(

1
2e−2γ0t2

(− i
2 + ie−2γ0t1

)
e−γ0t2(

i
2 − ie−2γ0t1

)
e−γ0t2

(
1 − 1

2e−2γ0t2
) )

. (B1)

Then atom A interacts with the cavity field C prepared in state
|iα〉C . Using Eqs. (A11), (A14), (A17), and (A18), we find
the state after the interaction time t3 as ρ̂

(3)
AC with its matrix

elements:

ρ̂
(3)
AC,ee = 1

2
e−2γ0t2−2γct3 |iαe−rt3〉〈iαe−rt3 |, (B2a)

ρ̂
(3)
AC,eg =

(
− i

2
+ ie−2γ0t1

)
exp[−γ0t2 + (−iχ − γc)t3

+�(κ,χ,α,α,t3)]|iαe−rt3〉〈iαe−r∗t3 |, (B2b)

ρ̂
(3)
AC,ge =

(
i

2
− ie−2γ0t1

)
exp[−γ0t2 + (iχ − γc)t3

+�(κ, − χ,α,α,t3)]|iαe−r∗t3〉〈iαe−rt3 |, (B2c)

ρ̂
(3)
AC,gg =

(
1 − 1

2
e−2γ0t2

)
|iαe−r∗t3〉〈iαe−r∗t3 |

+ 2γc

∫ t3

0
dt

1

2
e−2γ0t2−2γct |iαe−rt 〉〈iαe−rt |. (B2d)

2. Atom-field entanglement after traveling for
the spacelike separation

We now derive the total density matrix right before D̂†
C(β) is

applied. The state ρ̂
(3)
AC undergoes spontaneous emission inside

the cylindrical cavity and dissipation inside the cavity field C.
The calculation can be done using the results in Sec. A3 with
χ = 0. The state then becomes ρ̂

(4)
AC , where

ρ̂
(4)
AC,ee = 1

2
e−2γ0t2−2γct3−2γ ′t4 |iαe−rt3−κt4〉〈iαe−rt3−κt4 |, (B3a)

ρ̂
(4)
AC,eg =

(
− i

2
+ ie−2γ0t1

)
exp[−γ0t2 + (−iχ − γc)t3 − γ ′t4

+�(κ,χ,α,α,t3) + �(κ,0,αe−rt3 ,αe−r∗t3 ,t4)]

|iαe−rt3−κt4〉〈iαe−r∗t3−κt4 |, (B3b)

ρ̂
(4)
AC,ge =

(
i

2
− ie−2γ0t1

)
exp[−γ t2 + (iχ − γc)t3 − γ ′t4

+�(κ, − χ,α,α,t3) + �(κ,0,αe−r∗t3 ,αe−rt3 ,t4)]

|iαe−r∗t3−κt4〉〈iαe−rt3−κt4 |, (B3c)

ρ̂
(4)
AC,gg =

(
1 − 1

2
e−2γ0t2

)
|iαe−r∗t3−κt4〉〈iαe−r∗t3−κt4 |

+ 2γc

∫ t3

0
dt

1

2
e−2γ0t2−2γct |iαe−rt−κt4〉〈iαe−rt−κt4 |

+ 2γ ′
∫ t4

0
dt

1

2
e−2γ0t2−2γct3−2γ ′t |iαe−rt3−κt 〉

× 〈iαe−rt3−κt |, (B3d)

and here the subscripts are consistent with the previous ones.

3. Effects with atom B for indirect measurement

After applying the displacement operation D̂†
C(β), the

total state becomes ρ̂
β

AC = D̂†
C(β)ρ̂l

ACD̂C(β). Now, the probe
atom B, which is in the same state as that of atom A in
Eq. (B1), goes into the cavity field of state ρ̂

β

AC . The atom-field
interaction HI with the coupling constant χ occurs between
atom B and field C for time t3. When solving the master
equation, it is convenient if one notes that the field-part of
state ρ̂

β

AC can be expressed by coherent-state dyadics such
as |μ〉〈ν|. If the component of the cavity field, initially
prepared as |μ〉〈ν|, interacts with an atomic state (B1) for
time t3, the resulting density operator element is obtained as
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�̂BC(μ,ν,t3) with

�̂BC,ee(μ,ν,t3) = 1

2
e−2γ0t2−2γct3+�(κ,0,μ,ν,t3)|μe−rt3〉〈νe−rt3 |, (B4a)

�̂BC,eg(μ,ν,t3) =
(

− i

2
+ ie−2γ0t1

)
exp[−γ0t2 + (−iχ − γc)t3 + �(κ,χ,μ,ν,t3)]|μe−rt3〉〈νe−r∗t3 |, (B4b)

�̂BC,ge(μ,ν,t3) =
(

i

2
− ie−2γ0t1

)
exp[−γ0t2 + (iχ − γc)t3 + �(κ, − χ,μ,ν,t3)]|μe−r∗t3〉〈νe−rt3 |, (B4c)

�̂BC,gg(μ,ν,t3) =
(

1 − 1

2
e−2γ0t2

)
e�(κ,0,μ,ν,t3)|μe−r∗t3〉〈νe−r∗t3 | + 2γc

∫ t3

0
dt

1

2
e−2γ0t2−2γct+�(κ,0,μ,ν,t)|μe−rt 〉〈νe−rt |. (B4d)

We used Eqs. (A11), (A14), (A17), and (A18) again to find Eqs. (B4a)–(B4d). Therefore, ρ̂
β

AC interacts with atom B and evolves
to

ρ̂ABC = (|e〉〈e|)A ⊗ ρ̂BC,ee + (|e〉〈g|)A ⊗ ρ̂BC,eg + (|g〉〈e|)A ⊗ ρ̂BC,ge + (|g〉〈g|)A ⊗ ρ̂BC,gg, (B5)

where

ρ̂BC,ee = 1

2
e−2γ0t2−2γct3−2γ ′(t4+t3)�̂BC(iαe−rt3−κt4 − β,iαe−rt3−κt4 − β,t3), (B6a)

ρ̂BC,eg =
(

− i

2
+ ie−2γ0t1

)
exp[−γ0t2 + (−iχ − γc)t3 − γ ′(t4 + t3) + �(κ,χ,α,α,t3) + �(κ,0,αe−rt3 ,αe−r∗t3 ,t4)

− 2ie−κ(t4+t3) sin(χt3)Im(α∗β)]�̂BC(iαe−rt3−κt4 − β,iαe−r∗t3−κt4 − β,t3), (B6b)

ρ̂BC,ge =
(

i

2
− ie−2γ0t1

)
exp[−γ0t2 + (iχ − γc)t3 − γ ′(t4 + t3) + �(κ, − χ,α,α,t3) + �(κ,0,αe−r∗t3 ,αe−rt3 ,t4)

+ 2ie−κ(t4+t3) sin(χt3)Im(α∗β)]�̂BC(iαe−r∗t3−κt4 − β,iαe−rt3−κt4 − β,t3), (B6c)

ρ̂BC,gg =
(

1 − 1

2
e−2γ0t2

)
�̂BC(iαe−r∗t3−κt4 − β,iαe−r∗t3−κt4 − β,t3)

+ 2γc

∫ t3

0
dt

1

2
e−2γ0t2−2γct �̂BC(iαe−rt−κt4 − β,iαe−rt−κt4 − β,t3) + 2γ ′

∫ t4

0
dt

1

2
e−2γ0t2−2γct3−2γ ′t �̂BC

× (iαe−rt3−κt − β,iαe−rt3−κt − β,t3) + 1

2
e−2γ0t2−2γct3−2γ ′t4�̂BC(iαe−rt3−κt4 − β,iαe−rt3−κt4 − β,t3)(1 − e−2γ ′t3 ).

(B6d)

Spontaneous emissions of atom A and B that may occur after this point shall be taken into account when we derive the correlation
function. Since the field state is not considered any more from this point before the final measurements, the cavity dissipation
can be ignored. By tracing out the cavity field, we get

ρ̂AB = TrCρ̂ABC =
∑

i,j=e,g

(|i〉〈j |)A ⊗ σ̂B,ij , (B7)

where

σ̂B,ee = TrCρ̂BC,ee = 1

2
e−2γ0t2−2γct3−2γ ′(t4+t3)

�̂B(iαe−rt3−κt4 − β,iαe−rt3−κt4 − β,t3), (B8a)

σ̂B,eg =
(

− i

2
+ ie−2γ0t1

)
exp[−γ0t2 + (−iχ − γc)t3 − γ ′(t4 + t3) + �(κ,χ,α,α,t3) + �(κ,0,αe−rt3 ,αe−r∗t3 ,t4)

− 2ie−κ(t4+t3) sin(χt3)Im(α∗β)]�̂B(iαe−rt3−κt4 − β,iαe−r∗t3−κt4 − β,t3), (B8b)

σ̂B,ge =
(

i

2
− ie−2γ0t1

)
exp[−γ0t2 + (iχ − γc)t3 − γ ′(t4 + t3) + �(κ, − χ,α,α,t3) + �(κ,0,αe−r∗t3 ,αe−rt3 ,t4)

+ 2ie−κ(t4+t3) sin(χt3)Im(α∗β)]�̂B(iαe−r∗t3−κt4 − β,iαe−rt3−κt4 − β,t3), (B8c)

σ̂B,gg =
(

1 − 1

2
e−2γ0t2

)
�̂B(iαe−r∗t3−κt4 − β,iαe−r∗t3−κt4 − β,t3) + 2γc

∫ t3

0
dt

1

2
e−2γ0t2−2γct �̂B(iαe−rt−κt4 − β,iαe−rt−κt4 − β,t3)

+ 2γ ′
∫ t4

0
dt

1

2
e−2γ0t2−2γct3−2γ ′t

�̂B(iαe−rt3−κt − β,iαe−rt3−κt − β,t3)

+ 1

2
e−2γ0t2−2γct3−2γ ′t4�̂B(iαe−rt3−κt4 − β,iαe−rt3−κt4 − β,t3)(1 − e−2γ ′t3 ), (B8d)
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and operator �̂B(μ,ν,t3) = TrC�̂BC(μ,ν,t3) is determined as

�B,ee(μ,ν,t3) = 1

2
e−2γ0t2−2γct3+�(κ,0,μ,ν,t3)− 1

2 (|μ|2+|ν|2−2μν∗) exp(−2κt3), (B9a)

�B,eg(μ,ν,t3) =
(

− i

2
+ ie−2γ0t1

)
exp[−γ0t2 + (−iχ − γc)t3 + �(κ,χ,μ,ν,t3) − 1

2
(|μ|2 + |ν|2 − 2μν∗e−2iχt3 )e−2κt3 ],

(B9b)

�B,ge(μ,ν,t3) =
(

i

2
− ie−2γ0t1

)
exp[−γ0t2 + (iχ − γc)t3 + �(κ, − χ,μ,ν,t3) − 1

2
(|μ|2 + |ν|2 − 2μν∗e2iχt3 )e−2κt3 ],

(B9c)

�B,gg(μ,ν,t3) =
(

1 − 1

2
e−2γ t2

)
e�(κ,0,μ,ν,t3)−1

2 (|μ|2+|ν|2−2μν∗) exp(−2κt3) + 2γc

∫ t3

0
dt

1

2
e−2γ0t2−2γct+�(κ,0,μ,ν,t)− 1

2 (|μ|2+|ν|2−2μν∗) exp(−2κt).

(B9d)

4. Decoherence right before final measurements and the correlation function

We now consider the last measurement process for both parties. Atom A experiences spontaneous emission for time t5 − t3 with
rate γ ′, and then atomic displacement operation D̂

†
A(−e−iφπ/4) is applied. After the displacement operation, atom A evolves

again under the spontaneous emission for time t1 with rate γ0. We define superoperator X̂ to describe this process as

X̂A(γ ′,γ0,t5 − t3,t1,φ)[ρ̂A] = ŜA(γ0,t1)[D̂†
A(−e−iφπ/4){ŜA(γ ′,t5 − t3)[ρ̂A]}D̂A(−e−iφπ/4)]. (B10)

Atom B undergoes spontaneous emission for time t2 with rate γ0, and displacement operation D̂
†
B(−π/4) is applied. It then

experiences spontaneous emission for time t1 with rate γ0 just before the final measurement. This process can be expressed as

X̂B(γ0,γ0,t2,t1,0)[ρ̂B] = ŜB(γ0,t1)[D̂†
B(−π/4){ŜB(γ0,t2)[ρ̂B]}D̂B(−π/4)]. (B11)

The final density operator used to obtain the correlation function is then obtained using state ρ̂AB in Eq. (B7) with X̂A and X̂B as

ρ̂final
AB = X̂A(γ ′,γ0,t5 − t3,t1,φ) ⊗ X̂B(γ0,γ0,t2,t1,0)[ρ̂AB]. (B12)

The correlation function is obtained as the expectation value of dichotomic measurements (4) performed by both the parties:

E(φ,β,t1,t2,t3,t4,t5)

=Tr
[
ρ̂final

AB �̂A ⊗�̂B

] = 1

2
e−2γ0t2−2γct3−2γ ′t4 (e−2γ0t1 − 1)(1 − e−2γ ′t3 + e−2γ ′t5 )ξB(�1,�1,t3) + ZξB(�1,�2,t3)+Z∗ξB(�2,�1,t3)

+ (e−2γ0t1 − 1){
(

1 − 1

2
e−2γ0t2

)
ξB(�2,�2,t3) + 2γc

∫ t3

0
dt

1

2
e−2γ0t2−2γct ξB(iαe−rt−κt4 − β,iαe−rt−κt4 − β,t3)

+ 2γ ′
∫ t4

0
dt

1

2
e−2γ0t2−2γct3−2γ ′t ξB(iαe−rt3−κt − β,iαe−rt3−κt − β,t3)}, (B13)

where

ξB(μ,ν,t3) = [�B,ee(μ,ν,t3) + �B,gg(μ,ν,t3)](e−2γ0t1 − 1) + [�B,eg(μ,ν,t3) + �B,ge(μ,ν,t3)]e−γ0t5−2γ0t1 ,
(B14)

Z =
(

− i

2
+ ie−2γ0t1

)
e−γ0(t2+2t1)+(−iχ−γc)t3−γ ′(t4+t5)+�(κ,χ,α,α,t3)+�(κ,0,αe−rt3 ,αe−r∗ t3 ,t4)−2ie−κ(t4+t3) sin(χt3)Im(α∗β)+iφ,

�1 = iαe−rt3−κt4 − β and �2 = iαe−r∗t3−κt4 − β. Using this correlation function, one can eventually construct the Bell function
using Eq. (3).

[1] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777
(1935).

[2] J. S. Bell, Physics 1, 195 (1964).
[3] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys.

Rev. Lett. 23, 880 (1969).

[4] S. J. Freedman and J. F. Clauser, Phys. Rev. Lett. 28, 938 (1972).
[5] A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 47, 460

(1981).
[6] W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, Phys. Rev. Lett.

81, 3563 (1998).

022120-11

http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1103/PhysRevLett.23.880
http://dx.doi.org/10.1103/PhysRevLett.23.880
http://dx.doi.org/10.1103/PhysRevLett.28.938
http://dx.doi.org/10.1103/PhysRevLett.47.460
http://dx.doi.org/10.1103/PhysRevLett.47.460
http://dx.doi.org/10.1103/PhysRevLett.81.3563
http://dx.doi.org/10.1103/PhysRevLett.81.3563


PARK, SAUNDERS, SHIN, AN, AND JEONG PHYSICAL REVIEW A 85, 022120 (2012)

[7] G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and
A. Zeilinger, Phys. Rev. Lett. 81, 5039 (1998).

[8] P. M. Pearle, Phys. Rev. D 2, 1418 (1970).
[9] M. A. Rowe, D. Kielpinski, V. Meyer, C. A. Sackett, W. M.

Itano, C. Monroe, and D. J. Wineland, Nature 409, 791 (2001).
[10] D. N. Matsukevich, P. Maunz, D. L. Moehring, S. Olmschenk,

and C. Monroe, Phys. Rev. Lett. 100, 150404 (2008).
[11] J. S. Bell, J. Phys. C 2, 41 (1981).
[12] M. S. Kim and J. Lee, Phys. Rev. A 61, 042102 (2000).
[13] P. Milman, A. Auffeves, F. Yamaguchi, M. Brune, J. M.

Raimond, and S. Haroche, Eur. Phys. J. D 32, 233 (2005).
[14] C. Simon and W. T. M. Irvine, Phys. Rev. Lett. 91, 110405

(2003).
[15] J. Volz, M. Weber, D. Schlenk, W. Rosenfeld, J. Vrana,

K. Saucke, C. Kurtsiefer, and H. Weinfurter, Phys. Rev. Lett.
96, 030404 (2006).

[16] N. Brunner, N. Gisin, V. Scarani, and C. Simon, Phys. Rev. Lett.
98, 220403 (2007).

[17] N. Sangouard, J.-D. Bancal, N. Gisin, W. Rosenfeld, P. Sekatski,
M. Weber, and H. Weinfurter, Phys. Rev. A 84, 052122 (2011).

[18] N. Spagnolo, C. Vitelli, M. Paternostro, F. De Martini, and
F. Sciarrino, Phys. Rev. A 84, 032102 (2011).

[19] D. L. Moehring, M. J. Madsen, B. B. Blinov, and C. Monroe,
Phys. Rev. Lett. 93, 090410 (2004).
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