IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Disturbance-based measure of macroscopic coherence

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2017 New J. Phys. 19 043024
(http://iopscience.iop.org/1367-2630/19/4/043024)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 147.47.57.220
This content was downloaded on 21/04/2017 at 09:02

Please note that terms and conditions apply.

You may also be interested in:

An Introduction to the Formalism of Quantum Information with Continuous Variables: Quantum
information with continuous variables
C Navarrete-Benlloch

Measures and applications of quantum correlations
Gerardo Adesso, Thomas R Bromley and Marco Cianciaruso

Quantum entanglement for systems of identical bosons: I. General features
B J Dalton, J Goold, B M Garraway et al.

Quantum metrology from a quantum information science perspective
Géza Ta6th and lagoba Apellaniz

From quantum to classical: Schrédinger cats, entanglement, and decoherence
L Davidovich

Geometric measures of quantum correlations: characterization, quantification, and comparison by
distances and operations
W Roga, D Spehner and F Illuminati

Collective dynamics of multimode bosonic systems induced by weak quantum measurement
Gabriel Mazzucchi, Wojciech Kozlowski, Santiago F Caballero-Benitez et al.

Quantum measurement and uncertainty relations in photon polarization
Keiichi Edamatsu

Certifiability criterion for large-scale quantum systems
F Fréwis, M van den Nest and W Diir



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/19/4
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
http://iopscience.iop.org/book/978-1-6817-4405-6/chapter/bk978-1-6817-4405-6ch4
http://iopscience.iop.org/book/978-1-6817-4405-6/chapter/bk978-1-6817-4405-6ch4
http://iopscience.iop.org/article/10.1088/1751-8113/49/47/473001
http://iopscience.iop.org/article/10.1088/1402-4896/92/2/023004
http://iopscience.iop.org/article/10.1088/1751-8113/47/42/424006
http://iopscience.iop.org/article/10.1088/0031-8949/91/6/063013
http://iopscience.iop.org/article/10.1088/1751-8113/49/23/235301
http://iopscience.iop.org/article/10.1088/1751-8113/49/23/235301
http://iopscience.iop.org/article/10.1088/1367-2630/18/7/073017
http://iopscience.iop.org/article/10.1088/0031-8949/91/7/073001
http://iopscience.iop.org/article/10.1088/1367-2630/15/11/113011

10P Publishing

@ CrossMark

OPENACCESS

RECEIVED
22 August 2016

REVISED
5March 2017

ACCEPTED FOR PUBLICATION
24 March 2017

PUBLISHED
19 April 2017

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 3.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

New]. Phys. 19 (2017) 043024 hitps://doi.org/10.1088,/1367-2630 /aa68f5

H eutsche Physikalische Gesellscha Published in partnership
New journal Of PhYSlCS st M(I)DPG with: Deutsche Physikalische
IOP Institute of Physics | Gesellschaft and the Institute

The open access journal at the forefront of physics .
of Physics

PAPER
Disturbance-based measure of macroscopic coherence

Hyukjoon Kwon, Chae-Yeun Park, Kok Chuan Tan and Hyunseok Jeong

Center for Macroscopic Quantum Control, Department of Physics and Astronomy, Seoul National University, Seoul, 151-742, Republic of
Korea

E-mail: h.jeong37@gmail.com

Keywords: quantum coherence, quantum macroscopicity, coarse-grained measurement

Abstract

We propose a measure of macroscopic coherence based on the degree of disturbance caused by a
coarse-grained measurement. Based on our measure, we point out that recently proposed criteria of
macroscopic coherence may lead to inconsistent results when considering certain states such asa
product of microscopic superpositions. An inequality relation is proved that relates the Wigner—
Yanase—Dyson skew information and the measurement disturbance, providing arguments as to why
our approach is able to rule out such inconsistencies. We show that our measure can also quantify the
fragility of a quantum state to a certain type of decoherence. Our work provides a general framework
of quantifying macroscopic coherence from an operational point of view, based on the relationship
between the precision of the measurement and disturbance of the quantum state.

1. Introduction

Schrodinger’s cat paradox dramatically illustrates a macroscopic object being in a quantum superposition of two
macroscopically different states [1]. Although this famous thought experiment depicts an extreme example, the
existence of such superpositions and entanglement at macroscopic levels is not excluded by quantum theory.
Considerable experimental efforts have gone on to push the envelope by superposing ever larger quantum
systems [2—7]. There have also been attempts to characterize and quantify quantumness in a macroscopic sense
[8-23]. Several general measures for quantifying such quantum macroscopicity have been suggested in recent
studies [15—17]. However, those measures tend to operate within quite different contexts such as
distinguishability between component states with a finite measurement precision [14, 18], interference in the
phase space [15], usefulness for quantum metrology [16], and the minimal modification of quantum theory [17].

Meanwhile, a resource theory of quantum coherence has recently been proposed [24]. In [24], the amount of
quantum coherence could be quantified as a physical resource to achieve tasks beyond classical types of
resources. In this viewpoint, recent studies have discovered connections between quantum coherence and other
fields of resource theory, including quantum correlation [25-27], asymmetry [28—30], and quantum
thermodynamics [31-33]. Recently, an axiomatic approach towards macroscopic quantum coherence was
suggested [23] and several existing measures [15, 16, 19, 23, 34] were investigated based on it.

In this paper, we suggest a measure of macroscopic coherence based on the state disturbance induced by a
coarse-grained measurement. We show that the disturbance-based measure satisfies recently proposed criteria
of macroscopic coherence [23], but in some cases cannot yield consistent results without additional constraints.
This problem is overcome in our study by introducing coarse-graining of the measurement depending on the
system size. We prove an inequality which relates the Wigner—Yanase—Dyson skew information (and
consequently, the quantum Fisher information) and the state disturbance induced by coarse-grained
measurement, from which we argue that an appropriate limit to yield a consistent measure is the classical limit.
We further show that our concept of quantum macroscopicity corrsponds to the fragility of a quantum state
under a certain type of decoherence. Our operational viewpoint on quantum macroscopicity allows one to
effectively identify the quantum coherence between the macroscopically separated components of a
superposition. Our approach can be applied to both spin and bosonic systems, and we present several examples
thatlead to reasonable results.

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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2. Disturbance-based measure of macroscopic quantum coherence

2.1. Criteria of macroscopic quantum coherence

We first review some preliminary concepts regarding macroscopic quantum coherence. Let us consider a
measurement observable described by a hermitian operator A = 3° ;a; |i) (i]. The eigenstates of the observable
A define a natural orthonormal basis { | i) }, which can be used to quantify the amount of coherence in the
system. Previous measures of quantum coherence [24, 25] quantify the degree of coherence contained in the
quantum state with respect to the given basis { |i) }. However, these measures give the same value for every
superposition in the form of |i) + |j), without any regard for physical measurement outcomes represented by
components |i) and | j), which are a;and a; respectively. In other words, they did not consider how correctly | )
and | j) are discriminated by an actual measurement. In an attempt to quantify macroscopic quantum coherence
however, we should give some consideration to the outcomes of a physical measurement.

Recently, Yadin and Vedral proposed [23] a set of conditions that should be satisfied by a proper measure of
macroscopic coherence. In their proposed resource theory of macroscopic coherence, the free operation & is
characterized as completely positive trace-nonincreasing operations satisfying the condition £(p®) = £(p)®,
where p® = Yo aj=6 Pjj ) (jl. Under such free operations, coherence terms |7) { j| with different modes
6 = a; — a; cannot be mixed together, by which a physical distance of superposition |§| cannot be increased
freely, i.e. atransition from |0) + |1)to|0) + |N)is prohibited when a; = ay. This type of free operation has
been previously studied in the context of asymmetry in a quantum state [28—30]. With respect to this set of free
operations, the authors of [23] proposed that any reasonable measure of macroscopic quantum coherence
M (p) based on the resource theory should satisfy the following conditions:

(M1) M (p) = 0and M (p) = Oifandonlyif p = p©.
(M2a) Non-increasing under any trace-preserving free operation, M (£(p)) < M (p).

(M2b) Non-increasing under any selective free operation, >, p, M (E,(p)/p,) < M (p)for £ =3 &,
where p = Tr&,(p).

(M3) Convexity, M Q_; p;p;) < X2 p:M (D).
M4) M(li) + 1) > M (k) + [)if la; — aj| > lax — ajl.

Here, (M1) identifies free states which do not contain any macroscopic quantum coherence. (M2a) and
(M2b) are required in a sense that one cannot increase macroscopic quantum coherence freely (i.e. by free
operations), and often called weak and strong monotonicity conditions, respectively. The condition (M3)
guarantees that macroscopic quantum coherence does not increase by mixing quantum states. Finally,
condition (M4) is to quantify the macroscopic size of a superposition based on the distance between component
states in terms of the difference between corresponding eigenvalues. This additional condition (M4) restricts the
set of asymmetry monotones into a set of measures that discriminate macroscopic and microscopic
superpositions. In this sense, the resource theory of [23] may be understood as a type of an asymmetry (M1)—
(M3) in addition to a size factor (M4). Yadin and Vedral pointed out [23] that among two general measures of
quantum macroscopicity, one for bosonic systems [15] and the other for spin system pointed [16], only the latter
[16] based on the quantum Fisher information satisfies all the conditions (M1)-(M4). Known examples of
measures that satisfy all these conditions are the quantum Fisher information and the Wigner—Yanase—Dyson
skew information [23].

2.2.Macroscopic coherence and coarse-grained measurement

We say that macroscopic coherence is coherence of a quantum superposition between two macroscopically
distinct states. In other words, the component states of the superposition are supposed to yield two distinct
outcomes when a measurement on a macroscopic scale is performed. We may employ the concept of a coarse-
grained measurement [35-37] to describe such a macroscopic measurement. In order to construct a coarse-
grained measurement, we first define a smoothing function ¢ (x) = (V2m o)y texp[—(a; — x)? / (20%)], where
xisa continuous variable over the real line. A natural choice for the smoothing function g7 (x) is a Gaussian
distribution centered around measurement outcome a;. The standard deviation o determines the level of
precision of the measurement and therefore quantifies the amount of coarse graining of the measurement. A
coarse grained measurement is then defined to be the following set of Kraus operators:

Q7 =>2a7 @) i) (il. M
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One may interpret the above measurement as an interaction with the needle of a measuring apparatus that
returns a normal distribution about the position a; when the system is in the space projected by P, = |i) (i|. If
o — 0, the measurement process becomes projective, while an increasing o implies an increasingly imprecise
measurement process. One may verify that f_ O:C Q; f Q. dx = Iforany o > 0soitisindeed avalid positive-
operator valued measurement. In such a case, the post measurement state is given by

O, (p) = fj; dx(j; ﬁéxﬂ = Ysea e 0%/ ®9) h®) where A = {a; — a;} is a set of the spacing between the

eigenvalues of the observable A = Y. a; |i) (il.

2.3. Quantum state disturbance under coarse-grained measurement
There have been studies on quantifiers of the size of a superposition based on the distinguishability between two
components states with a finite measurement precision [14, 18, 38]. Reference [ 18] suggested a measure of the
size of macroscopic superpositions by quantifying the amount of noise that can be tolerated by a coarse-grained
photon number measurement. Applications of these measures, however, are limited only to pure states and it is
required to choose a specific decomposition (such as |A) + |B)) that represents the superposition. Here, we
show that the quantum state disturbance caused by a coarse-grained measurement naturally leads to measures of
macroscopic coherence that are applicable to arbitrary forms of states and that satisfy all conditions (M1)—(M4).

When one performs a non-selective projective (i.e. precise) measurement on the state with the given
measurement basis set, all coherence terms between eigenstates of the different measurement outcomes will
vanish. However, when a coarse-grained measurement is performed, certain coherence terms may survive
depending on the precision of the measurement. It is therefore reasonable to expect that at a certain level of the
measurement precision, only macroscopic coherence will be disturbed by the measurement process. Towards
this end, we propose the disturbance of the quantum state induced by the coarse grained measurement process
as a natural measure of macroscopic quantum coherence.

In order to quantify quantum macroscopicity by quantum state disturbance, we will employ distance
measures D (p, 7) between quantum states p and 7 that satisfy the following set of conditions.

(D1) D(p, 7) = 0, where the equalityis saturated ifand onlyif p = 7
(D2) Unitary invariance: D([A]ﬁUT, [AJHA]T) =D(p, 7).

(D3a) Contractivity under a completely positive trace-preservingmap £, D(p, 7) = D(E(p), £(7)). Note
that £ is not necessarily a free operation.)

(D3b) D(p, ) =2 X p, D&MD) /D, Ea(T)/p,)swhen p = TrE,(p) = TrEy(6)and Y, €, = €. (Note that
&, is not necessarily a free operation.)

(D4) Jointconvexity: D (32, p; oy, >-i %) < X p:D (D 7).

Remarkably, despite starting from considerably different physical arguments, the following theorem shows
that the measurement disturbance satisfies the set of conditions proposed by Yadin and Vedral [23].

Theorem 1 (Disturbance-based measure of macroscopic quantum coherence). For any coarse-grained
measurement process D, with o > 0,

M, (p) = D(p, (D)) 2
satisfies (M1)—(M4) when the distance measure D (p, 7) satisfies (D1)—(D4).

Details and proofs can be found in the appendix. Theorem 1 allows us to define a new family of macroscopic
quantum coherence measures parametrized by the measurement precision o. In the special case of ¢ = 0, this
type of measure becomes a measure of coherence with respect to the eigenbasis { |i) } of the observable,
suggested in [39], but does not satisty (M4) anymore. The Bures distance D (p, 7) = 2 — 2,/ F(p, 7) defined

in terms of the fidelity between quantum states F(p, 7) = [Try/ \/5 %\/5 > and the quantum relative entropy
defined by S (p||7) = TrpInp — Trp In# are good examples satisfying all the conditions (D1)—(D4). For the
rest of the paper, we focus on the the measure based on the Bures distance, Mf (p) = Dg(p, D, (p)).

However, we observe that the disturbance-based measure M, (p) with certain values of o maylead to
unreasonable conclusions even when it satisfies all the conditions in [23]. The following example shows that a
product of microscopic superpositions has a larger value of M,, than the Greenberger—Horne—Zeilinger( GHZ)-
state when o is sufficiently small. This is contrary to our understanding and previous results [ 15, 16, 22] that the
latter state is clearly in a macroscopic superposition while the former is not.

3
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Figure 1. Disturbance-based coherence M for measuring total magnetization of N spin-1,/2 system with N = 256. A product state
(dotted—dashed line), a GHZ-state (double-dotted—dashed line), and 7 /2-rotated Dicke states (solid lines) are investigated. Upper
line on rotated Dicke states (shaded region) refers to k = N /2, while lower line refers to k = 1. Dashed lines refer to the bound given
by (4).

Consider a magnetization measurement on a system of N spin-1/2 particles, of the same type studied by
Poulin [35]. The measurement is defined by a Hermitian operator M = Zfi ) §9 where s® := 5, /2 and 6, is the
standard Pauli Z operator. The observable M represents a collective measurement of the overall spins rather
than addressing each individual spin. We compare the values of quantum macroscopicity measure M (p)
between two different quantum states, a product state ﬁ;\r = |\I/§r ) <\I/§r | with |‘I’£] ) = (cosf |0) + sin@ [1))@N
and the GHZ-state P, = W) (Wopz| with [T8,) = 271/2(J0)*N + [1)®N). The state ﬁPN isa product of
microscopic superpositions (between |0) and | 1)) and does not contain long range coherence between the spins
in the system. Moreover, f)pN is akind of a spin coherent state and its classicality has been studied in [36, 40]. On
the other hand, ﬁé\]HZ could be a typical model of Schrédinger’s cat state that two components of the
superposition give maximally different outcomes (all spin up, all spin down), leading to a large variance for the
observable M. Also it contains multipartite quantum correlation between the spins in the system [41].

In order to compare the quantum macroscpicity M2 (p), we first evaluate the fidelity between the pre- and
post-measurement states. The fidelity for the product state ﬁ}f\[ is given by
F (ﬁ;\’ , B, (ﬁé\’ )) ~ (1 + N sin?(26) /(8c2))~'/? using the approximation of the binomial distribution to the
normal distribution for N >> 1. On the other hand, in the case of the GHZ-state ﬁGNHZ, we have
]:(ﬁGNHZ, D, (Do) = 2711 + exp [—Nz/(Saz) 1). Note that for small enough values of o < 1, M,, (ﬁpN) tends
to the maximum value of 2 for the product state, while M,, ( ﬁ(]}\]HZ) is2 — /2 ~ 0.586 for the GHZ state (see
figure 1). This suggests that an accumulation (i.e., direct product) of microscopic superposition is more
macroscopically quantum than a pure superposition of two macroscopically distinct states. The result clearly
demonstrates that the conditions proposed in [23] are not sufficient to prescribe a completely consistent
measure of macroscopic coherence.

3. Quantifying macroscopic coherence

3.1. Quantum state disturbance and macroscopic coherence
In order to overcome the issues described in the previous section, we revisit to the basic premise of macroscopic
quantumness. As far back as Schrédinger [1], a system is said to be macroscopic quantum when each state
constructing superposition is distinguished directly by a classical measurement. In metrology, it is well known
that the limit of a classical measurement is given by o oc /N for N-particle systems, and quantum resources are
necessary to achieve higher efficiencies [42, 43]. Previous studies of coarse-grained measurement similarly
argued that the condition o >> /N allows macroscopic observables to be considered classical [35, 36].

The following theorem relating our disturbance-based measure M2 () to the Wigner—Yanase—Dyson skew
information Iy (p, A) = (—1 / 2)Tr [\/5 , A)? further reinforces our argument.

Theorem 2. Coarse-grained measurement disturbance M2 (p) is lower bounded by Wigner—Yanase~Dyson skew
information Ly (p, A),

5 _Iw(pA)
M;(p) <21l —e 402 | 3)
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For a pure state |1), we have

Var)y) (A)
M£<|w>)<z[1—e i ] @

where Var,y (A) = (| A |¢)) — (| A |12 is thevariance of the observable A, which isidentical to
Ly (|1h) (], A) for a pure state.

The above inequality reflects the intuition that the more precise the measurements and the more coherence
present within the system, the more the measurement will disturb the quantum state.

A previous study [16] argued that scaling of the quantum Fisher information with the number of particles N
characterizes whether a N-particle system is macroscopically quantum. Moreover, the Wigner—Yanase—Dyson
skew information is a closely related with the quantum Fisher information due to the following relation [44]

4Ly (p, A) < I (D, A) < 8Ly (p, A), 5)

where the quantum Fisher information is given by I (p, A) = 25 = )2/()\1 + )| (A 1) |? for
eigendecompositionof p = Y, A; |¢;) (1;]. We then note that the inequality (3) relates our measure to the
previous suggested measure of quantum macroscopicity based on the quantum Fisher information [16].
Accordingto [16], quantum states with Iz (p, A) = O(NY) canbe interpreted as classical(or at least microscopic
quantum) while the states with I (9, A) = O (N?) may be considered macroscopic quantum.

It is worth mentioning that a similar inequality was recently derived in a separate study of macrorealism
based on the Leggett—Garg inequality [45] as

Ir (p,A)
F(p, ©,(p)) = Br =e 30> — erfc ﬂ (6)
VIF(p, A)

_Iw(pA)

while the inequality (3) can be expressed as \/ F(p, ®,(p)) = By = e «? . Wepoint out that the bounds Br
give negative values when I /0> > 37.806, which leads to the trivial bound Br < 0 < / F(p, ©,(p)), while
our bound By is positive for any Iyand 0. In the case of a pure state |1)), the bound given by (4) is always tighter
than the bound (6) given by the quantum Fisher information, since Ir (|9, A) = 4Var) (A). In the case of a
mixed state, the bound Brseems tighter than By, when o is large. However, in some regions of small o, By, could
be tighter than By. A detailed analysis with an example is presented in appendix C.

3.2. Examples in spin and bosonic systems
Theorem 2 naturally manifests itself in the disturbance-based measure. Provided the level of coarse graining is
chosentobe o oc +/N, astate with Iy (7, A) = O(N') will result in a measurement disturbance close to zero.
For example, the macroscopic coherence for a product of microscopic quantum states p“Y is close to zero
according to our measure, since the Wigner—Yanase—Dyson skew information scales with the order of O (N). In
contrast, a non-classical skew information Ly (p, A) = O(N?), for example in the case of a GHZ state, allows
the measure M2 (p) to reach its maximum value of 2 for N >> 1. This observation allows us to circumvent the
inconsistency observed in the previous section. We will therefore impose the classical limit o = +/N as the
appropriate level of coarse graining for our disturbance based measure.

Another example in the spin system is a rotated Dicke state given by ﬁf}xf) [N, k), where

IN, k) = (2])71/22}, P(0--- 01 --- 1))isasum overall all symmetric permutations P, and IQM, = et ¢
N-k k&

the rotation operator with Jo = Zfil(og) + iag,i)) and £ = fel?/2.Inthecaseof § = 7/2 and ¢ = 0, the

macroscopic coherence of the state depends on the excitation number k. Such a state becomes a product state

whenk = Qork = N.

Figure 1 compares the behavior of M between rotated Dicke, GHZ and product states for varying levels of
the coarse graining parameter 0. We also observe that at the classical limit of & = /N, rotated Dicke states with
excitation number k ~ N /2 result in higher levels of macroscopic coherence M? than the GHZ-state. This
property does not persist however, if we were to continue decreasing the amount of measurement precision (i.e.
increase o). For a sufficiently large o, the GHZ-state tends to have the highest level of macroscopic coherence
among all the states considered. Our disturbance-based measure appears to capture ideas from both the more
general quantum coherence measures given by [24] and the macroscopic coherence measures based on the
variance of the observable [15, 16, 19, 34] since it encodes information about how many states are currently in
superposition as well as how far apart these superposed states are with respect to the given measurement observable
and the measurement precision o.
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Figure 2. Disturbance-based coherence measure M? for quadrature measurement for bosonic system with the same mean particle

number 71 = 25. A Fock state (dotted—dashed line), a superposition of coherent states (double-dotted—dashed line), and a coherent
state (solid line) are investigated. Dashed lines refer to the bound given by (4).

We also apply the disturbance-based measure to bosonic systems described by the annihilation operator d
and the creation operator 4'. Since a bosonic system can contain many particles in a single mode, the system may
be considered macroscopic when the mean particle number 71 = (474) is large. In this case, the particle number
fi = a'a and the quadrature Xp = (7% + €%4") //2 are natural candidates for measurement observables.
We now consider the value of M with respect to an X-quadrature measurement X =@+ a"h/J2. Figure 2
shows the disturbance-based measure M2 for typical states of a bosonic system. Again, we see that for small
values of 0, a bosonic coherent state | ) contains non-trivial macroscopic quantumness, which are not in
agreement with our understanding. However, M? rapidly decreases with o and becomes essentially zero at the
imposed classical limit of o /&~ 1. This makes sense when we note that bosonic coherent states are the most
classical states among all pure states [46, 47] and the classical measurement is based on electric (or magnetic)
fields which are proportional to Xy. In the case of the X measurement for coherent states, the noise is given by
Var(X) = 1/2, while the signal is given by (X) ~ /7. Then the signal to noise ratio (X) / \Var(X) scales by
J7i which corresponds to the measuring of the magnetization M for the spin system with spin coherent states,
(M) / \Var(M) o +/N.Based on this, the noise corresponding to the bosonic system, o ~ +/Var(X) ~ 1,
would be a proper choice of the classical limit.

Wealso evaluate the values of M for a superposition of coherent states (SCSs) |a) + |—a/) and the Fock
state |#1). In the phase space, the distance between two bosonic coherent states, | ) and | — ), becomes greater
when amplitude o becomes larger. The two coherent states can then be distinguishable by a ‘classical-like’
measurement such as a homodyne detection with alarge degree of imprecision. Thus, a SCS for o >> 1is often
exemplified as a typical example of a macroscopic superposition and even called a Schrédinger cat state. It may
not be immediately clear whether Fock states |7) are macroscopic superpositions. However, in the coherent state
representation, a Fock state of n >> 1 can also be understood as a superposition of many coherent states where
the coherent states are far separate in the phase space. So, they may be possible candidates for macroscopic
superpositions when n > 1.

In comparison to coherent states, a SCS and the Fock state give non-trivial values of M? at the classical limit
of o (see figure 2). All these observations are compatible with the common expectation that coherent states are
classical, while SCS and the Fock states are considered macroscopically quantum.

3.3. Connection to a decoherence model

Decoherence in a particular basis can be regarded as a measurement performed by the environment [48]. Based
on this concept, we may consider a connection between the quantum macroscopicity measure in the present
work and the fragility of a quantum state by a certain type of decoherence. We show that a coarse-grained
measurement of observable A can be equivalently modeled by a decoherence process under linear coupling
between the system observable A and the environment operator - After time 1, the initial state of the system p,
evolves into

p(t) = Trge 84bet (p) @ 43)eieAbst, (7)

where 7 is the initial state of the environment and g is a coupling constant. By taking the eigenstates of p, to be
| p) with continuous variable p, we get

py=3"py" [ [dpeitns (pl 7 Ip>]- (8)

SeA
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o @)% .
Now we choose the environment state to have (p| 7 |p) oc e ##’ sothat p(t) = Yscp ﬁéb)e +* . In this case,

the state distance between the initial and final states D (p,, p(¢)), which indicates the fragility of the initial
quantum state under this kind of decoherence, is exactly the state disturbance M, (p,) caused by a coarse-
grained measurement for the corresponding value of o = 11/ (/2 gt).

For example, we suppose that the environment is in a thermal state 7z = e O / Zg, where Zp = TreOH:
and 8 = (kg T)~!is an inverse temperature. For simplicity, we further assume that the thermal bath is a single-

mode harmonic oscillator with Hamiltonian Hg = hw (&g ag + %) and the coupling with the system is given by

the momentum operator, p, = (dg — &,;f)/(\/fi). In this case, we have (p| 7 |q) o exp [—tanh(ﬂw/Z)ﬁé],
and tanh (Bw/2) / (g*t?) corresponds to 20 in the coarse-grained measurement. We then see that large values
of o correspond to short decoherence times, weak coupling and/or low bath temperatures. In other words, a
quantum state with a large value of M,, (p) for the classical limit of o is easily decohered by a thermal
environment.

4, Conclusion

We proposed a disturbance-based measure of macroscopic coherence through coarse grained-measurements.
Our argument stems from physical grounds that a precise measurement will affect all the coherence present in
the system, while a sufficiently imprecise measurement will affect only the portion of the coherence between
classically distinct states. We demonstrated that our disturbance-based measure satisfies a series of properties to
quantify macroscopic coherence laid out in [23]. In the process, we pointed out that conditions for macroscopic
coherence proposed in [23] is insufficient to yield consistent results without additional constraints. This
inconsistency can be overcome by fixing the level of coarse-graining to an appropriate classical limit. We also
demonstrated an inequality relating the measurement-induced disturbance and the Wigner—Yanase—Dyson
skew information and argued that this kind of classical limit is necessary to produce a reliable measure of
macroscopic coherence. Furthermore, we established the direct connection between the disturbance-based
quantum macorscopicity measure and the fragility of a quantum state under decoherence.

We emphasize that the proposed measure provides an operational point of view on macroscopic
quantumness that can be quantified by the degree of disturbance throughout the measurement of a given
imprecision. The imprecision of the measurement allows us to focus on the coherence between macroscopically
distinct states by blurring the interference below the measurement resolution. We can thus identify whether the
quantum state is in a macroscopic superposition by investigating the state disturbance throughout the
measurement only with a macroscopic resolution. As we have demonstrated for both spin and bosonic systems,
our approach is not limited to a specific quantum system but can be applied to arbitrary macroscopic
observables and quantum systems with large particle numbers. We expect that the viewpoint concerning the
state disturbance induced by coarse-grained measurement may lead to greater insights on macroscopic
quantum effects and coherence.
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Appendix A. Proof of theorem 1

In this section, we prove that for a distance measure satisfying (D1)-(D4), M, (p) = D (p, ,(p)) satisfies the
conditions (M1)-(M4). We first prove the following proposition:

Proposition 1. -coherence preserving operation € commutes with any coarse-grained measurement process ®, for
any state p, i.e.

(€0 ®) (D) = (B 0 (D). (A.D

Proof. By using the property of the free operation &,

7
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52
(E0@)(p) = e 87 E(DD)

seA
52
= > e 82E(D)®
ISPAN
= (@, 0 &)(). (A2)
O
We now prove for conditions (M1)—(M4).
Proof. (M1) Note that M,, (p) = D(p, ®,(p)) = Oifandonlyif p = &, (p). Thisis only achieved when &, is
given by a convex sum of projections B, = 3° a—n 11) (i], thus this condition can be achieved when p = p(©.
(M2a) By using proposition 1, we show that
My (E(p)) = D(EP); (Pr 0 E) (D))
= D(&(P), (E0 D) (D))
<D, 2(p))
=M, (p) (A.3)
for trace-preserving free operation £.
(M2b) Similarly, by using proposition 1 and the condition (D3b), we show that
> Mo (Ea(D) /D) = Y 0, D(Ea(D) /By B (Ea(D) /D))
= ZPQD (“/h(ﬁ) /Pa > ga(q)a (i))) /Pa)
< D, ©(p))
= M, (p), (A.4)

where Tr&,(®,(p)) = Trd®,(£.(p)) = Tré(p) = p,,since &, isatrace preserving map.
(M3) Convexity can be directly proven by using joint convexity of the distance mea-
sure,
Mo (2ip;p) = DCZipipp Qi pip)) = DO pipis 22 2,%6 (0) < 220, D (0 (D) = 22 pMo (D))
(M4) Now we prove that there is an ordering of M between two states |1/o) = (|i) + |j))/~/2 and
[11) = (k) + 1)) /~2,i.e. M(|hg)) > M (|201)) in the case of |a; — ajl > lax — a|. Note that we can always
choose the unitary operation U, which transforms the bases |k) — [i)and |/} — |j). Thenin { |i), |j) } basis, we

can write the states, p, = |¢g) (¢o| = %(1 }), D, (p,) = %(% K), Up, U = P> and

1 1
} {),where K = e @~ 4?/6") and | = e~(@—a)*/ B respectively. Since

la;i — ajl > lax — 4,0 <K<J< 1forany o > 0, then we can choose 0 < A\ = % < lsuchthat

A ~ AT 1
U(I)U(Pl)U = E(

U®,( ) U = AD, (py) + (I — X)p,. Then by the unitary invariance and joint convexity of the distance
measure D, we have

M (D) = D(py, 2:(py))
=DUp,U", U, (p)U")
=DMy + (1 — Ny AL, (By) + (1 — X)py)
S AD (P, 5(Pg)) + (1 = N D (Dgs Po)
= AD (g ©-(py))
< D (P> ©5(py))
= M (Dy)» (A.5)

which completes the proof. O

We also note that if a distance measure D (p, &) satisfies all conditions (D1)—-(D4) without the property
(D3Db), the macroscopicity measure M, (p) = D (p, ,(p)) based on D satisfies (M1)—(M4) except (M2b).

In the case of the Bures distance, Dg(p, &) = 2 — 2/ F(p, 0),(D1),(D2),(D3a), and (D4) can be easily
proven by using the properties of the fidelity [49]. We can also prove the condition (D3b) by follows.

8
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> 0D (Ea(P)/0yr Ea@) /) =2 0, (1 = JF(EalD) /s> Ea(0) /1))

=2|1 = ) JF(E(p), Ea(®)) |, (A.6)

by using \/ F(p/p, 5/p) = JF(p, &) /p.Inorder to complete the proof, we prove that

VF®, 0) <2 JF(EDP), E4(6)) when Y £, = £. Notethat £,(p) can be expressed using ancillary state
T:E(P) = Tl ® 1)U (D ® %) o' (@ ® I1,). Note that fidelity is non-decreasing under partial trace

\/ F(py 012) < \/ F(Tnp,y Tnbéip) and satisfies following properties for a set of projection operators {ﬁn}:
>on \/f(flnﬁf[n, 11,611, = \/]-'(an[nﬁf[,,, Znﬁn&fln) . Using these properties we can show that

S NFEL(D), Ea(d)) = \/ FUG U, U6 @m0 = JF(p 6),since fidelity is invariant under
unitary operations.

The conditions (D1)—(D4) for the relative entropy S (p||6) can be proved similarly. (D1), (D2), (D3a), and
(D4) directly comes from the elementary properties of relative entropy [49]. (D3b) can be proved by noting that
Y BSED /NELB) /D) = X, S(Ea(P)|IEa(6)). Then (D3b) can be proved a same argument above by

using the property Y-, S (1L, pIL[11,611,) = S(, L, pILII%, 11,511,

Appendix B. Proof of theorem 2

Proof. In order to prove the upper bound of Mf ) =2 —2JyF(p, ®,(p)),weshow the lower bound of the

fidelity | F(p, ®,(p)) . We first prove the inequality when the state is pure. Note that when one of the states are
pure, the fidelity is given by F(|¢) (¢|, &) = (¢| & |4). Then, we have for coarse-grained measurement
process,

F0) (@1, @, (1) (1)
= [ a1 Q7 Wyl Q7 1)

—Zexp[ Gi—a ]<¢| i) (i 1) (1 ) G 1)
[ Zi,jwi — a2l (] i) PI{] ) |2]
> exp| - .

s (B.1)

Note that | (1) i) |? is the probability of getting outcome a;, thus 3@ — aj V(o) )y Pl(] j) P = 2Varyy, (A),

then \F(p, %, () > exp[—Var, (4)/(802)].
For mixed states, we use the inequality \/ F(p, p’ Tr\/— \/7 which can be proved by using Araki—Lieb—

Thirring inequality [50]. We also note that for an unital operator set { K, ZnKn pKn =, K, \/; K,, by
operator Jenesn’s inequality [51]. Putting these inequalities together, we finally get

F(p, ann ﬁﬁ: ) > ZnTr\/E K, \/5 I%J . We also note that a coarse-grained measurement operator
{ Q; } = (X, 4’ () 1i)(i|}isaunital operator set. Then using previous results on the pure state, we get

JE5 &) > f Y TP OO
—Zexp[ - ]|(f>,]| (B.2)

Now we apply Jensen’s inequality in order to obtain the final result,

> @i~ a»ﬂ(ﬁ)ﬂ

80?2

Fp, ©,(p) = eXp[
| (A
= exp[ Tl :|, (B.3)

where Iy (D, A) = (— 1/2)Tr[\/5, AP = (1/2)21-’]» (a;i — a;)*|(/p);l* is the Wigner—Yanase—Dyson skew
information. O
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Figure C1. Comparison between the lower bounds Br (dotted—dashed line) and Byy (solid line) of the fidelity JF (dashedline) for the
decohered GHZ-state ﬁll\l withN = 100and I' = 0.85.

Appendix C. Comparison between the bound Brand By,

We compare two different lower bounds of the fidelity between pre- and post measurement states,
Ip(p.A) J2no I (p.A)

F(p, ®,(p)) = B here Br = e n.2 — erfq 45]and By = €~ w2 , tively. W
(P, ©;(P)) = Bpwywhere B = e = erc(m [45]and By = e 42 ,respectively. We

evaluate both the bounds for a decohered GHZ-state in a spin system given by
N 1
Pt = (10) {01 + IN) (N1 + T (10} (N] + IN)(0])), (C1)

where 0 < I' < 1.In this case, the quantum Fisher information and Wigner—Yanase—Dyson skew information
are given by I (ﬁlf\], A) = N2I?and Iy (ﬁFN, A) = NTZ(I — /1 — T'?), respectively. When the coarse-grain
parameter o is large, the second term of Brbecomes negligible and Brgives a tighter bound than By (note that
Iz < Ly for anyI'). On the other hand, if the coarse-grain parameter o is relatively small compared to Irand I,
the second term of Brhas a significant value while the first term becomes small. Thus, there is some value of &

where the two bounds, Brand Byy, meet as described in figure C1. When the state is pure (I' = 1), we can use the
B Var‘ ) (f\) N2

bound (4), and our bound given by \/ F(p, ®,(p)) = B=e" 2 = e x?isalwaystighter

han By = e n2 — erfc (22
than By = e ur? — erfc| 5~ ).
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