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We investigate how to experimentally detect a recently proposed measure to quantify macroscopic quantum super-
positions [Phys. Rev. Lett. 106, 220401 (2011)], namely, “macroscopic quantumness” Z. Schemes based on overlap
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1. INTRODUCTION

Macroscopic quantum states have provoked the imagination
of many physicists since the early days of quantum mechanics
[1]. Creation and detection of macroscopic quantum superpo-
sitions are difficult but interesting tasks. Efforts toward such
implementations have been made, for example, using atomic/
molecular systems [2,3], superconducting circuits [4,5], and
optical setups [6-8]. One very important issue in efforts to cre-
ate and detect a macroscopic superposition is to have a meas-
urable quantity that quantifies the degree of macroscopic
quantumness of a given state. Since the initial attempt by Leg-
gett [9,10], there have been various proposals and discussions
of such measures [11-25]. In particular, a measure that quan-
tifies the degree of macroscopic superposition for arbitrary
harmonic oscillator systems, including mixed states, was pro-
posed in [19]. This measure, which we will call “macroscopic
quantumness” (Z), can be straightforwardly calculated if the
density matrix of a state under consideration is known. How-
ever, this is generally not the case, and given the difficulties in
performing a quantum state tomography, it would be useful to
have an experimental method to measure directly the value of
Z. In this work, we investigate several schemes to detect 7
using overlap measurements, and discuss their experimental
feasibility.

This work is organized as follows. In Section 2, we briefly
review measure 7 as a general quantifier of macroscopic
quantum superpositions. We then discuss in Section 3 a gen-
eral method based on an overlap measurement to observe 7
experimentally, and explain two broad categories of overlap
measurements. The next two sections 4 and 5, describe each
method in detail for harmonic oscillator (continuous variable)
systems and two-level (qubit) systems. In Section 6, we inves-
tigate the effects of experimental imperfections, including
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coarse-graining and detection inefficiency. A summary with
some remarks is given in Section 7.

2. MACROSCOPIC QUANTUMNESS 7

The original motivation behind the proposal of 7 came from
the high-frequency oscillations in the Wigner functions for the
Schrodinger catlike states. The Wigner function that visualizes
a quantum state in the phase space can be calculated from the
characteristic function, which for a density operator p is de-
fined as

1(&) = Tr[pe@ -0, ¢))

where @ and @' are the bosonic annihilation and creation op-
erators, respectively. The Wigner function W(x,y) is defined
as the Fourier transform of the characteristic function [26]

1 )
Wy = // A8 dEr (6, Epe i) (@)

where the subscript r (7) denotes the real (imaginary) part of
&. The frequency of a Wigner-function component along the
real (imaginary) axis is &, (&;), and its complex amplitude
for a specific frequency & corresponds to y(&).

As a typical example, let us consider a superposition of two
coherent states (SCSs) [7,27-31]

[Wses) = N+(|(l) +|-a)), 3

where the amplitude «a is assumed to be real without loss of
generality and N, is the normalization factor. In the phase
space, its Wigner function displays interference fringes be-
tween two peaks at £« as shown in Fig. 1(a). Suppose that
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someone could generate a “larger” superposition state by in-
creasing the amplitude a, while the generation process makes
it partly lose interference between the two coherent states.
Such a mixed state should be represented in a more general
form as

Pses = Nrlla)(al + | - a)(-al + T(ja)(-al + [ - a){a])]. D

where 0 < |I'| < 1 and Ny is the normalization factor. If " = 1,
it becomes a pure SCS, whereas it is totally mixed when I" = 0.
Figure 1(b) presents an example of a partially mixed state
with I' = 0.46357 and larger amplitude a = 4.96. Now the
problem is to find a measure of macroscopic quantumness
that can account for the increase in “size” and decrease in
“quantumness” during this process.

First, we note that the “frequency” of the fringes (how
dense the fringes are) reflects the “effective size” of the super-
position, i.e., how far the component states separate in phase
space. Second, the “quantum coherence” (here, we mean the
degree of genuine superposition against its completely mixed
version in terms of the “pointer basis” [32]) relates to the mag-
nitude of the interference fringes. The point is thus how to
quantify both the “frequency” and “magnitude” of interference
fringes in the Wigner representation to quantify the “macro-
scopicness” and “quantumness” at the same time. One prom-
ising way is to take an integral [d2&(&2 + &2)|y(&)|%. This
integral indeed combines the required factors, “effective size”
and the “degree of quantum coherence,” in a single measure.
The formal definition of the measure 7;,, for an M-mode har-
monic oscillator system [19] is only slightly different:

| 2
Tuo(0) gy D Mol = W61t ) )
ml

where [d%¢ [d2¢) [d%&,--- [d%&y and -1 has been inserted
simply to make any coherent states or their product states (re-
gardless of their amplitudes) a reference with Z;, = 0.

As discussed in Ref. [33], the factor -1 in Eq. (5) may be
unnecessary as it causes Z to have negative values for some
mixed states [33,34]. If we remove the factor -1 from the def-
inition (for example, take [d2&(&2 + &)[y(&)|? as the defini-
tion for single-mode harmonic oscillator states), the
measure will always be non-negative and become zero only
for an extreme mixture ) % ; |n)(n|, where |n) is a number
state [33]. Since this change does not make an essential differ-
ence from the original version in Eq. (5), we stick to the origi-
nal definition in this work. We also note that the measure 7 is
invariant under the displacement operation [19] because it
simply shifts the Wigner function without changing its shape
in the phase space. Therefore, for example, the class of states
generated by applying the displacement operations on micro-
scopic entanglement [35-37] cannot have high values of 7.

Returning to the example of SCSs, Fig. 1(a) corresponds to
an SCS with a relatively small effective size but with the full
quantum coherence, while Fig. 1(b) corresponds to the larger
effective size with a partial coherence. Sensibly, the measure
Tho gives the same value (~5.29) for the two cases. The afore-
mentioned definition of Z can be applied to arbitrary states in
harmonic oscillator systems such as bosonic fields (quadra-
ture variables of light) and mechanical states with motional
degrees of freedoms.
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Fig. 1. Wigner functions of (a) pure superposition of coherent states
« |a) + | - a) with @ = 2.3, and (b) partially mixed superposition of
coherent states « |a){a| + | - a)(-a|] + T'(la){-a| + | - a){a]) with a =
4.96 and I" ~ 0.464. These two cases give the same value of “macro-
scopic quantumness” (Z,, ~ 5.29).

There is also an alternative definition in [19] that takes note
of fast decoherence rates of macroscopic superpositions [32].
Taking the purity decay rate as a measure of a macroscopic
superposition, a more general definition of 7 is

_1dP(p)
2 dr

I(p) = (6)
where P(p) = Tr(p?) is the purity of state p and 7=
(decayrate) x (time) is the dimensionless time. It is straight-
forward to show that 7 may also be represented as

Z(p) = -Tr[pL(p)], Q)

where L(p) = dp/dr is a Lindblad superoperator. Interest-
ingly, this seemingly unrelated definition of 7 is shown to
be identical to the definition given in Eq. (5) [19], if one takes
a well-known decoherence model,

M

L) =3 (s - goihin - yibinn|.  ®
which describes the decay (photon loss) mechanism for opti-
cal fields [26,38].

Following the definition in Eq. (6), instead of harmonic os-
cillator systems, one may also consider the degree of macro-
scopic quantumness for qubit states (N two-level systems
spanned in a 28" Hilbert space) such as spin-1/2 systems. As-
suming that dephasing dominates over the decay of multiqubit
systems, L(p) may be replaced with the dephasing model [39]

M
‘Cqb (/)) = Z &z.mp&z,m - P (9)
m=1

DO —

and Zy,(p) = -Tr[pLy, (p)]. In this work, we consider how to
measure the purity decay rate for both optical fields based on
Eq. (8) and qubit systems based on Eq. (9). In what follows,
we shall use notation 7 (p) without the subscripts used previ-
ously, as its meaning is obvious in the context.

3. DETECTING MACROSCOPIC
QUANTUMNESS T

A. General Scheme Using an Overlap Measurement and
Added Decoherence

Being a nonlinear functional of p, experimental detection of 7
seems to require a reconstruction of p, which becomes quickly
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intractable with increasing system size. There are, however,
ways to measure nonlinear functionals of a density matrix ex-
perimentally. In particular, given two copies of p, it is possible
to measure the purity of a quantum state [40—49]. This fact
allows one to measure Z by simply noting that it can be
written as the limit Az — 0 of

_P(p(a1) - P(p)

IA'[(/)) = AT ’

(10)

which is a measurable quantity, given a purity measurement
scheme and ways to induce small decoherence. The situation
is depicted in Fig. 2.

For optical fields, the decoherence caused by loss of pho-
tons can be induced simply by using a beam splitter of an ap-
propriate reflectivity because of the equivalence between the
two processes [50,51]. The dotted boxes in Fig. 2 can thus be
provided by beam splitters with an appropriate ratio deter-
mined by the decoherence time Az. For the dephasing of qubit
states, the method of decoherence may depend on how the
qubits are implemented. For example, in the case of polariza-
tion systems, random phases can be artificially added using
wave plates in a stochastic way to implement the decoherence
effects.

B. Direct Measurement and Controlled Swap Schemes
for Overlap Measurements

Taking for granted that decoherence can be induced control-
lably via the aforementioned methods, we discuss general
schemes to measure the purity. Known approaches are based
on a simple relationship for an overlap between two states, p,
and py,: Tr[Vp, ® py] = Trlp,ps], where V is the swap operator
defined by Vlyi)lws) = lwa)lw1) [40-46,49]. When p, =
Py = p, the overlap yields the purity, so we discuss overlap
measurements in order to keep the discussion more general.
Broadly speaking, the overlap measurement approaches can
be divided into two categories depicted in Fig. 3.

The first method, shown in Fig. 3(a), is to perform a direct
measurement of the unitary operator V [43,45,46,52], com-
posed of a unitary operation that mixes two input states
and subsequent detections. For the overlap between two
qubits, this is equivalent to a measurement of the antisymmet-
ric projector, which can be performed with a beam splitter
and photodetectors for polarization qubits [43]. The case
of two multiqubit states has been studied by Alves and
Jaksch [45] in an optical lattice setting, where two internal
states of the trapped cold atoms represent the qubit. The case
of harmonic oscillator states has been first addressed by
Pregnell [46], where the author considers “decomposing”
the swap operator into a unitary transformation and a mea-
surement. Very recently, Daley et al. rediscovered the method
independently and generalized it to arbitrary multipartite
states [52].

Overlap | —

Fig. 2. Measurement scheme for determining the macroscopic quan-
tumness Z for a density matrix p;,. The overlap is measured twice,
with and without induced decoherence.
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Fig. 3. Two schemes of an overlap measurement. (a) Direct mea-
surement of the swap operator using a unitary mixing and detections.
(b) Controlled-swap method where only a single detection is needed.
In addition to the detector and the swap gate ()), two Hadamard gates
(H) and a phase shifter (¢) are used.

The second method, shown in Fig. 3(b), is to perform a
controlled-swap (C-SWAP) operation, where the states are
swapped only if the control qubit is in one of the computa-
tional basis states (for example, the vertical polarization state
|V) for a single-photon polarization qubit). The scheme is sim-
ilar to the usual interferometer in that the qubit goes through
the Hadamard gate, a phase shifter, another Hadamard gate,
followed by a (visibility) measurement, but is different in that
after the phase shift, a controlled-SWAP operation is per-
formed. The visibility then corresponds to the overlap be-
tween p, and p, [40,41,44]. Advantages of this method are
(1) the detection is carried out only on the control qubit
and (2) it is easily generalized to an arbitrary unitary operation
other than the considered swap operation. A controlled uni-
tary operation can be performed with the help of prearranged
entangled states and linear optics elements [53].

4. DIRECT MEASUREMENT SCHEMES

We first discuss direct measurement schemes in detail for
n-partite states. When the system is composed of n funda-
mental units (in this work, we take a unit to be either a qubit
or a harmonic oscillator), the swap operator for two n—partite
states is simply

V=V @MWV ®@V3® - ®V,=®}_, Vs, 1D

where V), is a partial swap operator for the kth system. A
schematic illustration of direct measurement schemes for
n—partite states is given in Fig. 4. One unit from the first sys-
tem and a corresponding unit from the second goes through
appropriate unitary interaction and detection processes. The
unitary operation is of the beam-splitter type and, together
with detection, is repeated throughout all units. In this section,
we discuss these two processes in detail for harmonic oscil-
lator states and qubit states.

A. Harmonic Oscillator States

For the harmonic oscillator states, we give a brief review on
the method of direct measurements discussed in [46,52]. This
method can be viewed either as diagonalizing the swap oper-
ator V to decompose it into a unitary operation plus detection
[46], or mapping the symmetric and antisymmetric states into
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Fig. 4. Overlap measurement of n—partite states. On each site de-
noted 1,2, ...,n, one unit from each copy is mixed through a unitary
operation and appropriate measurements are performed. The unitary
operation denoted by BS is usually the beam splitter unitary or a vari-
ant of it. Dotted boxes denote basic units of detection.

the subspaces of even- and odd-numbered quanta in one mode
[562]. In this method, the unitary operation corresponds to
50:50 beam splitting whereas the detection corresponds to
the parity measurement performed on one of the beam splitter
outputs. Basically, the unitary operation maps the antisym-
metric part of the initial state into states with odd numbers
of excitations in the upper output port, and the symmetric
parts into states with even numbers of excitations. Because
the symmetric and antisymmetric states are eigenstates of the
SWAP operator with eigenvalues 1 and -1, respectively, the
parity measurement yields the expectation value of the SWAP
operator.

The unitary operation is generated by an interaction
Hamiltonian of the form

H = —iJ(a) ,ayp — 0 0i0). (12)

where k is the site index and subscripts a, b denote copies of
the density matrix. 50:50 beam splitting is obtained with
Jt = n/4, and the parity measurement should be performed
on the upper output port, i.e., the measurement operator is
(-1)™«. The situation is depicted in Fig. 5 for a single-site case.
For n—partite states, the required detection is simply the parity
of the total number of quanta in the upper modes of all sites,
ie., (—I)Z"", where 7, denotes the photon number in
the upper mode at site k.
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photon-number-resolving detector to date. This means that, us-
ing current technology, it would be difficult to measure 7 di-
rectly via this method for interesting (high-photon-number)
macroscopic harmonic oscillator states. We note, however,
that there is active ongoing research in the development of
photon-number-resolving detectors [31,54].

B. n-Qubit States

The generalization of the decomposition method for harmonic
oscillator states to multiqubit states is straightforward
and yields the following result, which, as far as we are aware,
has not been given elsewhere. The beam-splitter-like unitary is
generated by a Hamiltonian analogous to Eq. (12),

Hps=J(6, ®6_+6.®6,), 13)

performed for the duration J¢ = z/4, acting on each pair of
qubits. Operators 6, denote usual qubit-raising and qubit-
lowering operators. We note that the Hamiltonian is propor-
tional to 6, ® 6, + 6, ® 6, and thus realizable in various spin
systems. Due to the difference in commutation relationship
between bosonic operators a,a’ and spin operators o_, o,
there is a slight change in the measurement part. Instead of
the parity measurement on the first qubit, one has to measure
the projection onto the state |10}, i.e., the measurement oper-
ator is (~1)/D{1I®I0X0],

There exists an alternative method which is more suitable
for single-photon polarization qubits with horizontally
and vertically polarized single-photon states |H) and |V),
for example. In order to see how this method works, note that
the partial swap operator can be represented in the Bell-state
basis as

Vi =Pyt —Pr- (14)

where Py ) =1-Py ) and Py = (|C_)(¢_|), with [£_) =
(IH)|V) = |V)|H))/+/2 denote the projectors onto the symmet-
ric and antisymmetric subspaces of the kth qubits, respec-
tively. Consider a detection scheme that gives a “click” at
the kth site when the qubits on the kth site are in the antisym-
metric state |{_). Then we can decompose the swap operator
into

Tr{Vp, ® pp] = — (The sum over probabilities of hearing clicks on an odd number of sites)

+ (The sum over probabilities of all other click events)

=1-2 Z(The probability of detecting odd number of events) = 1-2 ZPodd. (15)

The parity measurement in general requires a photon-
number-resolving detector or a full quantum state tomography
(for non-Gaussian states). The need for full tomography
destroys the original intent of performing the purity measure-
ment without full quantum state reconstruction (although
the tomography is in a smaller subspace for multiqubit
states and therefore more manageable), and there is no

For single-photon polarization qubits, the detection of the
antisymmetric portion can be simply carried out by first mix-
ing two photons in a beam splitter and detecting the coinci-
dence events [55-57]. The same can be done for bosonic
atoms, where the qubit is represented by two species of atoms
[45]. There, the beam splitter interaction is provided by the
usual tight-binding form.
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Fig. 5. Direct purity measurement scheme for two harmonic oscilla-
tor states based on a beam splitter transformation and a parity
measurement on one of the modes.

5. CONTROLLED-SWAP SCHEMES

In general, the difficulty in implementing a C-SWAP operation
is in finding the right type of nonlinear interaction. In this
section, we summarize a previous proposal by Filip [41] for
harmonic oscillators for completeness and provide a new
scheme for single-photon polarization qubits based on a
general scheme proposed by Zhou et al. [53]. We note that
Lee et al.’s method [49] to implement a C-SWAP gate can also
be applied for our purpose here.

A. Harmonic Oscillator States
In Ref. [41], Filip noted that the C-SWAP gate on optical states
can be written as

Ux = UpUcpsUp, (16)

where Uy = exp[(zr/4)(a0a1 - dmo)] is the usual 50:50 beam
splitter unitary, Ucpg = exp(ma 'a;|V)(V]) is a controlled
phase shift operator, and d, (a,) refers to the annihilation op-
erator for mode 0 (1).

To see that Uy is indeed the required operator, we first note
that Ui mixes the annihilation operators as U}‘,do Up = (a; +
ay)/~/2 and U;alUR = (a; - ay)/~/2 so that

Uy = exp 15 - 0) @ -a0)vl|. - an)

(a)

[.) * » H— 7
T T
[1) olp P
T T
|¢> |0) — P p —0o»>

— P —
PBS HWP
(c)
|%.) i ™ =
|o) - - B
o— P <
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From this expression, it is easily seen that

Uxo|V)(VIUy = ay|V)(V,
Ux|V)(VIUy = a|V)(V],
Uxo|H)(H|U = ao|H)(H],
Uxay|H)(H|Uy = a|H)(H], 18)

completing the proof that the unitary operator Uy is the
sought-after C-SWAP operator.

The form of the controlled phase shift operator arises often
in the discussion of quantum nondemolition measurements
[58], which have been discussed in the settings of cavity quan-
tum electrodynamics (QED) [59,60], trapped ions [61,62], and
electromagnetically induced transparency (EIT) [63,64],
among others. The cavity QED scheme involves dispersive
atom-field coupling, giving rise to an effective interaction of
the form a‘as, 6. [60]. The trapped ion version is based on
a realization of the Hamiltonian H = Aa'a(6, + 6_), which
arises when the qubit is driven resonantly with a small Rabi
frequency (smaller than the vibrational energy) [65]. The EIT
version utilizes the cross-Kerr nonlinearity ¢'ab'd, i.e., the
role of the qubit is now played by a single photon, thus requir-
ing large cross-phase modulation [63].

B. n-qubit States
We now discuss a feasible scheme to detect macroscopic
quantumness Z for multiqubit states based on the linear opti-
cal implementation of controlled unitary gates introduced in
Ref. [63]. Here, polarization states of photons are used to
encode the qubits.

Let us start by describing the simplest case of measuring
the overlap between two qubit states |y) and |¢), as depicted
in Fig. 6(a). The basic idea is to add auxiliary modes,

(d)
[%.)

[0)—{

= H=H

= H=1H

vy veYy veYy vy [Tj
3

~{=H~]
~{=H>=]

Fig. 6. (a) C-SWAP gate for two single-photon polarization qubits. P represents the conditional change of the paths as a part of a CP gate, and H
represents a Hadamard gate. (b) Construction of a CP gate. PBS represents a polarization beam splitter and HWP a half-wave plate. (c) Alternative
way to construct a C-SWAP gate for two single-photon polarization qubits. BS represents a 50 : 50 beam splitter, 7 represents a = phase shifter, and
D1 to D4 are photodetectors. (d) C-SWAP gate for two multiphoton polarization qubits.
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conditionally interchange the original and auxiliary modes,
perform swap on the auxiliary modes only, and interchange
the paths conditionally once again. The main primitive used
in this method is the controlled-path (CP) gate, which inter-
changes the paths of the two incoming photons only if the
control qubit is in, say, the state |V).

To see how the scheme works, consider the initial state
of the whole system, given the control qubit state
lwe) = enlH) + ¢,|V):

cnlH)w)[0)[#)10) + ¢,|V) ly)0)[)[0). 19

The first two CP gates are applied as depicted in Fig. 6(a).
As shown in Fig. 6(b), a CP gate can be implemented using
two polarization beam splitters (PBSs), two C-NOT gates,
and a half-wave plate (HWP) [53]. If the control qubit |y,)
isin |H), CP does nothing. If it is in |V), however, CP changes
the paths of |y) and |0) (and |¢) and |0)). Therefore, the state
after the first two CP gates becomes

cnlH)w)[0)[#)[0) + ¢,|V) |0} w)[0)]4). (20)

We then change the paths of the third and the fifth qubits, as
shown in Fig. 6(a), to obtain

anlH)w)[0)[#)10) + ¢,[V)|0)[4) |0} [y). @D

The next two CP gates reverse the initial controlled-path
change, so that the final state becomes

cnlH)w)[0)[#)10) + ¢,|V)19)10)[y)[0). (22)

Figure 6(c) presents an alternative way to construct an ef-
fective C-SWAP gate in the circuit. In place of the two CP gates
after the path exchange, two beam splitters and four detectors
are used. Furthermore, depending on the measurement out-
comes of the detectors, a = phase shift may be performed
on the target qubit. The state after the first CP gates and the
path exchange is in Eq. (21). As states |y) and |¢) are single-
photon states, there are four possibilities of detection after the
two 50:50 beam splitters: (D1, D3), (D1, D4), (D2, D3), (D2,
D4), where the detector numbers are indicated in Fig. 6(c).
The final state that gives rise to these possibilities are

cnlH)w)[0)[#)10) + ¢,|V)[9)10)[w)]0). @3
—cn[H)[w)10)|0)|$) + ¢,|V)|$)[0)|0)w), @D
—cp[H)[0)[y)|9)10) + ¢,[V)[0)#)|w)[0), (25)
cnlH)|0)[w)[0)|¢) + ¢,1V)|0}[h) 0} w). (26)

in the same order. For the (D1, D4) or (D2, D3) case, a = phase
shift should be performed on the target qubit. In this way, the
same process for the overlap measurement can be performed
using only half the number of C-NOT gates compared to the
scheme in Fig. 6(a). It is interesting to note that in the expense
of the reduced number of C-NOT gates, exactly the same
number of photodetectors has been inserted.

The method presented in Fig. 6(c) may be useful because
an all-optical C-NOT gate requires a prearranged entangled
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state and is typically nondeterministic [66,67]. The whole
process described in this subsection can be extended to
any two states with an arbitrary number of photons in each
state. For example, an extension of the scheme in Fig. 6(a)
with two states p, and p, is depicted in Fig. 6(d). In the same
manner, the schemes in Fig. 6(c) can be extended to any two
states with an arbitrary number of photons.

6. EXPERIMENTAL IMPERFECTIONS

So far, we have discussed various overlap measurement
schemes, any of which can be adopted to detect macroscopic
quantumness 7 as detailed in the previous sections. In this
section, we discuss the effects of two experimental imperfec-
tions: finite time resolution and imperfect detection
efficiencies.

A. Effects of Coarse-Grained Measurement

In an experiment, one is forced to use a finite value of Az in
Eq. (10), which leads to a certain amount of error in detecting
7. Below, we discuss through specific examples the effects of
such coarse-grained implementations. The first example is
SCSs [6,27-31] under the decoherence effect described by
Eaq. (8):

Pses(1) = N{lta)(ta| + | - ta)(~tal
+ I(7)([ta) (~ta| + | - ta)(ta])}, 27
where t = exp(-7/2), I'(r) = exp[-2(1 —e7)a?], and N is

the normalization factor. Macroscopic quantumness is ob-
tained as

e™* sinh[2(2e" - 1)a?]

L(a.7) = (A(0)) sinh 22

. (28)

where (72(0)) = o® tanh o® denotes the average number of
photons at z = 0. This type of decoherence can be imple-
mented using a beam splitter of reflectivity »r = +/1 — e*. Note
that for a pure SCS, the measure Z equals the average photon
number, i.e., Z(a,0) = (7(0)).

Now, suppose that one intends to measure Z for py.(7).
This requires the purity of the state be measured twice at
and 7 + Ar. As explained earlier, one may use two beam split-
ters of appropriate ratios to obtain py.(7) and pg.(7 + A7).
The purity of the SCS is

P(pses (7)) = Tr[f)gcs (T)]
2 4 2 cosh 202 + cosh[2(2e~7 — 1)a?]

= tanh o?
“ 2 sinh 202

(29)

Using Egs. (10) and (29), we obtain and plot the measured
quantity, Za,(pses), as a function of Ar for several choices
of 7 in Figs. 7(a) and 7(b). Of course, the measured quantity
Ta:(psecs) approaches the precise quantity Z(a,7) when
A7z — (. One can see that a smaller value of Ar is required
for larger « in order to precisely assess the value of 7.

The next examples we consider are photon number states
|2) and |3). These states evolve under the decoherence as

Py (1) = e7(2)(2] + 2e7G|1)(1] + G*|0)(0], (30)
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Fig. 7. Coarse-grained version of macroscopic quantumness, 7 5., as
a function of Az that can be measured via the proposed scheme. The
values are obtained for SCSs under decoherence py.s(7) with (a) a = 1
and (b) « =2 as well as number states (c) |2) and (d) |3) under
decoherence. The solid, dashed, and dotted curves in each figure cor-
responds to 7 = 0, 7 = 0.1, and = = 0.2, respectively.

pi3) (1) = e ¥I3)(3] + 37 G2) (2| +3e "G |1)(1] + G°[0)(0].
(3D

where G = 1 — e?, and their purities are obtained as

Plpiy (1) = ¥ 4+ 4e>G + G4, (32)

Plp) (7)) = e + 9e4G* + 9e7°G* + GF. (33)

The precise values of macroscopic quantumness for pjs (7)
and py3(7) are then

Z(12),7) = 2™ — 473G + 4e G - 207G, (34)

Z(|3),7)
=3¢ —9¢75G + 184 G2-18¢%'G® 4+ 9e¥° G — 3e7° 5P,
(35)

respectively. Figures 7(c) and 7(d) plot the coarse-grained
measure, 7 ,,, as a function of Az. We observe a similar behav-
ior to that of the SCSs; a smaller value of Az is required for a
larger number of photons in order to precisely represent 7.

We conclude that, given a small enough value of Az, the
coarse-grained measure 7 ,, is not too different from 7, and
one can safely propose 7 ,, itself as the measure of macro-
scopic quantumness. The latter is then a coarse-grained
version of 7:

1 At
[T =7a0, (36)
7 Jo
which follows from Egs. (6) and (10).

B. Effects of Detection Inefficiency

Another imperfection present in experiments is detection in-
efficiency, which we investigate here for both the direct and
C-SWAP schemes.
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1. Direct Measurement Scheme

We first give our attention to harmonic oscillator states where
experimentally demanding parity measurements are required.
A single-mode optical state p;, (here, the subscription in
means “input”) can be expressed in the Glauber—Sudarshan
representation

P = / aPyy(@)]a) (al. 37

where P(a) is called the P function. Using this representation,
we can calculate how the input states evolve under the direct
measurement scheme described in Section 4.A (see Fig. b).
The state in the upper arm after a 50:50 beam splitter,

Pmid> 18
Pmia = THUR(pin ® pin) U;e]

_ / d2ad?pPy ()P ()

. (38

N

where the trace is taken over the field in the bottom arm. An
imperfect detector with efficiency » is modeled by placing a
beam splitter with transmittance 7 in front of a perfect detec-
tor. The beam splitter operator is U, = exp[&(dgdl - dld;’])]
with transmittance 5 = cos? 6. When U , is applied to two co-
herent states, it yields U,|a)|f) = |/na+ v1-np)l-
VT =na+ /np). After passing through such a beam splitter,
the state p,,; to be detected is

Pout = Tt{U,,(Prmia ® 10)(0]) U]

_ / RadPy(@)Py, (ﬂ)‘ \/gw + ﬂ)>< ng )

where the trace is now over the reflected arm of the
beam splitter. The final result of the measured purity P is then
given by

G E))

P =3 (D" nlpouln) = f/ ad2fPy, () Py (B)e 1+
(40)

which is obtained using Y, (-1)" (n|a) (a|n) = e~2".

Using this formula, we will investigate the effects of detec-
tion inefficiency through the two examples just used. The first
example is an SCS under the decoherence effect described by
Eq. (27). Its measured purity with detection efficiency 7 is

2 + cosh 202 + cosh[2(2ne™™ — 1)a?]
2 sinh 202 ’

P = tanh o? (41)

which yields the measured macroscopic quantumness

Fame) = 29 _ g2 fanp 210 SDREre - Da’]

2 dr sinh 202

(42)

T (a,n,7) as a function of 5 for three 7 cases is plotted in
Figs. 8(a) and 8(b).

The measured macroscopic quantumness for the number
states are
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Fig. 8. Measured macroscopic quantumness Z for SCSs with
(@) a =1 and (b) a = 2 as well as number states (c) |2) and (d) |3)
as a function of detection efficiency 7. The solid, dashed, and dotted
curves correspond to 7 = 0, 7 = 0.1, and 7 = 0.2, respectively, in each
figure.

7(12).7.7) = -2ne™ + 10p%e 2~ 187%™ + 12p%e™¥,  (43)

Z(I3), 17, 7) = -3ne™" + 24nPe > — 84pPe
+1567%e~4 - 150%™ + 605e 0",  (44)

which are plotted in Figs. 8(c) and 8(d). In both the cases,
the measured values degrade as 5 decreases, while the
number states are slightly more robust against the detection
inefficiency.

We also briefly address inefficiency in the direct measure-
ment schemes for qubits in Section 4.B. Consider the first
method involving the spin-beam-splitter operation described
by the Hamiltonian in Eq. (13) and a measurement of
(~=1)IH{H®I0)0I Assume that there are detectors that can distin-
guish between |0) and |1), whose inefficiency is such that
these two states can be missed with equal probability. Then
the detector inefficiency has no effect on the value of the mea-
sured observable, because it simply changes the total number
of counts that have no effect on the measurement probabil-
ities. Similarly, the effect of known detector inefficiency in
the second method summarized by Eq. (15) can be taken into
account in the calculation of the overlap from raw data. Here,
the inefficiency in measuring the antisymmetric part of a sub-
system in a single site (involving two qubits) can be deter-
mined prior to the overlap measurement and subsequently
used to counterbalance the bias due to the detector
inefficiency.

2. Controlled-Swap Schemes

In the C-SWAP schemes, the control qubit (e.g., a polarized
photon) may be lost before the detector because of the detec-
tion inefficiency. The result is a reduced number of counts,
but since the detection efficiency is usually known, the cor-
rect number of counts can always be inferred, yielding
straightforwardly the correct value of the purity. Furthermore,
because there is only one qubit that needs to be detected at
the final detector unlike in the direct measurement schemes,
the effect of detection inefficiency can be easily corrected.
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This is an advantage of the C-SWAP schemes compared to
the direct measurement schemes.

The correction of the inefficiency in detectors D1 to D4 in
Fig. 6(c) is even easier, because the runs that do not have two
detector clicks are simply discarded. On the other hand, if the
fidelity of the CP gates is limited, it may cause the outcomes at
D1-D4 to be biased and therefore degrade the accuracy of the
final result. Such effects may be caused by the limited fidelity
of the resource-entangled states or mode mismatching at
beam splitters.

7. SUMMARY AND DISCUSSION

In this work, we have briefly reviewed macroscopic quantum-
ness Z and described experimental methods to measure the
quantity without requiring quantum state tomography, both
for harmonic oscillator and qubit systems. Broadly, these
methods can be sorted into two categories: direct measure-
ment schemes and C-SWAP schemes. After summarizing pre-
viously proposed schemes to achieve overlap measurements
that can be applied to our purpose, we proposed a new
C-SWAP scheme for single-photon-polarization qubits. We
have investigated effects of experimental limitations such
as imperfect detection efficiencies and finite time resolutions.

Our method provides means to detect the macroscopic
quantumness of various states such as SCSs [6,27-31] in ex-
periments without the need of quantum state tomography. For
full tomography, the number of measurement settings in-
creases exponentially with the size of the state under consid-
eration, while our scheme requires only two measurement
settings, i.e., with and without induced decoherence. For
qubit tomography, the number of measurement settings in-
creases as ~4" where n is the number of qubits [68,69]. In con-
trast, only two settings are required for our scheme, where
simply the number of required detectors linearly increases
as ~n, as shown in Fig. 4. A similar argument is applied to
the case of harmonic oscillator states where many homodyne
settings are necessary to perform a full tomography of an ar-
bitrary state [70], while our method only requires two settings
(again, with and without induced decoherence) with parity
measurements.

Since the measure can be applied to mixed states [19],
highly mixed states with nonclassical features [71-74] can
also be analyzed. Furthermore, macroscopic superpositions
and entanglement of spin systems [75] under dephasing ef-
fects may be simulated using the proposed optical setup to
experimentally explore their behavior in terms of macro-
scopic quantumness.
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