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Measurement-device-independent and arbitrarily loss-tolerant verification of quantum steering
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We propose a method to verify quantum steering for two-qubit states with an arbitrary amount of null results
when both the steering and steered parties cannot be trusted. We converted the steering inequality proposed in
a recent article [Phys. Rev. X 2, 031003 (2012)] to a corresponding measurement-device-independent steering
criterion that depends on the heralding efficiency of the steering party, number of measurement settings, and
imperfection of the state preparation. As a result, for a relative frequency of valid measurement outcomes ηH,
the steering can be verified using a number of different measurement settings larger than 1/ηH and maximally
entangled states. Furthermore, steerability is guaranteed as long as the measurement efficiency of the steered
party is nonzero. Our result is useful for loss-tolerant and measurement-device-independent steering tasks.
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I. INTRODUCTION

Nonlocal correlations between distant parties are one of
the most interesting features of quantum mechanics. One
may classify nonlocal correlations into three categories: Bell-
nonlocality, steerability, and entanglement [1,2]. Bell nonlo-
cality is the strongest nonclassical property among the three
that rejects any explanation of phenomena based on local
realistic theory [3]. It enables various quantum information
tasks such as secure communication protocol [4–7], random
number generation [8–10], and self-testing [11–14]. However,
while Bell nonlocal states are very useful in nontrivial verifi-
cations of quantum operations, their implementation is highly
demanding.

Entanglement may be understood as a nonlocal correlation
monotonic under local operations and classical communica-
tions. Although the requirement for a quantum state to be
entangled is less stringent than that for Bell nonlocality, en-
tanglement does not always guarantee a successful test of Bell
nonlocality. In this respect, steerability, as an intermediate
property, is less demanding to implement for a reasonable
scope of applications compared with Bell nonlocality. Steer-
ability is a type of nonlocality that rejects explanation of phe-
nomena based on a combination of any local realistic theory
and local quantum model. By definition, it is an intermediate
nonlocality between entanglement and Bell nonlocality, and
thus has a wider range of applicability than entanglement
and is less complicated to implement than Bell nonlocality.
Since its introduction [1], many theoretical developments
[1,2,15–35] and experimental verifications [33–43] have been
studied, and their practical applications are still being inves-
tigated [39,44–49]. A good and comprehensive review on
quantum steering is recently published [50].

One of the advantages of steerability is its loss-tolerant
property [29–33], which permits the verification of steering
despite an arbitrarily low measurement success rate. When
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the steering party is not allowed to report null results, a loss-
tolerant steering criterion for arbitrary pure entangled two-
qubit states was proposed [29]. For the case that the steering
party is allowed to report null results, a loss-tolerant steering
criterion was obtained for maximally entangled two-qubit
states [33] and arbitrary pure entangled two-qudit states [32].
These findings can close the detection loophole in the steering
verification process under an arbitrary amount of detectable
errors on the steering party. However, they are proposed un-
der the one-sided-device-independent (1s-DI) scenario—the
measurement outcomes reported by the steered party must be
correct. Thus, if the steered party reports false outcomes or
their measurement apparatus is imperfect, this assumption is
not valid, which in turn yields a loophole in the determination
of steerability.

To overcome the difficulty, a more elaborate steering
scheme, which is independent of measurement devices of the
steering party (say Alice) and the steered party (say Bob), was
proposed and shown to be equivalent to the 1s-DI scenario
[23], and its experimental verification has been demonstrated
[35]. This scheme is called a quantum refereed steering (QRS)
game, and it replaces the assumption of trustfulness on Bob
by sending information-encoded quantum states to him. The
QRS game, however, is not fully device independent because
it assumes perfect preparation of the quantum states provided
to Bob, or it requires tomography on the provided quantum
states. Therefore, the QRS game is at best measurement-
device independent (MDI). Nonetheless, QRS still supplies
more reliable steering verification because the generating
device for state preparation or the measurement device for
tomography is open to a test by an external party. In the QRS
game, however, unlike the 1s-DI steering scenario, no scheme
to overcome an arbitrary amount of detectable errors has been
proposed yet.

In this paper, we show that verification of steering in the
QRS game is possible with arbitrary measurement efficiencies
of both parties, when one-way communication from Bob to
Alice is allowed. To this end, we first analyze how the 1s-DI
steering inequality can be converted to that in the QRS game,
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and discuss some appropriate methods to deal with losses.
Subsequently, we convert the arbitrarily loss-tolerant steering
inequality in the 1s-DI scenario [33] to a corresponding
steering criterion in the QRS game, known as the score
function, in the canonical way [35]. We shall show that the
score function is indeed a steering criterion even when we
allow one-way communication from Bob to Alice. Finally, we
show that the effect of measurement efficiency of the steered
party does not affect steerability, thus concluding that our
steering criterion is arbitrarily loss tolerant without trust on
both parties.

II. STEERING AND QRS GAME

The general steering protocol can be concisely summarized
by Fig. 1. On this protocol, one may define the QRS game
introduced in Ref. [23] as follows.

(1) Preparation stage. The referee prepares sets of infor-
mation {j} = J , {s} = S with some probability distributions
p(j ) and q(s), and encodes s in linearly dependent quantum
states ωj,s . The referee also sets a payoff P (a, b, j, s) that
Alice and Bob gain when Alice reports a and Bob reports b,
given that Alice receives j and Bob receives s. Subsequently,
the sum of payoff, or score, that Alice and Bob will gain in
the game is given by

S =
∑

j,s,a,b

p(j )q(s)P (a, b, j, s)P (a, b|j, s), (1)

where S denotes the score, and P (a, b|j, s) is a conditional
probability that Alice and Bob yield a and b when they receive
j and s, respectively. Alice and Bob can share some quantum
state beforehand and their goal is to maximize their score
using the shared state. Therefore, Alice and Bob establish
optimal strategy to maximize the score.

(2) Verification stage. The game starts when the referee
provides information j ∈ J to Alice and information encoded
quantum states ωj,s to Bob. Once the game started, no more
communication from Alice to Bob is allowed while from Bob

{ }{ }
{ } { }

{ }
{ } { }

{ }

FIG. 1. Left: In the EPR steering scenario, the referee provides
classical information to and receives it from Alice and Bob. Accord-
ing to the payoff set by the referee, the total score of Alice and Bob
is given by Eq. (1). In this scenario, the referee trusts Bob, and no
communication between Alice and Bob is allowed. We highlighted
Bob’s name with a bold italic letter to denote the trust of the referee.
Right: The QRS game is a kind of variation of the Bell game wherein
the transmission of information from the referee to Bob is given by
linearly dependent quantum states. Bob performs joint measurements
on his part of the shared pair and state given by the referee (denoted
by an ellipse with a measurement apparatus in the figure). Bob cannot
always determine with certainty which information is provided to
him, thus the trust on Bob is removed and one-way communication
from Bob to Alice may be permitted. Their total score is again given
by Eq. (1).

to Alice may be permitted. Based on the information j and
quantum state ωj,s , Alice and Bob choose a and b according
to their optimal strategy and thereafter send them back to the
referee. They obtain payoff P (a, b, j, s) for each round of the
game. After repeating sufficiently many rounds, the highest
score achievable using unsteerable states is determined, and is
called the steering bound. Therefore, violation of the steering
bound implies a positive verification of steering, and the
corresponding shared state is steerable.

III. LOSS TOLERANT QRS GAME

A. Settings for loss tolerant scheme

In Ref. [35], a canonical way to convert a steering inequal-
ity to a corresponding score function was proposed. Neverthe-
less, Ref. [35] assumed that no communication between Alice
and Bob is allowed, and did not consider Bob’s heralding
efficiency. However, one-way communication from Bob to
Alice is one of the many potential advantages of the QRS
game, and coping with Bob’s heralding efficiency is essential
for the MDI scenario. Therefore, in order to make the QRS
game MDI, and to fully exploit the advantages of it, we should
consider one-way communication from Bob to Alice and the
effect of heralding efficiency of Bob.

There are two common ways of dealing with losses without
postselection. One way allows the experimentalist to report
null results, say ∅, and investigate the effect. If we denote
the set of valid measurement outcomes as {ai}i , the set of all
measurement results becomes {ai}i ∪ {∅} within this scheme.
In steering verification, the effect of null results reported
by parties changes the observed correlation between them.
Hence, the corresponding steering bound should be refor-
mulated. For the case where Alice is allowed to report null
results, an ηH-dependent steering bound is constructed for
two-qubit [33] and two-qudit systems [32], where ηH denotes
the heralding efficiency of Alice. On the other hand, another
way of dealing with losses is to not accommodate the null
results ∅ in the set of all measurement results. Therefore in
each measurement, regardless of the occurrence of losses, the
experimentalist has to choose one of the outcomes from the set
{ai}i to report. In the QRS game, since the goal of the parties
is to maximize their score, their choices will be corresponding
optimal values. These two ways are named in Ref. [30] as
“depression” and “anger,” respectively, and well analyzed in
Refs. [30,31].

In this paper, we will use both strategies in dealing with
losses—depression for Alice and anger for Bob. We chose the
depression scheme for Alice because we are going to utilize
the result in Ref. [33], which adopts the depression scheme,
to derive QRS score function. Meanwhile, Bob’s losses should
be coped with using the anger scheme, to prevent more chance
of deceiving the referee using additional option ∅ and one-
way communication from Bob to Alice. Furthermore, in the
QRS score function, Bob’s measurement outcome is one of
{0, 1}, and it will become clear from the form of the payoff
function that they correspond to measurement success and
failure. Thus in our paper, null results are included in one
of the binary results, 0. This strategy may be generalized for

012318-2



MEASUREMENT-DEVICE-INDEPENDENT AND … PHYSICAL REVIEW A 99, 012318 (2019)

any QRS game as it is also implied for some entanglement
verification results [51,52].

We note that for the anger scheme, the heralding efficiency
is fixed to unity while this may not be the case for actual
measurement efficiency. Therefore to analyze Bob’s losses,
we shall use the term measurement efficiency, while the term
heralding efficiency will be used to indicate that of Alice.

B. Score function

In this subsection, we convert the steering inequality ob-
tained in Ref. [33],

1

n

n∑
j=1

〈aj B̂j 〉 � Cn(ηH), (2)

into the QRS score function, where aj is Alice’s reporting
value from {+1,−1}, B̂j is Bob’s dichotomic measurement
such that its outcomes is one of {+1,−1}, ηH is Alice’s
heralding efficiency, n is a number of measurement settings,
and Cn(ηH) is the ηH-dependent steering bound. We can
rewrite it as

1

n

n∑
j=1

[〈aj B̂j 〉 − Cn(ηH)] � 0. (3)

This form can be considered as a score in the 1s-DI steering
scenario such that they obtain 1 − Cn(ηH) as a payoff if
Alice guesses Bob’s outcome correctly, and lose 1 + Cn(ηH)
otherwise. In the QRS game, it is the information s provided
by the referee that both Alice and Bob have to guess, thus
B̂j should be replaced by s. Moreover, the measurement
efficiency of Bob does not appear here because in 1s-DI
steering, we trust Bob, so if Bob reports nothing, then we
conclude that a round has not started. This should also be
inserted in the QRS score function as a factor b ∈ {0, 1}
indicating measurement success or failure. The total payoff in
the QRS game is then converted to

P (a, b, j, s) = [as − Cn(ηH)]b. (4)

To construct the score function, it is optimal to prepare j ∈ J
and s ∈ S with equal probability distribution, respectively,
because if there exists some bias, Alice and Bob may take
advantage of this fact. In this case J = {1, 2, . . . , n} and
S = {+1,−1} so that j takes the same role in inequality (3)
and s takes over the role of outcome of B̂j in inequality (3).
Hence, setting p(j ) = 1

n
and q(s) = 1

2 turns the score (1) in
this case to

Sn(ηH) = 1

2n

∑
j,s

[s〈ab〉j,s − Cn(ηH)〈b〉j,s], (5)

where we invoke Sn(ηH) to make it clear that the score
function depends on a number of measurement settings and
heralding efficiency of Alice. As a last step, we encode
information s in linearly dependent quantum states,

ωj,s = Î2 + sB̂j

2
, (6)

following Refs. [35,51]. We note that the score function (5)
is not a definitive form because we have to analyze the effect

of imperfect preparation of quantum states (6) by the referee.
We will revisit this problem at the end of this subsection and
derive the definitive form in Eq. (14).

In order to prove that the score function is indeed a steering
criterion even when one-way communication is allowed from
Bob to Alice, we will show that any unsteerable state cannot
yield a positive score. Recall that an unsteerable state is such
that its measurement outcomes can be explained by a com-
bination of local realistic theory and local quantum model.
Therefore if Bob can send messages to Alice, the most general
strategy is to perform some positive operator-valued measure
(POVM) on ωj,s to guess the information s and, next, send
the guessed value, say s, to Alice. Note that the dependence
of distribution on some hidden variable λ is removed in this
process thanks to linearity. As a consequence, Alice’s choice
a is determined by j and s. Since the payoff (4) for each round
has no explicit j dependence, the optimal choice of Alice
depends only on s. This does not mean that a is independent of
j , rather, it implies that a depends on j implicitly via s. With
the gained information s, the deterministic optimal choice of
Alice is to report a = s for favorable j ’s which can contribute
to elevate the score, and report ∅ otherwise. Let us denote the
set of favorable j ’s as FJ and |FJ | = F . Then the total score
reads

S = γ

2F

∑
j∈FJ ,s,s

[s s − Cn(ηH)] p(s|j, s), (7)

where γ is the relative frequency that Bob reports 1. Let us
denote +1 as + and −1 as − for simplicity. Then using the
fact that p(+|j, s) + p(−|j, s) = 1, summing over s and s

gives

S = γ

F

∑
j∈FJ

[p(+|j,+) + p(−|j,−) − 1 − Cn(ηH)]. (8)

To calculate Eq. (8), let us write B̂j = �bj · �̂σ where �bj is a
three-dimensional vector whose norm is less than or equal
to 1, and �̂σ is a pseudovector of Pauli operators (σ̂x, σ̂y, σ̂z).
Any POVM element on a two-qubit system can be written as
μ(Î2 + �m · �̂σ ) where �m is again a three-dimensional vector
whose norm is less than or equal to 1, and μ satisfies 0 �
μ � 1

1+| �m| . We then have

p(+|j,+) = 1
2 Tr[μ(Î2 + �m · �̂σ )(Î2 + �bj · �̂σ )]

= μ(1 + �m · �bj ),

p(−|j,−) = 1
2 Tr{[(1 − μ)Î2 − μ �m · �̂σ ](I2 − �bj · �̂σ )}

= 1 − μ + μ �m · �bj . (9)

Therefore, the score reads

S = γ

F

∑
j∈FJ

[2μ �m · �bj − Cn(ηH)]. (10)

First, we observe the inequality

∑
j∈FJ

2

F
μ �m · �bj � 2| �m|

1 + | �m|

∣∣∣∣∣
∑

j
�bj

F

∣∣∣∣∣ �
∣∣∣∣∣
∑

j
�bj

F

∣∣∣∣∣,
where the first inequality is obtained by maximizing μ and us-
ing Cauchy’s inequality, and the second inequality originates
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from the condition that | �m| is less than or equal to 1. Using
the fact that the positive eigenvalue of the �v · �̂σ is |�v|, we have

∣∣∣∣∣
∑

j
�bj

F

∣∣∣∣∣ = λmax

[∑
j (�bj · �̂σ )

F

]
= λmax

⎡
⎣ 1

F

∑
j∈FJ

B̂j

⎤
⎦, (11)

where λmax denotes the maximum eigenvalue of the argument
operator. It is obvious that if we let the coefficients of each
B̂j be one of +1 or −1, then the maximization over such
coefficients will bound Eq. (11) from above. Thus, we have

λmax

⎡
⎣ 1

F

∑
j∈FJ

B̂j

⎤
⎦ � max

{Aj }m

⎧⎨
⎩λmax

⎡
⎣ 1

F

∑
j∈FJ

Aj B̂j

⎤
⎦

⎫⎬
⎭, (12)

where Aj ∈ {+1,−1} for each j ∈ FJ . One can see that the
right-hand side of inequality (12) is exactly the expression of
Dn(ηH) in Eq. (3) in Ref. [33]. Therefore if we generalize
Alice’s optimal strategy to probabilistic mixtures of determin-
istic choices, the right-hand side of inequality (12) saturates at
Cn(ηH). For more details of probabilistically mixing optimal
deterministic strategies, see Sec. II B in Ref. [33]. As a
consequence, we obtain a bound

max
{wk}

⎡
⎣ n∑

k=1

k

nηH

wk

⎛
⎝∑

j∈FJ

2

F
μ �m · �bj

⎞
⎠

⎤
⎦ � Cn(ηH), (13)

where wk satisfies 0 � wk � 1 and
∑n

k=1 wk = 1. When in-
equality (12) is saturated, inequality (13) is also saturated
according to the definition of Cn(ηH) [see Eq. (4) in Ref. [33]],
which shows that Cn(ηH) is a tight bound for inequality (13).
This concludes that the score when Bob reports 1 is bounded
from above by 0 even if we allow one-way communication
from Bob to Alice. Therefore, it is impossible to get a positive
score using unsteerable states, and consequently, the score
function (5) is indeed a steering criterion.

We note here that the strategy can be optimized once
more. Bob can report 1 with some weight according to his
measurement outcome. However, the effect of a weighted
report is compromised by reporting a = s. This is apparent
from the form of the payoff (4), because Alice and Bob will
consider s to be s, and think that they can best adjust the as

term in the payoff (4) to 1 by reporting a = s. Therefore the
payoff they expect to obtain is symmetric in s, which removes
the effect of a weighted report and does not increase the score
for unsteerable states.

The foregoing argument is developed under the assumption
that the quantum state ωj,s provided by the referee is perfectly
prepared in the form of Eq. (6). In Ref. [35], however, this
assumption is removed by analyzing the effect of imperfect
preparation of the state ωj,s and introducing the factor r

multiplied to the steering bound Cn(ηH) to compensate for
the imperfection. If the referee fails to prepare ωj,s and
some state appears frequently as a result, untrusted parties
can exploit this imperfection to maximize their score. As an
extreme example, if the referee prepares ωj,s as Î2+sB̂1

2 and
Bob performs POVM B̂1, Bob can always determine s with
certainty, thus by reporting a = s and b = 1, they obtain the

optimal score 1 − Cn(ηH). Therefore we need to suppress the
undesired elevation of the score, which can be accomplished
by adding a factor r in front of the steering bound,

Sn(ηH, r ) = 1

2n

∑
j,s

[s〈ab〉j,s − rCn(ηH)〈b〉j,s], (14)

where we include r as an argument of the score function.
This is the definitive form of the score function. The detailed
method to obtain r is presented in the Methods section in
Ref. [35]. For our score function, assuming that the referee

prepares ωj,s as Î2+�nj,s · �̂σ
2 , the factor r is calculated to be

r = max
{aj =±1}

−〈 �A, �B〉 +
√

〈 �A, �B〉2 + 〈 �A, �A〉(n2 − 〈 �B, �B〉)

Cn(ηH)(n2 − 〈 �B, �B〉)
,

(15)

where �A = ∑
j aj

(�nj+−�nj− )
2 , �B = ∑

j

(�nj++�nj− )
2 . Unfortu-

nately, introducing the factor r , however, cannot fully remove
the existence of trust. This is because we have to perform
tomography on the state provided by the referee to obtain
�nj,s , and tomography requires trust on measurement devices.
Nonetheless, as explained in Sec. I, the QRS game is more
reliable verification than 1s-DI steering.

Now let us consider the case where Bob suffers from
losses. It is obvious that the optimal strategy for Bob when
losses occur is to perform some POVM on the state provided
by the referee, since he has no access to the complete bipartite
system. Indeed, this strategy is identical to the case of sharing
unsteerable states, such that the maximal score is bounded
from above by 0. Therefore the optimal strategy of Bob to
deal with losses is to report 0, which results in the shrinkage
of the score by measurement efficiency, say ηM. That is, if we
denote the score by S when the measurement efficiency of
Bob is perfect, losses reduce the score to ηMS. It is obvious
that multiplying by ηM does not change the sign of the score
unless ηM is zero, thus nonzero measurement efficiency of Bob
does not affect the steerability at all. This guarantees arbi-
trarily loss-tolerant verification of steering with the result in
Ref. [33] that inequality (2) can be violated using a maximally
entangled state if a number of measurement settings is larger
than the reciprocal of the heralding efficiency of Alice, say
n > 1/ηH.

The loss-tolerant property of our QRS game is asymmet-
ric with respect to Alice and Bob. While the measurement
efficiency of Bob does not affect steerability, the heralding
efficiency of Alice is reflected in the steering bound Cn(ηH)
and can change the sign of the score function for given
quantum states and a number of measurement settings. This
property corresponds to that of a loss-tolerant 1s-DI steering
scenario in which only the heralding efficiency of Alice is of
concern, while the measurement efficiency of Bob is ignored
by discarding experiments Bob failed to report. We believe
that this property can be applied to practical asymmetric
quantum information tasks.
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IV. CONCLUSION

In this study, we have converted the arbitrarily loss-
tolerant steering inequality in Ref. [33] to the corresponding
score function (14) in the QRS game, and showed that it is
arbitrarily loss tolerant when both parties cannot be trusted. To
do this, we permitted Alice to report null results while Bob is
prohibited from doing so. We showed that our score function
is indeed a steering criterion; unsteerable states cannot obtain
positive value, even with the help of one-way communication
from Bob to Alice. Moreover, to compensate for the effect
of imperfect state preparation, we introduced and calculated
a closed form of factor r in (15) to suppress any undesired
elevation of the score using unsteerable states.

We recapitulate that the verification of steering depends on
the score function, that is, some state ρAB can be determined
as a steerable state by a score function Sn(ηH, r ), while it is
determined as an unsteerable state by another score function
Sn′(η′

H, r′). However, the verifiability of steering does not
depend on the measurement efficiency of Bob unless it is zero.

This reveals an additional asymmetry property of the steering
verification.

The MDI characteristic broadens the application scope of
quantum information tasks that were not previously possible,
such as unconditionally secure communication, and the loss-
tolerant property allows one to implement such tasks in a
realistic environment. Furthermore, the asymmetry property
found here can be used for asymmetric information tasks
so that only one party is free from the threat of losses. We
thus expect that our work is relevant for realizing useful and
practical quantum information tasks.

ACKNOWLEDGMENTS

The authors thank W. Son, Y.-S. Teo, and H. Kwon for
useful discussions and comments. This work was supported
by a National Research Foundation of Korea grant funded by
the Korea government (MSIP) (Grant No. 2010-0018295) and
by the KIST Institutional Program (Project No. 2E27800-18-
P043).

[1] H. M. Wiseman, S. J. Jones, and A. C. Doherty, Phys. Rev. Lett.
98, 140402 (2007).

[2] S. J. Jones, H. M. Wiseman, and A. C. Doherty, Phys. Rev. A
76, 052116 (2007).

[3] J. S. Bell, Rev. Mod. Phys. 38, 447 (1966).
[4] N. Herbert, Am. J. Phys. 43, 315 (1975).
[5] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[6] A. Acin, S. Massar, and S. Pironio, New J. Phys. 8, 126

(2006).
[7] A. Acin, N. Brunner, N. Gisin, S. Massar, S. Pironio, and

V. Scarani, Phys. Rev. Lett. 98, 230501 (2007).
[8] R. Colbeck, PhD. thesis, University of Cambridge, 2007;

arXiv:0911.3814.
[9] S. Pironio, A. Acin, S. Massar, A. Boyer de la Giroday, D. N.

Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A.
Manning, and C. Monroe, Nature (London) 464, 1021 (2010).

[10] R. Colbeck and A. Kent, New J. Phys. 44, 095305 (2011).
[11] S. Popescu and D. Rohrlich, Phys. Lett. A 169, 411 (1992).
[12] D. Mayers and A. Yao, Quantum Inf. Comput. 4, 273 (2004).
[13] M. McKague, T. H. Yang, and V. Scarani, New J. Phys. 45,

455304 (2012).
[14] B. W. Reichardt, F. Unger, and U. Vazirani, Nature (London)

496, 456 (2013).
[15] J. L. Chen, X. J. Ye, C. Wu, H. Y. Su, A. Cabello, L. C. Kwek,

and C. H. Oh, Sci. Rep. 3, 2143 (2013).
[16] M. Wang, Q. Giong, and Q. He, Opt. Lett. 39, 6703 (2014).
[17] J. Kiukas, C. Budroni, R. Uola, and J. P. Pellonpaa, Phys. Rev.

A 96, 042331 (2017).
[18] M. D. Reid, Phys. Rev. A 40, 913 (1989).
[19] M. J. W. Hall, in Reality and Measurement in Algebraic Quan-

tum Theory. NWW 2015, edited by M. Ozawa, J. Butterfield,
H. Halvorson, M. Rédei, Y. Kitajima, and F. Buscemi, Springer
Proceedings in Mathematics & Statistics (Springer, Singapore,
2018), Vol. 261, Chap. 7, pp. 161–178.

[20] J. Schneeloch, C. J. Broadbent, S. P. Walborn, E. G. Cavalcanti,
and J. C. Howell, Phys. Rev. A 87, 062103 (2013).

[21] S. Nagy and T. Vertesi, Sci. Rep. 6, 21634 (2016).

[22] E. G. Cavalcanti, S. J. Jones, H. M. Wiseman, and M. D. Reid,
Phys. Rev. A 80, 032112 (2009).

[23] E. G. Cavalcanti, M. J. W. Hall, and H. M. Wiseman, Phys. Rev.
A 87, 032306 (2013).

[24] Q. Y. He and M. D. Reid, Phys. Rev. Lett. 111, 250403 (2013).
[25] H. S. Karthik, A. R. U. Devi, and A. K. Rajagopal, Phys. Rev.

A 91, 012115 (2015).
[26] M. D. Reid, Phys. Rev. A 88, 062108 (2013).
[27] S. J. Jones and H. M. Wiseman, Phys. Rev. A 84, 012110

(2011).
[28] R. Uola, C. Budroni, O. Gühne, and J. P. Pellonpää, Phys. Rev.

Lett. 115, 230402 (2015).
[29] G. Vallone, Phys. Rev. A 87, 020101(R) (2013).
[30] D. A. Evans, E. G. Cavalcanti, and H. M. Wiseman, Phys. Rev.

A 88, 022106 (2013).
[31] D. A. Evans and H. M. Wiseman, Phys. Rev. A 90, 012114

(2014).
[32] P. Skrzypczyk and D. Cavalcanti, Phys. Rev. A 92, 022354

(2015).
[33] A. J. Bennet, D. A. Evans, D. J. Saunders, C. Branciard, E. G.

Cavalcanti, H. M. Wiseman, and G. J. Pryde, Phys. Rev. X 2,
031003 (2012).

[34] D. J. Saunders, S. J. Jones, H. M. Wiseman, and G. J. Pryde,
Nat. Phys. 6, 845 (2010).

[35] S. Kocsis, M. J. W. Hall, A. J. Bennet, D. J. Saunders, and G. J.
Pryde, Nat. Commun. 6, 5886 (2015).

[36] D. H. Smith, G. Gillett, M. P. de Almeida, C. Branciard,
A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits,
H. M. Wiseman, S. W. Nam, and A. G. White, Nat. Commun.
3, 625 (2012).

[37] K. Sun, J. S. Xu, X. J. Ye, Y. C. Wu, J. L. Chen, C. F. Li, and
G. C. Guo, Phys. Rev. Lett. 113, 140402 (2014).

[38] K. Sun, X. J. Ye, J. S. Xu, X. Y. Xu, J. S. Tang, Y. C. Wu,
J. L. Chen, C. F. Li, and G. C. Guo, Phys. Rev. Lett. 116, 160404
(2016).

[39] K. Bartkiewicz, A. Cernoch, K. Lemr, A. Miranowicz, and
F. Nori, Sci. Rep. 6, 38076 (2016).

012318-5

https://doi.org/10.1103/PhysRevLett.98.140402
https://doi.org/10.1103/PhysRevLett.98.140402
https://doi.org/10.1103/PhysRevLett.98.140402
https://doi.org/10.1103/PhysRevLett.98.140402
https://doi.org/10.1103/PhysRevA.76.052116
https://doi.org/10.1103/PhysRevA.76.052116
https://doi.org/10.1103/PhysRevA.76.052116
https://doi.org/10.1103/PhysRevA.76.052116
https://doi.org/10.1103/RevModPhys.38.447
https://doi.org/10.1103/RevModPhys.38.447
https://doi.org/10.1103/RevModPhys.38.447
https://doi.org/10.1103/RevModPhys.38.447
https://doi.org/10.1119/1.9861
https://doi.org/10.1119/1.9861
https://doi.org/10.1119/1.9861
https://doi.org/10.1119/1.9861
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1088/1367-2630/8/8/126
https://doi.org/10.1088/1367-2630/8/8/126
https://doi.org/10.1088/1367-2630/8/8/126
https://doi.org/10.1088/1367-2630/8/8/126
https://doi.org/10.1103/PhysRevLett.98.230501
https://doi.org/10.1103/PhysRevLett.98.230501
https://doi.org/10.1103/PhysRevLett.98.230501
https://doi.org/10.1103/PhysRevLett.98.230501
http://arxiv.org/abs/arXiv:0911.3814
https://doi.org/10.1038/nature09008
https://doi.org/10.1038/nature09008
https://doi.org/10.1038/nature09008
https://doi.org/10.1038/nature09008
https://doi.org/10.1016/0375-9601(92)90819-8
https://doi.org/10.1016/0375-9601(92)90819-8
https://doi.org/10.1016/0375-9601(92)90819-8
https://doi.org/10.1016/0375-9601(92)90819-8
https://doi.org/10.1038/nature12035
https://doi.org/10.1038/nature12035
https://doi.org/10.1038/nature12035
https://doi.org/10.1038/nature12035
https://doi.org/10.1038/srep02143
https://doi.org/10.1038/srep02143
https://doi.org/10.1038/srep02143
https://doi.org/10.1038/srep02143
https://doi.org/10.1364/OL.39.006703
https://doi.org/10.1364/OL.39.006703
https://doi.org/10.1364/OL.39.006703
https://doi.org/10.1364/OL.39.006703
https://doi.org/10.1103/PhysRevA.96.042331
https://doi.org/10.1103/PhysRevA.96.042331
https://doi.org/10.1103/PhysRevA.96.042331
https://doi.org/10.1103/PhysRevA.96.042331
https://doi.org/10.1103/PhysRevA.40.913
https://doi.org/10.1103/PhysRevA.40.913
https://doi.org/10.1103/PhysRevA.40.913
https://doi.org/10.1103/PhysRevA.40.913
https://doi.org/10.1103/PhysRevA.87.062103
https://doi.org/10.1103/PhysRevA.87.062103
https://doi.org/10.1103/PhysRevA.87.062103
https://doi.org/10.1103/PhysRevA.87.062103
https://doi.org/10.1038/srep21634
https://doi.org/10.1038/srep21634
https://doi.org/10.1038/srep21634
https://doi.org/10.1038/srep21634
https://doi.org/10.1103/PhysRevA.80.032112
https://doi.org/10.1103/PhysRevA.80.032112
https://doi.org/10.1103/PhysRevA.80.032112
https://doi.org/10.1103/PhysRevA.80.032112
https://doi.org/10.1103/PhysRevA.87.032306
https://doi.org/10.1103/PhysRevA.87.032306
https://doi.org/10.1103/PhysRevA.87.032306
https://doi.org/10.1103/PhysRevA.87.032306
https://doi.org/10.1103/PhysRevLett.111.250403
https://doi.org/10.1103/PhysRevLett.111.250403
https://doi.org/10.1103/PhysRevLett.111.250403
https://doi.org/10.1103/PhysRevLett.111.250403
https://doi.org/10.1103/PhysRevA.91.012115
https://doi.org/10.1103/PhysRevA.91.012115
https://doi.org/10.1103/PhysRevA.91.012115
https://doi.org/10.1103/PhysRevA.91.012115
https://doi.org/10.1103/PhysRevA.88.062108
https://doi.org/10.1103/PhysRevA.88.062108
https://doi.org/10.1103/PhysRevA.88.062108
https://doi.org/10.1103/PhysRevA.88.062108
https://doi.org/10.1103/PhysRevA.84.012110
https://doi.org/10.1103/PhysRevA.84.012110
https://doi.org/10.1103/PhysRevA.84.012110
https://doi.org/10.1103/PhysRevA.84.012110
https://doi.org/10.1103/PhysRevLett.115.230402
https://doi.org/10.1103/PhysRevLett.115.230402
https://doi.org/10.1103/PhysRevLett.115.230402
https://doi.org/10.1103/PhysRevLett.115.230402
https://doi.org/10.1103/PhysRevA.87.020101
https://doi.org/10.1103/PhysRevA.87.020101
https://doi.org/10.1103/PhysRevA.87.020101
https://doi.org/10.1103/PhysRevA.87.020101
https://doi.org/10.1103/PhysRevA.88.022106
https://doi.org/10.1103/PhysRevA.88.022106
https://doi.org/10.1103/PhysRevA.88.022106
https://doi.org/10.1103/PhysRevA.88.022106
https://doi.org/10.1103/PhysRevA.90.012114
https://doi.org/10.1103/PhysRevA.90.012114
https://doi.org/10.1103/PhysRevA.90.012114
https://doi.org/10.1103/PhysRevA.90.012114
https://doi.org/10.1103/PhysRevA.92.022354
https://doi.org/10.1103/PhysRevA.92.022354
https://doi.org/10.1103/PhysRevA.92.022354
https://doi.org/10.1103/PhysRevA.92.022354
https://doi.org/10.1103/PhysRevX.2.031003
https://doi.org/10.1103/PhysRevX.2.031003
https://doi.org/10.1103/PhysRevX.2.031003
https://doi.org/10.1103/PhysRevX.2.031003
https://doi.org/10.1038/nphys1766
https://doi.org/10.1038/nphys1766
https://doi.org/10.1038/nphys1766
https://doi.org/10.1038/nphys1766
https://doi.org/10.1038/ncomms6886
https://doi.org/10.1038/ncomms6886
https://doi.org/10.1038/ncomms6886
https://doi.org/10.1038/ncomms6886
https://doi.org/10.1038/ncomms1628
https://doi.org/10.1038/ncomms1628
https://doi.org/10.1038/ncomms1628
https://doi.org/10.1038/ncomms1628
https://doi.org/10.1103/PhysRevLett.113.140402
https://doi.org/10.1103/PhysRevLett.113.140402
https://doi.org/10.1103/PhysRevLett.113.140402
https://doi.org/10.1103/PhysRevLett.113.140402
https://doi.org/10.1103/PhysRevLett.116.160404
https://doi.org/10.1103/PhysRevLett.116.160404
https://doi.org/10.1103/PhysRevLett.116.160404
https://doi.org/10.1103/PhysRevLett.116.160404
https://doi.org/10.1038/srep38076
https://doi.org/10.1038/srep38076
https://doi.org/10.1038/srep38076
https://doi.org/10.1038/srep38076


INU JEON AND HYUNSEOK JEONG PHYSICAL REVIEW A 99, 012318 (2019)

[40] M. W. Weston, S. Slussarenko, J. M. Chrzanowski, S.
Wollmann, L. K. Shalm, V. B. Verma, M. S. Allman, S. W. Nam,
and G. J. Pryde, Sci. Adv. 4, e1701230 (2018).

[41] B. Wittmann, S. Ramelow, F. Steinlechner, N. J. Langford,
N. Brunner, H. W. Wiseman, R. Ursin, and A. Zeilinger, New J.
Phys. 14, 053030 (2012).

[42] S. Armstrong, M. Wang, R. Y. Teh, Q. Gong, Q. He, J. Janousek,
H. A. Bachor, M. D. Reid, and P. K. Lam, Nat. Phys. 11, 167
(2015).

[43] V. Handchen, T. Eberle, S. Steinlechner, A. Samblowsky,
T. Franz, R. F. Werner, and R. Schnabel, Nat. Photon. 6, 596
(2012).

[44] C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and
H. M. Wiseman, Phys. Rev. A 85, 010301 (2012).

[45] M. Piani and J. Watrous, Phys. Rev. Lett. 114, 060404 (2015).
[46] E. Passaro, D. Cavalcanti, P. Skrzypczyk, and A. Acin, New J.

Phys. 17, 113010 (2015).
[47] Q. He, L. Rosales-Zarate, G. Adesso, and M. D. Reid,

Phys. Rev. Lett. 115, 180502 (2015).
[48] I. Supic and M. J. Hoban, New J. Phys. 18, 075006 (2016).
[49] A. Gheorghiu, P. Wallden, and E. Kashefi, New J. Phys. 19,

023043 (2017).
[50] D. Cavalcanti and P. Skrzypczyk, Rep. Prog. Phys. 80, 024001

(2017).
[51] C. Branciard, D. Rosset, Y. C. Liang, and N. Gisin, Phys. Rev.

Lett. 110, 060405 (2013).
[52] E. Verbanis, A. Martin, D. Rosset, C. C. W. Lim, R. T. Thew,

and H. Zbinden, Phys. Rev. Lett. 116, 190501 (2016).

012318-6

https://doi.org/10.1126/sciadv.1701230
https://doi.org/10.1126/sciadv.1701230
https://doi.org/10.1126/sciadv.1701230
https://doi.org/10.1126/sciadv.1701230
https://doi.org/10.1088/1367-2630/14/5/053030
https://doi.org/10.1088/1367-2630/14/5/053030
https://doi.org/10.1088/1367-2630/14/5/053030
https://doi.org/10.1088/1367-2630/14/5/053030
https://doi.org/10.1038/nphys3202
https://doi.org/10.1038/nphys3202
https://doi.org/10.1038/nphys3202
https://doi.org/10.1038/nphys3202
https://doi.org/10.1038/nphoton.2012.202
https://doi.org/10.1038/nphoton.2012.202
https://doi.org/10.1038/nphoton.2012.202
https://doi.org/10.1038/nphoton.2012.202
https://doi.org/10.1103/PhysRevA.85.010301
https://doi.org/10.1103/PhysRevA.85.010301
https://doi.org/10.1103/PhysRevA.85.010301
https://doi.org/10.1103/PhysRevA.85.010301
https://doi.org/10.1103/PhysRevLett.114.060404
https://doi.org/10.1103/PhysRevLett.114.060404
https://doi.org/10.1103/PhysRevLett.114.060404
https://doi.org/10.1103/PhysRevLett.114.060404
https://doi.org/10.1088/1367-2630/17/11/113010
https://doi.org/10.1088/1367-2630/17/11/113010
https://doi.org/10.1088/1367-2630/17/11/113010
https://doi.org/10.1088/1367-2630/17/11/113010
https://doi.org/10.1103/PhysRevLett.115.180502
https://doi.org/10.1103/PhysRevLett.115.180502
https://doi.org/10.1103/PhysRevLett.115.180502
https://doi.org/10.1103/PhysRevLett.115.180502
https://doi.org/10.1088/1367-2630/18/7/075006
https://doi.org/10.1088/1367-2630/18/7/075006
https://doi.org/10.1088/1367-2630/18/7/075006
https://doi.org/10.1088/1367-2630/18/7/075006
https://doi.org/10.1088/1367-2630/aa5cff
https://doi.org/10.1088/1367-2630/aa5cff
https://doi.org/10.1088/1367-2630/aa5cff
https://doi.org/10.1088/1367-2630/aa5cff
https://doi.org/10.1088/1361-6633/80/2/024001
https://doi.org/10.1088/1361-6633/80/2/024001
https://doi.org/10.1088/1361-6633/80/2/024001
https://doi.org/10.1088/1361-6633/80/2/024001
https://doi.org/10.1103/PhysRevLett.110.060405
https://doi.org/10.1103/PhysRevLett.110.060405
https://doi.org/10.1103/PhysRevLett.110.060405
https://doi.org/10.1103/PhysRevLett.110.060405
https://doi.org/10.1103/PhysRevLett.116.190501
https://doi.org/10.1103/PhysRevLett.116.190501
https://doi.org/10.1103/PhysRevLett.116.190501
https://doi.org/10.1103/PhysRevLett.116.190501



