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Abstract
Results concerning the construction of quantumBayesian error regions as ameans to certify the
quality of parameter point estimators have been reported in recent years. This task remains
numerically formidable in practice for large dimensions and so far, no analytical expressions of the
region size and credibility (probability of any given true parameter residing in the region) are known,
which form the two principal region properties to be reported alongside a point estimator obtained
from collected data.We first establish analytical formulas for the size and credibility that are valid for a
uniformprior distribution over parameters, sufficiently large data samples and general constrained
convex parameter estimation settings. These formulas provide ameans to an efficient asymptotic error
certification for parameters of arbitrary dimensions. Next, we demonstrate the accuracies of these
analytical formulas as compared to numerically computed region quantities with simulated examples
in qubit and qutrit quantum-state tomographywhere computations of the latter are feasible.

1. Introduction

Quantumestimation or tomographywith informationally complete data involves the reconstruction of a point
estimatorr for an unknown parameter r (generally amultivariate vectorial quantity), whichmay represent a
quantum state, phase, expectation values of arbitrary observables, and so forth. A complete assessment ofr in
order to perform subsequent predictions with it requires the knowledge of its correspondingmeasurement
errors.Methods for correctly and systematically constructing error bars for scalar parameters, or error-regions
formultivariate parameters, are thus of imminent importance in scientific inquiry.

There exist a heuristic class ofmethods that offer an extrapolated error analysis by taking the variance of
simulated data generated from the observed dataset. This idea of ‘bootstrapping’ or ‘resampling’ [1, 2], while
apparently capable of economically generating error certifications for estimators, can be shown to produce
nonconservative conclusions [3] that wouldmisrepresent the actual statistics of the estimator. It cannot be
overemphasized that proper statisticalmethods are required to constructmeaningful error regions. As an
important study, we shall analyze regions for the point estimator = r rML that is derived from themaximum-
likelihood(ML) strategy. Statistically, theML estimatorrML is a parameter that ismore likely to be the true one
than others for a given observed dataset. Such an estimator is known to be efficiently computable with the help of
proper gradientmethods [4–6].

A statisticallymeaningful construction of error regions for data that are actually observed, as it turns out, is
rather closely related to the theory of Bayesian inference that interprets observed data as an avenue for updating
an observer’s prior information about the unknown true parameter r . In recent years, [7, 8] have successfully
constructed optimal Bayesian credible regions (or simply Bayesian regions) forML estimators of quantum
states, the so-calledML regions as coined in the references. These region possesses the smallest size for a given
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credibilitywith respect to observed data. In terms of their interpretations, the size quantifies how large the prior
content is in for which there is a certain probability (credibility) that r lies in4.

These Bayesian regions should be formally distinguished from the confidence regions constructed in [9, 10],
or their simplified variants proposed in [11]. The latter quantify errors with respect to all conceivable data
including those that are unobserved. No conclusion can be drawn from a single experimental run. Typically,
some formof distribution over all datasets has to be expected, and in the case of cryptography for instance, this
expectation becomes invalid due to the presence of eavesdropping. The former, on the other hand, derives
statistical statements solely frommeasured data and is hence logically reliable in any setting.

For large dimensions, it has been shown that the complex structures of a convex parameter space and its
boundaries render the construction of Bayesian regions generally anNP-hard problem, as is also the case for
confidence regions [3]. In quantum-state tomography, sophisticatedMonte Carlomethods have been
developed and applied to sample the state space of bipartite systemswithmodest dimensions in order to
compute the region size and credibility [12, 13]. The certification of estimators for larger dimensions,
nevertheless, remains awork in progress and thus far, no known analytical expressions are found for the size and
credibility as a result of their asymptotically intractable computational complexities with the parameter
dimension.

Themain results of our contributions can be divided into two parts. The first part of ourwork supplies easy-
to-calculate approximations for the size and credibility of Bayesian regionswith uniform priors in the limit of
large data-sample size. The expressions describe not only the casewhere theML estimatorrML is an interior
point in the entire parameter space, but also the case whererML lies on its boundary. The latter case is common
whenever r is a boundary point, especially for large dimensions. These results offer an asymptotic and
approximate estimate for the actual size and credibility which are useful for certifying estimators of large
dimensions and sufficiently large sample size.We show, with examples of quantum-state tomography, that the
expressions workwell even formoderately large sample size. In the companion article [14]we shall discuss
various adaptivemethods that optimize tomographic accuracy in the context of these Bayesian regions.

The article is organized in the followingmanner. After a brief overview of the general theories of and
notational introduction to quantum estimation andBayesian regions in section 2, we shall present asymptotic
analytical approximations for the size and credibility of these regions and examine their characteristics in
section 3. The formulas shall be derived for uniformparameter priors, and are applicable to convex parameter
spaces of arbitrary dimension. Thereafter, we look at specific examples in quantum-state tomography and
validate these results for the quantum state space in section 4.

2. Basic theories andnotations

2.1.Quantum estimation
Aquantum system is defined by a (generally vectorial) parameter = ¼( )r r r rd1 2

T. For instance, in quantum
tomography, r would represent some quantum state of particles; in quantummetrology, f=r could describe
the phase of aMach–Zehnder interferometer, and the list goes on. To characterize r , the observermeasures a
POM (probability operatormeasurement5)å P = 1k k to obtain data according to themeasurement
probabilities = ( )rp pk k .

Based on, wemay infer r using standard tools in statistical inference. In particular, we focus on an
important type of estimator that is ubiquitous in the discussion of core statistical topics, namely the estimator
thatmaximizes the likelihood function ( ∣ )rL —the conditional probability of gathering the data given the
parameter r—over some constrained parameter space of interest (like the physical quantum state space in
quantum-state tomography). In typical situations, theML estimatorrML is unique, apart from interferometric
situations [15], for instance, where ( ∣ )rL has localminima (within the 2π period). Then, the latter case will
eventually converge to the former asmore independent data are collected.

In our present context, we shall consider an experimental situationwhere the data is collected by
measuring a given number of sample size or number of data copiesN, where each copy is independent and
identically distributed (i.i.d.) according to afixed but unknown distribution given by pk. The statistics of
measured frequencies = { }nk å =( )n Nk k for every pk in this situation ismultinomial.

4
This is a consequence of the Bayesian probabilistic viewpoint of r .

5
Ormoremathematically a positive operator-valuedmeasure.
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2.2. Bayesian regions
We shall investigate two different kinds of Bayesian regionswith good physicalmeanings. Almost no derivations
of the properties for these regions are repeated in this section. Rather, important remarks about these properties
are listed to set the stage for upcoming discussions.

2.2.1. Credible regions
The credible region for r is the region of the smallest size for afixed credibility, or equivalently the probability
that r is inside. In [7], it was shown that possesses an iso-likelihood boundary as illustrated infigure 1,
which size and credibility are respectively
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The integrationmeasure ( )rd should be understood as a product of the volumemeasure for thewhole
parameter space0 and the normalized prior probability distribution ( )rp before themeasurement is
performed, which is part of themachinery in Bayesian statistics. Here  l0 1 serves as the parameter that
defines the likelihood  l=( ∣ )rL Lmax in terms of itsmaximal value = ( ∣ )rL Lmax ML , and the region
  = Ìl 0 is specified by cl ( )r [aHeaviside step function h ( · )] for the likelihood ( ∣ )rL describing the
given physical situation. Thus, the credible region satisfies  l>( ∣ )rL Lmax .We note here thatminimizing
size given a credibility is operationally dual tomaximizing credibility for a given size and leads to the same
optimal credible region.

There is also an important relationship between sλ and cλ that allows us to just compute sλ and infer cλ
directly from it. This is written as [7]
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2.2.2. Plausible regions
Inspecting sλ for afixed cλ, say 0.95, is a rather subjective choice. According to [16], wemay exploit a statistically
meaningful interpretation of themeasured data to define another kind of Bayesian region.

If we suppose that r is plausibly the true value, thenwe say that there is evidence in favor of this supposition

when its normalized posterior probability  ( ∣ ) ( ) ( )r rL p L   ò= ¢ ¢⎡⎣ ⎤⎦( ) ( ) ( ∣ )r rL L Ld max is larger than

its prior probability ( )rp . In otherwords, the evidence supports this prior knowledge.We can then construct
another type of Bayesian region—the plausible region—that contains all plausible choices of r . This is the
credible region = l l= crit

characterized by the critical value [8]

Figure 1.A credible region  = l (shaded)definedwith some prior distribution ( )rp in the parameter space 0 by the
isolikelihood boundary of aλ value.
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òl l= ¢ l¢ ( )sd , 3crit
0

1

for which  Î ¶ =l l=( ∣ ) ( )rL L
crit

, or the credible region that contains all plausible points and nothing else. To
facilitate this understanding, we give a short instructive proof by noting that the constant ( )L is simply related
to the size function sλ by the definition
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so that the assignment  lÎ ¶ º =l l=( ∣ ) ( )rL L Lcrit maxcrit gives the expression for lcrit.

3. Analytical results for Bayesian regions

Throughout the discussions in this article, we shall assume that the parameter space0 of r is a convex space.
The numerical computation of sλ and cλ for this convex space, and thereafter lcrit for plausible regions, is known
to be anNP-hard problem [3] because of the complicated influence from the parameter space boundary ¶ 0. In
this section, we provide asymptotic analytical approximations for these quantities in the limit of large sample
sizeN?1, which is the common regime in quantum estimation experiments. This allows an observer tomake
approximate error certification onrML for any parameter dimension andmeasurements without performing
intractableMonte Carlo calculations. In this limit, the likelihood ( ∣ )rL is approximately aGaussian
distribution.

The choice of a prior distribution ( )rp for r thatmakes up the integralmeasure ( )rd directly influences sλ,
which is the inherent nature of Bayesian analytics. For the purpose of revealing interesting properties of sλ and cλ
through analytical expressions and avoid entangling with technical details of prior choices, we shall consider the
uniformprior distribution over the parameters r , that is we take the primitive prior = ( )r rd dj j of a

suitable normalization constant  .
We present results for three cases that can happen in quantum estimation. Thefirst case is the rather

optimistic scenariowhere the data gives an estimatorrML that is well in the interior of0, such that the
Gaussian likelihood ismainly contained in0. The second case, which happensmuchmore frequently when
the true parameter r is exactly in ¶ 0, describes an interior-pointrML that is near the boundary ¶ 0 with the
Gaussian likelihood partially truncated. The third case, which is again prevalent if Î ¶r 0, is where theML
estimatorrML lies exactly on ¶ 0. Closed-form expressions for sλ, cλ andλcrit are easily obtainable for thefirst
case, whereas for the second and third cases, concise analytical approximations are available only for sλ, from
which cλ andλcrit can be tractably inferred using the respective simple relations in (2) and (3). However for
single-parameter estimation settings, exact analytical expressions for the second and third cases are available.

3.1. Case 1: Interior-point theory for a full likelihood
For a d-dimensional parameter r , if Ï ¶r 0, then for a given data collectedwith sufficiently large number of
copiesN, we approximate the likelihood

 D D» -⎜ ⎟⎛
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⎞
⎠( ∣ ) ( ) · · ( ) ( )r r F rL L exp

1

2
, 5max ML

with aGaussian function [17] centered at the experimentally-obtainedrML that has a covariance equal to the
d-dimensional Fisher information6
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evaluated atrML – = ( )F F rML ML formultinomial data statistics.
Asmentioned in the caption offigure 2, if the (prior-influenced) volume V

0
of0 is large enough, then

typically an interiorML estimator can be obtainedwith no likelihood truncationwithout a very largeN. This
applies to the estimation of one or few interferometer phases, tomography of a single qubit, etc, where the
volume of0 is not restricted by toomany parameter convex constraints. Under this condition, it is easy to see
that is a full hyperellipsoidwhich volume is defined byλ and the prior ( )rp . For the uniformprior, wemay
either takewell-known statements in, say [18], or simplywork out the expressions from (1) as in appendix A.

6
Aprudent observermight consider the negative of theHessian = å -
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k k forfiniteN instead of the Fisher
information.
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Eitherway, we have the interior-point expressions
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d 2 is the volume of the (d−1)-sphere of unit radius, andΓ(a, y) is the order-aupper
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In this optimistic case, the size sλ converges logarithmically inλ. Furthermore, the simple formof cλ allows us

to express sλ as a function of cλ, namely
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where the inverse G- ( )ya
1 of the regularized incomplete Gamma function can be numerically computed

efficiently [19].
Sincewe have assumed that eachmeasurement copy is i.i.d., the Fisher information FML is proportional to

N. It follows straightforwardly that in the large-N limit, the size sλ scales according to 1/N
d/2 (that is a

contribution of N1 for every dimension), whereas the credibility cλ is independent ofN. These scaling
behaviors can be observed infigures 3 and 4, where the important characteristics of these two region quantites
are tested inmean-estimation simulations forGaussian distributions of various dimensions d and given
covariances.

Under theGaussian approximation in (5), we can easily obtain

l p= -{ } ( )F Vdet 2 , 9crit ML
1

0

and so the plausible region possesses a size and credibility given by
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Wenote here that for the plausible region, the scaling behaviors of ls crit
and lc crit

withN aremore complicated.
For i.i.d. copies, we have ~ +l ( )s N Nlog d d2 2

crit and - ~l
-( )c N N1 log d d2 1 2

crit , where the
appearance of logarithmic scaling comes frompicking the largest credible region that contains all plausible
parameters(explained in section 2.2.2).

3.2. Case2: Interior-point theory for a truncated likelihood
For the case of an interiorML estimator, themore frequent case would be that part of is truncated by the
boundary of the convex parameter space0 (seefigure 5). This can occurwhenN is not large enough to shrink
the uncertainty of the estimator so that is completely interior, especially when the true parameter r lies on the
boundary ¶ 0. The geometry of = l for interesting values ofλ is now a truncated hyperellipsoid of center

Figure 2. (a)TheBayesian region  is centered at an interiorML estimatorrML, such that (b)the width of the likelihood function
(blue plot bounded by the convex boundary ¶ 0) ismainly containedwithin the parameter space unlessλ is extremely small. The
truncated tails of the likelihood by ¶ 0 give no statistical contribution to the Bayesian region as long asN is sufficiently large. If the
volume of 0 is large, this condition is usually achievable without a very largeN.
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rML, and the boundary effect of the parameter space cannot be neglected in this case.Nonetheless, the problemof
calculating sλ and cλ is now equivalent tofinding the fraction of the hyperellipsoidal volume (dictated by (7)) that
is removed by ¶ 0.

Solving this problem requires the identification of the boundary for, which is computationally hard.We
therefore investigate the limit whenN is sufficiently large enough so that the joint boundary  ¶ Ç ¶ 0, as
depicted infigure 6, (i)has no disjointed regions and (ii) is approximately a hyperplane P containing the
boundary point rP with the largest likelihood. This hyperplane P has a normal n that is orthogonal to the
isolikelihood contour at rP. As ¶ 0 is not convex,maximizing the likelihood over ¶ 0 is typically a difficult
problem and one always has to rely on heuristic numericalmethods.On the other hand, sincerML is near
 ¶ Ç ¶ 0, clearly - ∣∣ ∣∣r rP ML is small andwemay exploit this fact to estimate rP , and the corresponding

maximal likelihood value ¶( )Lmax
0 with a simpleMonte Carlo algorithm in appendix B.

After obtaining  D D= -¶ ( ( ) · · ( ) )( ) r F rL L exp 2P Pmax max ML
0 , it is possible to show that the estimated

fraction γ of the hyperellipsoid truncation is given in terms of the regularized incomplete beta function ( )I a b,y

as
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withwhichwe arrive at the generalized interior-point statement g»l ls V Vd, 0
. For l l g= =, 1int

characterizes the optimistic size expression in (7). The approximate credibility has no simple closed formbut
may be computedwith the relation in (2) efficiently.

Figure 3.Characteristic plots of (a), (b) sλ (logarithmic) and (c), (d) cλ (linear) againstλ for Gaussian distributions. Panels (a) and (c)
refer to one numerical Gaussian sampling experiment, whereas panels (b) and (d) refer to an average over 100 experiments. The
square, circular and triangularmarkers plot data for one, two and three-dimensional Gaussian distributions, each ofwhich is specified
by a randomly-chosen covariance (a randompositivematrix). Filledmarkers correspond toN=100while the unfilled ones
correspond toN=500. The dashed curves represent analytical values of equation (7).We note from the plots that for largerN,
accurate computations of sλ and cλ require very large numbers ofλ divisions for the numerical integrations, whichwe cap at a certain
number. An average over experiments seem to reduce thefluctuations from inaccurate numerical integrationswith finite numbers of
λ values.
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Details of the derivation of (11) is given in appendix C.More relevantly, Let us briefly discuss the volume
estimate characterized by the fraction in (11) in broad terms For this, we emphasize that ¶ 0 can be a highly
sophisticated surfacewith corners and edges. For instance, if0 is the space of quantum states ofHilbert-space
dimensionD=2—the qubit space—, then ¶ 0 that is enforced by the operator positivity constraint is a
2-sphere. However if > ¶D 2, 0 is generally a complicated surface with corners and edges, for the convex
space is ‘neither a polytope nor a smooth body’ [20]. For such boundaries, the approximated volume fraction
offered by (11) is an overestimate of the actual fraction for anyfiniteN due to the convex nature of0. If
howeverrML lies on a smooth  ¶ Ç ¶ 0 towhichwemay approximate the local boundary with a hyperplane,
then in the limit of largeN, this overestimate approaches the exact answer, which applies, for instance, to the
qubit space.

Figure 4.Characteristic plots of sλ (95%-credible regions) againstN in (a), (c) linear and (b), (d) logarithmic scales. The two sets of
graphs in (a) and (b) refer to one particular experiment, and those in (c) and (d) refer to an average overmany experiments. Data
marker descriptions follow figure 3.

Figure 5. (a)TheBayesian region  is centered at an interiorrML that is quite close to the boundary ¶ 0, resulting in (b)the
truncation of a significant portion of the likelihood (orange surface covers points outside of ¶ 0). This occurs quite oftenwhenever

Î ¶r 0 andN is not large enough to avoid the influence of ¶ 0 even though theGaussian approximation in (5) is accurate.
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It is easy to see that thismethodology gives the asymptotically exact, not an overestimated volume fraction in
single-parameter estimation (d= 1), as the  ¶ Ç ¶ 0 intersectsP at exactly the point rP.We note, however,
that the likelihood near rP is exponential in r. The corresponding quantities sλ, cλ andλcrit also admit analytical
expressions
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which can be derived by evaluating the one-dimensional version of the integral in (C.3). The limiting case in
which l  0int can be confirmed right away.

3.3. Case3: Boundary-point theory
IfrML is on the joint boundary  ¶ Ç ¶ 0, this practicallymeans that if one actively searches for theML
estimator without the external constraints of the parameters, themaximumrML,0 that corresponds to this search
will lie outside of0 (see figure 7). The single-phase estimation of aMach–Zehnder interferometer is a simple
one-dimensional example where if the unknown true phase  q p0 2 is restricted in the interval
θa�θ�θb (possibly by some prior or physical limitations), then there can be a situation inwhich the
q q¹ 

ML ML,0, or equivalently q q=
aML or θb. Another important example is state tomographywhere if the true

state rr is on the boundary of the state space, then there is a high probability that rML,0 lies outside the space
and rML is a rank-deficient estimator.

Figure 6. (a)Ifλ is small enough so that the Bayesian region  is truncated, then approximating the joint boundary  ¶ Ç ¶ 0 with
a hyperplane P allows us to estimate the volume of the actual truncated hyperellipsoid . (b)The discrepancy (red shaded region
bounded by  ¶ Ç ¶ 0 andP) asymptotically goes to zero asN increases when  ¶ Ç ¶ 0 is smooth.

Figure 7.The case whererML lies precisely on the boundary  Ç 0 is predominantly due to the fact that (a)the actualML estimator
ÏrML,0 0. That = r rML ML,0 in this case is ameasure-zero event. Such an observation is routine for a boundary-point r . (b)The

corresponding likelihood (orange) peak that is outside of 0 gives themaximumachievable value if the convex boundary ¶ 0 is
relaxed. Otherwise, themaximumof the likelihood function over 0 would berML.
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With the statistical conviction that the true parameter r is close to the boundary-pointML estimatorrML, we
may again expand ( ∣ )rLlog to second order,


¶

D D D» + -

= 

( ∣ ) ( ) · ( ) · · ( )

( ∣ ) ( )

r r g r F r

g r

L L

L

log log
1

2
,
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where now evidently the first order does not vanish sincerML is on the boundary and Lmax, themaximal
likelihood value for0, is less than the exteriormaximal value = -( · · )g F gL L exp 2max,G max ML ML

1
ML for the

approximatedGaussian function. Similar toCase2, wemay introduce a hyperplane ¢P that containsrML and
has a normal ¢ =n gML that is orthogonal to theGaussian isocontour intersectingrML. The volume V of can
then be (over)estimatedwith the shaded volume presented infigure 8. For smooth boundaries, this estimate
oncemore becomes asymptotically exact.

Interestingly, we point out the role changes for some relevant quantities:rML now takes the place of rP as the
boundary point in the hyperplane and Lmax,G is now replacing Lmax to be the largest possible likelihood.Wemay
next define l l= <L L 1eff max max,G to be the effective ‘λ’ that characterizes the approximatedGaussian
likelihoodwith respect to the actual one. Finally, after realizing that the estimated volume for V falls on the
opposite side of the hyperplane in contrast with that inCase2, we canwrite down the fraction

g
l
l

l¢ =
+ +

¢ = =- ¢ ⎜ ⎟⎛
⎝

⎞
⎠ ( )d d

l
L

L
I

1

2
,

1

2
,

log

log
1, , 14l1

2

bd

eff
bd

max

max,G

of the total hyperellipsoidal volume that contributes to the approximate size estimate g» ¢l ls V Vd, 0
.

The asymptotically exact region quantities for d=1 can be obtained by taking the aforementioned role
changes into account. This suggests the replacements in (12) ( fromCase 2 to Case 3)

l l lD  ∣ ( )∣r g ,P ML int eff and l l eff , which immediately gives rise to

 

l
l l= - = - =l l ( )s

V g
c

V g

log
, 1 ,

1
, 15

ML

crit

ML0 0

with the appropriate sign changes due to the opposite ‘side’ of the truncation toCase2.

3.4. Remarks on logarithmic divergence and V
0

In all the Bayesian region property formulas developed ((7), (10), (11), (12), (14), (15)) as ameans to provide an
asymptotic size and credibility certification for theML estimatorrML, the size formulas exhibit logarithmic
divergences— l~ -l ( )s log d 2 . This feature stems from theGaussian approximations in (5) and (13) that pays
no attention to the parameter space boundary   ¶ ¶ Ç ¶⧹( )0 0 that falls on ‘the other side’ of the joint one (if
there is any). These approximations are strictly valid for the likelihood portion sufficiently near themaximum.
For extremely smallλ values or high credibilities, the asymptotic size formulas either give highly conservative
(much larger) estimates for sλ, or gradually exceeds the unit physical upper bound.

Figure 8. In copingwith the boundary-point case, (a)an expansion of the likelihood about the correctrML to second order in - r rML

gives a newGaussian approximation (green) that is centered at rc. IfN is large enough, theGaussian isocontours willmatch the
isolikelihood contours closely— » » r r rC ML,0 ML. (b)The corresponding estimate for  is then the region (pink shaded) bounded
by theGaussian isocontour forλ and the hyperplane ¢P that containsrML and has a normal ¢n perpendicular to the isocontour
intersectingrML. Onemay then estimate V by the volume of this region. For smooth  ¶ Ç ¶ 0 and sufficiently largeN, this
estimate is asymptotically exact.
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This reinforces the importance ofmeasuring a sufficiently large number of copiesN such thatmost portion
of the likelihood is approximately part of aGaussian function. Put differently, there exists the sufficient
condition

lD D = -= ( ) · · ( )∣ ( )r F rN N where 2 log 16P P N Nmin ML min

given a particularly interesting range ofλ. This is geometrically equivalent to keeping the tails of the likelihood
frompenetrating the boundary   ¶ ¹ ¶ Ç ¶0 0 asmuch as possible, so that the logarithmic divergence has
no visible effect on the size estimation.

Furthermore, all operational formulas invoke the knowledge of the volume V
0
of0 under the uniform

prior assertion. For parameter estimation settings with simple convex boundary constraints this can be found
very easily. For instance, V

0
for an a priori uniformly distributed phase  qa b is b−a. In the case of

quantum-state characterization V
0
ismuchmore complicated, but known to have closed forms for specialized

priors [21, 22]. Just as an examplewe shall take the prior to be the uniform distribution over the continuous
space = D0 ofD-dimensional complex positivematrices of unit trace that represent quantum states ρ, or
the Lebesgue prior for this space. For this prior, the volume for the (d=D2−1)-dimensional state parameter r
has the closed form [22]

 p
=

-

-

=

-

( )
! ( )

( )
V

D
j

1
. 17

D D

j

D1 2

2
1

1

D

4. Examples in quantum-state tomography

4.1.Qubit
In quantum-state tomography of a single-qubit (D=2), the space =0 2 of statistical operators can be
conveniently represented as the 2×2 complex positivematrix

r =
-

+ -
⎛
⎝⎜

⎞
⎠⎟ ( )r r r

r r r
i

i 1
181 2 3

2 3 1

in terms of the (d=3)-dimensional state parameter r . The qubit space also has the nice property that the
boundary ¶ 2 is smooth—it is the surface of a 2-sphere. This implies that ¶ 2 is smooth and can eventually
be described by a hyperplane for sufficiently largeN.We shall see that the expressions in (11), (12), (14) and (15)
indeed exactly describe the actual size and credibility in this limit.

To verify our theoretical results, wemay consider three different classes of qubit states. For the numerical
computation of sλ and cλ, onemayfirst generate a set of qubit states for the integrations by performing uniform
rejection sampling. In accordance with the Lebesguemeasure, the parametrization in (18) allows a uniform
sampling on the parameter ranges 0�r1�1 and−1�r2, r3�1 depending on the class of qubit states, where
the range of r1 triviallymaintains the unit-trace constraint. From this set of randomoperators,rejection
sampling is then carried out by simply eliminating randomly generated operators this way that are not positive.
Thesematricesmay be numerically filtered out by verifying efficiently that their Cholesky decompositions do
not exist [23]. Inwhat follows, the yield percentage fromuniform rejection sampling, that is the percentage ratio
of the number of positive operators out of the total number of sampledHermitian operators, is calculated
explicitly for each of the three classes.

4.1.1. One-parameter qubit =( )d 1
Supposewe know that ρ corresponds to r2=r3=0, so that only the single parameter r=r1 needs to be
estimated. The POMconsidered shall then be the simple (M= 2)-outcome projectivemeasurement onto the
eigenstates of s = ñá - ñá∣ ∣ ∣ ∣0 0 1 1z that directly probes r,

r
r

= á ñ =

= á ñ = -

∣ ∣
∣ ∣ ( )

p r

p r

0 0 ,

1 1 1 . 19
1

2

The value of 
=( )V d

2
1 is simply equal to one, the Lebesgue length of the interval 0�r�1. As the Lebesgue

prior is defined for the entire =( )d
2

1 , we have  = = = =( ∣ ) ( ∣ )L r L r0 1 0 such that onlyCase1 and 3
apply7. Rejection sampling is certainly not necessary for such a simple class of states. Figure 9 studies the
behaviors of theoretical results for these two cases.

7
In [14], wherewe study single-phase estimationwith Bayesian regions for a different purpose, Case2 shall apply to an enforced uniform

prior that covers a subset of the phase interval since the likelihood at the boundary points can be nonzero in this case.
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4.1.2. Two-parameter qubit =( )d 2
If this time, we know that only r3=0, then ρ lies in the plane - +( )r r1 2 1 41

2
2
2 . The volume 

=( )V d
2

2 of

this two-parameter subspace =( )d
2

2 can then be easily calculated to be

 ò
p

= ¢ ¢ =
¢¢- +

=

( )
( )( )V r rd d

4
, 20

r r
1 2d

2
2

1
1
2

2
2

2 1
4

and the yield percentage through uniform rejection sampling for these states is therefore equal to 39.27%. The
POMemployed is theM=4 ‘crosshair’measurement consisting of projections onto the eigenstates of both
Pauli operatorsσz and s = +ñá+ - -ñá-∣ ∣ ∣ ∣x :

r r= á ñ = = á+ +ñ = +∣ ∣ ∣ ∣ ( ) ( )p
r

p r
1

2
0 0

2
,

1

2

1

2
1 2 , 211

1
3 2

r r= á ñ =
-

= á- -ñ = -∣ ∣ ∣ ∣ ( ) ( )p
r

p r
1

2
1 1

1

2
,

1

2

1

2
1 2 . 222

1
4 2

Figure 10 illustrates the validity of our theory.

4.1.3. Three-parameter qubit (d=3)
For full qubit tomography, we require aminimum set ofM=22=4-outcome informationally complete (IC)
POMto completely characterize the qubit quantum state.Onemay consider the popular tetrahedron POM
comprising the four symmetrically orientedmeasurement outcomes (symmetric IC POMor SIC POM)

 =  =
-
-  =

-

-

 = -
-

   
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
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⎞
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⎟⎟ ( )a a a a

1

3

1
1
1

,
1

3

1
1

1
,

1

3

1
1
1

,
1

3

1
1
1

. 231 2 3 4

This qubit POMaswell as its extensions to higher dimensions constitute an optimal class ofmeasurements in
quantum information under certain conditions [24–26]. The volume of the2 under the Lebesgue prior can be
shown to beπ/6 either by settingD=2 in (17) or simply calculating the spherical volume


ò p

p
= ¢ ¢ ¢ = =

¢ ¢¢- + +
⎜ ⎟⎛
⎝

⎞
⎠( )

( )V r r rd d d
4

3

1

2 6
. 24

r r r
1 2 3

3

2

1
1
2

2
2

2
3

2 1
4

The yield percentage for2 is 13.09%. The analyses of all three cases are described infigure 11.

Figure 9. Single-parameter qubit estimation. (a)For a one-dimensional qubit in amixed state specified by r=0.99,N=30 is
sufficiently large for boundary effects of2 to vanish, which explains the accuracy of the interior-point expressions in(7). The
plausible region, of 0.966 credibility, is definedwithλcrit=0.08 (dashed line). (b)In the case where^ =r 1ML is in  ¶ Ç ¶ 0, while
N=30 avoids the tail-boundary effects at r=0, the part at r=1modifies the behaviors of sλ and cλ according to(15). Here, the
plausible region, of 0.967 credibility, is constructedwith l = 0.03crit .
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4.2.Qutrit
The qutrit is the next simplest quantum systemof dimensionD=3which state

r =
+ +

- +
- - - -


⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ( )

r r r r r
r r r r r
r r r r r r

i i
i i
i i 1

25
1 3 4 5 6

3 4 2 7 8

5 6 7 8 1 2

can be completely characterized by the (d=32−1=8)-dimensional state parameter r . Therefore the
minimumnumber of POMoutcomes needed to estimate r isM=9. The volume of the qutrit space, according
to (17), is  p=V 201603

3
. To compute sλ and cλ over3, wemay again performuniform rejection sampling

over the ranges 0�r1, r2�1 and−1�r3,K, r8�1. This time, we see that the yield percentage for3 is
significantly lower than that for2—2.4×10−3% to bemore precise for the uniformLebesgue prior.
Although it is possible to sample diagonal entries of ρ such that trρ=1 (i.e. sampling on any unit simplex)
without sample wastage by renormalizing exponentially distributed random real numbers [12, 13], inevitably as
D grows, themethod of rejection sampling for off-diagonal parameters rapidly becomes an inefficient and
obsolete option for generating adequate parameter samples.

The qubit systempossesses a dimensionD small enough such that the average error - [∣∣ ∣∣]r rE ML is small
and theGaussian approximations in (5) and (13) are valid evenwhenN is not very large. Quantum systems of
largerD, startingwith the qutrit, generally requires a correspondingly largerN to achieve similar tomographic
precisions [27, 28]. For very largeN values, the likelihood function becomes extremely narrow since its curvature
is asymptotically governed by ~F NML . As a result, the size sλ is tricky to calculate numerically with
sophisticatedMonte Carlomethods [12, 13]. For the purpose of demonstrating the performance of our results,

Figure 10.Two-parameter qubit estimation. (a)Tomography is carried out on a two-dimensional qubit which quantum state is
represented by = ( )r 0.8 0.1 t inside the Bloch ball. The interiorML estimatorrML forN=50 is far enough from the boundary
so that the results of Case1 apply. The plausible region of 0.957 credibility is defined by l » 0.05crit . (b)For a different state
= ( )r r0.8 0.4 ,t

ML forN=500 is near  ¶ Ç ¶ 0 and the generalized solutions for Case2 clearly resolve the curvaturemodifications
on sλ (see also the inset for a blown up plot of sλ) and cλ. Here l » 0.003 1crit gives a plausible region of 0.994 credibility. (c)Similarly,
whenever Case3 happens, themodifications result inλcrit≈0.0014 for a plausible region of 0.99 credibility with a given dataset.
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wemay slightly circumvent this problemby considering an overcomplete POM (M>9)whilemaintaining a
reasonableN value, which similarly reduces the average error [27] for theGaussian approximations to hold.

Figure 12 showcases qutrit tomography for all the various cases discussed in section 3. For qutrits, the size
corrections are generally overestimates because of the complicated ¶ 3.

5. Conclusion

Weprovided an asymptotic theory of Bayesian regions for general convex parameter spaces that cover awide
range of applications in quantum informationwhenever a uniformprior is used to describe the unknown true
parameter. This allows any observer to conduct asymptotic error certification for uniformpriors that avoidsNP-
hardMonte Carlo computations. The theory supplies analytical formulas for the region size and credibility in
cases where the true parameter is an interior point (equation (7), (10), (11) and (12)), as well as the case where the
true parameter is on the boundary of the parameter space (equation (14) and (15)). These expressions approach
the exact answers whenever the joint boundary of both the region and full parameter space is smooth.Otherwise
they generally give conservative overestimates for the region size as this is related to theway region truncations
are handled by the theory.When applied to examples in quantum-state tomography, these asymptotic
expressions give extremely accurate estimates in spite of the sophisticated state space boundaries. The theoretical
framework presented here can in principle be generalized to any other prior so long as analytical integrals for
Gaussian likelihoods and the volume of the parameter space are known for that prior. This, however, has to be
done on a case-by-case basis at themoment.

Figure 11. Full qubit estimation. Credible-region quantities are plotted for tomography on the complete qubit characterized by
= ( )r 0.8, 0.4, 0.1 using the tetrahedronmeasurement bymeasuring datamade up ofN=90 copies. (a) In the optimistic Case1, the

plausible region, of 0.927 credibility, is defined byλcrit≈0.017. (b)With the sameN, boundary effects begin to influence the
characteristics of both region size and credibility whenrML is near  ¶ Ç ¶ 2 as in Case2, giving a plausible region of 0.963
credibility atλcrit≈0.015 for a particular dataset. (c)Case3 happens rather frequently aswell, with an example dataset that gives a
plausible region of 0.964 credibility atλcrit≈0.0033.
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AppendixA. The derivation of (7)

We start with (1) and theGaussian approximation in (5) for an interiorML estimator tofirst calculate the
credible-region size.We proceed by using thewell-known integral representation

Figure 12.Qutrit Bayesian regions constructedwith a (M=90)-outcome POM. (a)Case1 (N = 150) and (b)Case2 (N = 180) are
studiedwith themaximally-mixed true state ρ=1/3. (c), (d)Case3 refers to the true pure state described by the equal superposition
ñ = ñ + ñ + ñ∣ (∣ ∣ ∣ )0 1 2 3 of three orthonormal kets. The 3rd case is presentedwith anML estimator of (c)rank-1 (N = 30) and

that for (d)rank-2 (N = 90). All insets blow up the scale for sλ. Panels(c) and (d) show that the (overesimated) size approximations
still faremuch better than the optimistic expressions in (7). Improvements on sλ estimates with asymptotic truncations becomemore
conspicuous especially when (c) logarithmic divergence dominates in the low-N regime, in which truncations can reduce a significant

amount ofGaussian approximation artifacts. Relevant values are found in the following table:

Case Theoryλcrit Theory lc crit Simulatedλcrit Simulated cλcrit
1 5.52×10−4 0.931 4.10×10−4 0.972

2 1.55×10−4 0.971 1.12×10−4 0.988

3 (rank-1ML) 0.003 9 0.756 9.09×10−4 0.938

3 (rank-2ML) 1.44×10−4 0.953 6.58×10−5 0.988
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The credibilitymay be calculated eitherwith (1) or (2).We choose the latter route as an example, alongwhich
we need the ingredients
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for the upper incomplete Gamma function. A little algebraicmanipulation after that leads to the answer.

Appendix B. The estimation of rP

AsrML is close to  ¶ Ç ¶ 0, the column rP can be estimated by first generating a set ={ }( )rj j
Lbd

1of L boundary
parameter columns, which can be done by generatingmany random d-dimensional columns  j of small

magnitudes and defining = +( )( )r rj j
bd

ML , where is amap that brings any column that lies outside of

0 to ¶ 0 (the probability of generating a randomboundary point without the action of is effectively zero).
Then rP may be taken to be the boundary point that gives themaximal likelihood value ¶( )Lmax

0 .
As an example, we suppose that in state tomography,rML is the (d=D2−1)-dimensional real parameter

column that uniquely represents theD-dimensionalMLquantum state rML that lies close to  ¶ Ç ¶ 0. Then a
set of random columns  j, distributed according to the standardGaussian distribution for instance, is added to
rML one at a time and the resulting columns + r Hj jML are transformed into the correspondingHermitian

operators = †H Hj j .We discard thoseHjs that are full-rank positive operators andmove on to others that are

nonpositive, and apply themap  s= +(·) [ · (·) ]1min toHj, which adds amultiple of the identity equal to the
minimumeigenvalueσmin and trace-normalize the resulting operator. This turns the nonpositiveHjs into
boundary states r ( ) ( )rj j

bd bd that is nearrML if  j is small enough.

15

New J. Phys. 20 (2018) 093009 Y STeo et al



AppendixC. The derivation of (11)

With theGaussian likelihood in (5) centered atrML, let us denote the full hyperellipsoid defined by the

isolikelihood contour at some value ofλ as l. If = l is truncated, then the region Ê
~

l l that is
bounded ¶ Ç ¶l P is an overestimate ofl. The task here is to calculate the volume 

~
l

V of this region.
The hyperellipsoidal surface ¶ l for anyλ is described by the equation

- ¢ - = ( ) · · ( ) ( )r r F r r 1 C.1ML ML ML

with l¢ = -( )F F 2 logML ML , or in terms of itsmore convenient diagonal-basis representation foundwith the
spectral decomposition ¢ =F OD OML

t,

¢ - ¢ ¢ - ¢ = ( ) · · ( ) ( )r r D r r 1, C.2ML ML

where ¢ = ·a O at , where the diagonal entriesDj of D are reciprocals of squares of theλ-hyperellipsoidal axes
lengths. In the primed coordinates, the hyperplane P, which contains ¢rP , theML estimator over ¶ 0, and the
normal ¢ µ ¢ - ¢· ( )n D r rP ML , satisfies the equation ¢ ¢ = ¢ ¢· ·n r n rP. One easy trick to calculate 

~
l

V would
then be tofirst start with the integral definition
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ML to express this same volume
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as amultiple of the volume of intersection between a corresponding unit -( )d 1 -hypersphere Sd−1 and a
transformed hyperplane ¢P described by the equation ¢  = ¢ ¢ - ¢- · · · ( )n D r n r rP

1 2
ML in the r reference

frame.
For the primitive prior and the earlier definition of ¢n , this intersection volume has a known analytical

answer, which depends on the shortest distance
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between the center of the hypersphere and ¢P . It follows that themagnitude of l0 increases withλ. At the critical
valueλ=λint, we have l0=1, which tells us that at this critical value  ¶ Ç¶ = Æl l P

int
. Beyondλ>λint we

must have the shortest distance l=1 set to unity since this would imply that   g= = l~
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. It can then be
shown, for instance either refer to [29] or appendixDof [14], that  g g= = l~
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