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Abstract

Results concerning the construction of quantum Bayesian error regions as a means to certify the
quality of parameter point estimators have been reported in recent years. This task remains
numerically formidable in practice for large dimensions and so far, no analytical expressions of the
region size and credibility (probability of any given true parameter residing in the region) are known,
which form the two principal region properties to be reported alongside a point estimator obtained
from collected data. We first establish analytical formulas for the size and credibility that are valid for a
uniform prior distribution over parameters, sufficiently large data samples and general constrained
convex parameter estimation settings. These formulas provide a means to an efficient asymptotic error
certification for parameters of arbitrary dimensions. Next, we demonstrate the accuracies of these
analytical formulas as compared to numerically computed region quantities with simulated examples
in qubit and qutrit quantum-state tomography where computations of the latter are feasible.

1. Introduction

Quantum estimation or tomography with informationally complete data involves the reconstruction of a point
estimator 7 for an unknown parameter r (generally a multivariate vectorial quantity), which may represent a
quantum state, phase, expectation values of arbitrary observables, and so forth. A complete assessment of 7 in
order to perform subsequent predictions with it requires the knowledge of its corresponding measurement
errors. Methods for correctly and systematically constructing error bars for scalar parameters, or error-regions
for multivariate parameters, are thus of imminent importance in scientific inquiry.

There exist a heuristic class of methods that offer an extrapolated error analysis by taking the variance of
simulated data generated from the observed dataset. This idea of ‘bootstrapping’ or ‘resampling’ [1, 2], while
apparently capable of economically generating error certifications for estimators, can be shown to produce
nonconservative conclusions [3] that would misrepresent the actual statistics of the estimator. It cannot be
overemphasized that proper statistical methods are required to construct meaningful error regions. As an
important study, we shall analyze regions for the point estimator # = #jy thatis derived from the maximum-
likelihood (ML) strategy. Statistically, the ML estimator # is a parameter that is more likely to be the true one
than others for a given observed dataset. Such an estimator is known to be efficiently computable with the help of
proper gradient methods [4—6].

A statistically meaningful construction of error regions for data that are actually observed, as it turns out, is
rather closely related to the theory of Bayesian inference that interprets observed data as an avenue for updating
an observer’s prior information about the unknown true parameter . In recent years, [ 7, 8] have successfully
constructed optimal Bayesian credible regions R (or simply Bayesian regions) for ML estimators of quantum
states, the so-called ML regions as coined in the references. These region possesses the smallest size for a given
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credibility with respect to observed data. In terms of their interpretations, the size quantifies how large the prior
content s in R for which there is a certain probability (credibility) that r lies in R *.

These Bayesian regions should be formally distinguished from the confidence regions constructed in [9, 10],
or their simplified variants proposed in [ 11]. The latter quantify errors with respect to all conceivable data
including those that are unobserved. No conclusion can be drawn from a single experimental run. Typically,
some form of distribution over all datasets has to be expected, and in the case of cryptography for instance, this
expectation becomes invalid due to the presence of eavesdropping. The former, on the other hand, derives
statistical statements solely from measured data and is hence logically reliable in any setting.

For large dimensions, it has been shown that the complex structures of a convex parameter space and its
boundaries render the construction of Bayesian regions generally an NP-hard problem, as is also the case for
confidence regions [3]. In quantum-state tomography, sophisticated Monte Carlo methods have been
developed and applied to sample the state space of bipartite systems with modest dimensions in order to
compute the region size and credibility [12, 13]. The certification of estimators for larger dimensions,
nevertheless, remains a work in progress and thus far, no known analytical expressions are found for the size and
credibility as a result of their asymptotically intractable computational complexities with the parameter
dimension.

The main results of our contributions can be divided into two parts. The first part of our work supplies easy-
to-calculate approximations for the size and credibility of Bayesian regions with uniform priors in the limit of
large data-sample size. The expressions describe not only the case where the ML estimator # is an interior
point in the entire parameter space, but also the case where #y; lies on its boundary. The latter case is common
whenever r is aboundary point, especially for large dimensions. These results offer an asymptotic and
approximate estimate for the actual size and credibility which are useful for certifying estimators of large
dimensions and sufficiently large sample size. We show, with examples of quantum-state tomography, that the
expressions work well even for moderately large sample size. In the companion article [14] we shall discuss
various adaptive methods that optimize tomographic accuracy in the context of these Bayesian regions.

The article is organized in the following manner. After a brief overview of the general theories of and
notational introduction to quantum estimation and Bayesian regions in section 2, we shall present asymptotic
analytical approximations for the size and credibility of these regions and examine their characteristics in
section 3. The formulas shall be derived for uniform parameter priors, and are applicable to convex parameter
spaces of arbitrary dimension. Thereafter, we look at specific examples in quantum-state tomography and
validate these results for the quantum state space in section 4.

2. Basic theories and notations

2.1. Quantum estimation

A quantum system is defined by a (generally vectorial) parameter r = (r; 1, ... ry)'. For instance, in quantum
tomography, r would represent some quantum state of particles; in quantum metrology, r = ¢ could describe
the phase of a Mach—Zehnder interferometer, and the list goes on. To characterize r, the observer measures a
POM (probability operator measurement”) > Iy = 1toobtain data ID according to the measurement
probabilities p, = p, (r).

Based on D, we may infer r using standard tools in statistical inference. In particular, we focus on an
important type of estimator that is ubiquitous in the discussion of core statistical topics, namely the estimator
that maximizes the likelihood function L (D]r)—the conditional probability of gathering the data ID given the
parameter r—over some constrained parameter space of interest (like the physical quantum state space in
quantum-state tomography). In typical situations, the ML estimator # is unique, apart from interferometric
situations [15], for instance, where L(ID|r) has local minima (within the 27 period). Then, the latter case will
eventually converge to the former as more independent data are collected.

In our present context, we shall consider an experimental situation where the data I is collected by
measuring a given number of sample size or number of data copies N, where each copy is independent and
identically distributed (i.i.d.) according to a fixed but unknown distribution given by py. The statistics of
measured frequencies D = {n;} O = N) for every py in this situation is multinomial.

This is a consequence of the Bayesian probabilistic viewpoint of 7.

5 . e
Or more mathematically a positive operator-valued measure.
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Figure 1. A credible region R = R, (shaded) defined with some prior distribution p(r) in the parameter space R by the
isolikelihood boundary of a A value.

2.2. Bayesian regions

We shall investigate two different kinds of Bayesian regions with good physical meanings. Almost no derivations
of the properties for these regions are repeated in this section. Rather, important remarks about these properties
are listed to set the stage for upcoming discussions.

2.2.1. Credible regions

The credible region R for r is the region of the smallest size for a fixed credibility, or equivalently the probability
that r isinside R. In [7], it was shown that R possesses an iso-likelihood boundary as illustrated in figure 1,
which size and credibility are respectively

= fR A, X\ () = nLDIr) = ALma),

1 ! A A
6= @fn (d ') x, () L(DIr"). 1)

The integration measure (d ) should be understood as a product of the volume measure for the whole
parameter space R and the normalized prior probability distribution p (r) before the measurement is
performed, which is part of the machinery in Bayesian statistics. Here 0 < A < 1serves as the parameter that
defines the likelihood L(D|r) = AL,y in terms of its maximal value L,,x = L(D|#y), and the region
R = Ry C Ryisspecified by x, (r) [a Heaviside step function 7 ( - )] for the likelihood L (D|r) describing the
given physical situation. Thus, the credible region satisfies L(D|r) /Lyax > A. We note here that minimizing
size given a credibility is operationally dual to maximizing credibility for a given size and leads to the same
optimal credible region.

There is also an important relationship between s, and c,, that allows us to just compute sy and infer ¢,
directly from it. This is written as [7]

/\5A+f/\ld)\’sx

o= : ©))
j(; dN S\

2.2.2. Plausible regions
Inspecting s) for a fixed c), say 0.95, is a rather subjective choice. According to [16], we may exploit a statistically
meaningful interpretation of the measured data to define another kind of Bayesian region.

If we suppose that r is plausibly the true value, then we say that there is evidence in favor of this supposition
when its normalized posterior probability L(D|r)p(r) /L(D) [L (D) = f (dr)L(D|r") < Liax ] is larger than
its prior probability p(r). In other words, the evidence supports this prior knowledge. We can then construct
another type of Bayesian region—the plausible region—that contains all plausible choices of r. This is the
credible region R = R,_,_, characterized by the critical value [8]

crit
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1
>\crit = fO dxN S\ (3)

for which L(D|r € OR,—»_,) = L(D), or the credible region that contains all plausible points and nothing else. To
facilitate this understanding, we give a short instructive proof by noting that the constant L (D) is simply related
to the size function s, by the definition

f(d YL (D) :f(d r’)j;L(Dlrl) dx’

1 1
— ’ / Y — !,
- Lmax f (d r )j; dAi U(L(]D)h’ ) A Lmax) Lmax L dA S\ (4)

L(D)

so that the assignment L(D|r € OR\—)_.) = AcritLmax = L (D) gives the expression for A ;.

crit

3. Analytical results for Bayesian regions

Throughout the discussions in this article, we shall assume that the parameter space R of r is a convex space.
The numerical computation of s, and ¢, for this convex space, and thereafter A for plausible regions, is known
to be an NP-hard problem [3] because of the complicated influence from the parameter space boundary 0R. In
this section, we provide asymptotic analytical approximations for these quantities in the limit of large sample
size N > 1, which is the common regime in quantum estimation experiments. This allows an observer to make
approximate error certification on #iy for any parameter dimension and measurements without performing
intractable Monte Carlo calculations. In this limit, the likelihood L (ID|r) is approximately a Gaussian
distribution.

The choice of a prior distribution p(r) for r that makes up the integral measure (d r) directly influences s,
which is the inherent nature of Bayesian analytics. For the purpose of revealing interesting properties of s and ¢,
through analytical expressions and avoid entangling with technical details of prior choices, we shall consider the
uniform prior distribution over the parameters r, that is we take the primitive prior (d r) = N [1; drjofa
suitable normalization constant N .

We present results for three cases that can happen in quantum estimation. The first case is the rather
optimistic scenario where the data ID gives an estimator 7 that is well in the interior of R, such that the
Gaussian likelihood is mainly contained in R . The second case, which happens much more frequently when
the true parameter r is exactly in OR o, describes an interior-point 7 that is near the boundary R with the
Gaussian likelihood partially truncated. The third case, which is again prevalent if r € OR,, is where the ML
estimator 7y, lies exactly on OR . Closed-form expressions for s, ) and A, are easily obtainable for the first
case, whereas for the second and third cases, concise analytical approximations are available only for s, from
which ¢y and A can be tractably inferred using the respective simple relations in (2) and (3). However for
single-parameter estimation settings, exact analytical expressions for the second and third cases are available.

3.1. Case 1: Interior-point theory for a full likelihood
For a d-dimensional parameter r,if r ¢ 0R, then for a given data I collected with sufficiently large number of
copies N, we approximate the likelihood

L(D|F) ~ Loes eXp(—%A(r) Pt -A(r)), 5)

with a Gaussian function [17] centered at the experimentally-obtained #yy, that has a covariance equal to the
d-dimensional Fisher information®

N op, O
I
k Pk r r

A(T) = r — ?ML (6)

evaluated at #i;; — Fy, = F (fyr) for multinomial data statistics.

As mentioned in the caption of figure 2, if the (prior-influenced) volume Vy, of R is large enough, then
typically an interior ML estimator can be obtained with no likelihood truncation without a very large N. This
applies to the estimation of one or few interferometer phases, tomography of a single qubit, etc, where the
volume of R is not restricted by too many parameter convex constraints. Under this condition, it is easy to see
that R is a full hyperellipsoid which volume is defined by A and the prior p(r). For the uniform prior, we may
either take well-known statements in, say [ 18], or simply work out the expressions from (1) as in appendix A.

6 ; ; ; ; L IR o e Ni .
A prudent observer might consider the negative of the Hessian H(r) = Y-, —| ———— + — |—— for finite Ninstead of the Fisher
information. K\ pOr  Or)or
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Figure 2. (a) The Bayesian region R is centered at an interior ML estimator #yy,, such that (b) the width of the likelihood function

(blue plot bounded by the convex boundary R o) is mainly contained within the parameter space unless \ is extremely small. The

truncated tails of the likelihood by OR give no statistical contribution to the Bayesian region as long as N is sufficiently large. If the
volume of Ry is large, this condition is usually achievable without a very large N.

Either way, we have the interior-point expressions

=~ (—2log )2 det{Fyp} /2,
VR,

- I'(d/2, —log )
d/2 — 1!

where V; = 7%/2/(d/2)!is the volume of the (d — 1)-sphere of unit radius, and I'(a, y) is the order-a upper
incomplete Gamma function of y. We may also express s, = Vj; 1/ Vg, in terms the normalized hyperellipsoidal
volume Vj , = Vy(—2log \)¥/? det{Fy.} /2.

In this optimistic case, the size s, converges logarithmically in A. Furthermore, the simple form of ¢, allows us
to express s, as a function of ¢, namely

™)

O =

5= LT — o)IY2 det{Fy ) /2, @®)
Va,

where the inverse I', '(y) of the regularized incomplete Gamma function can be numerically computed
efficiently [19].

Since we have assumed that each measurement copy isi.i.d., the Fisher information Fy is proportional to
N. It follows straightforwardly that in the large-N limit, the size s, scales according to 1/N“/? (thatis a
contribution of 1/+/N for every dimension), whereas the credibility c, is independent of N. These scaling
behaviors can be observed in figures 3 and 4, where the important characteristics of these two region quantites
are tested in mean-estimation simulations for Gaussian distributions of various dimensions d and given
covariances.

Under the Gaussian approximation in (5), we can easily obtain

Aait = [det{2m Fygl} / Vi, ©)

and so the plausible region possesses a size and credibility given by

/2

21 Fyp

Sharit = Yo —log detiom B} 7; i} det{Fy} /2,
VRo VRO

3 (d/z)d/zfl (IOgN)d/271
d/2 —1)!  N4/2

~

C)\cri& ~

(10)

We note here that for the plausible region, the scaling behaviors of s, and c,_, with Nare more complicated.
Fori.i.d. copies, wehave sy ~ (logN + --)¥2 /N%2and 1 — c,_, ~ (logN)¥2~1 /N2, where the
appearance of logarithmic scaling comes from picking the largest credible region that contains all plausible
parameters (explained in section 2.2.2).

crit

3.2. Case 2: Interior-point theory for a truncated likelihood

For the case of an interior ML estimator, the more frequent case would be that part of R is truncated by the
boundary of the convex parameter space R (see figure 5). This can occur when Nis not large enough to shrink
the uncertainty of the estimator so that R is completely interior, especially when the true parameter r lies on the
boundary OR. The geometry of R = R, for interesting values of \ is now a truncated hyperellipsoid of center
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Figure 3. Characteristic plots of (a), (b) s (logarithmic) and (c), (d) ¢, (linear) against A for Gaussian distributions. Panels (a) and (c)
refer to one numerical Gaussian sampling experiment, whereas panels (b) and (d) refer to an average over 100 experiments. The
square, circular and triangular markers plot data for one, two and three-dimensional Gaussian distributions, each of which is specified
by arandomly-chosen covariance (a random positive matrix). Filled markers correspond to N = 100 while the unfilled ones
correspond to N = 500. The dashed curves represent analytical values of equation (7). We note from the plots that for larger N,
accurate computations of s and ¢, require very large numbers of A divisions for the numerical integrations, which we cap at a certain
number. An average over experiments seem to reduce the fluctuations from inaccurate numerical integrations with finite numbers of
Avalues.

L, and the boundary effect of the parameter space cannot be neglected in this case. Nonetheless, the problem of
calculating s, and ¢, is now equivalent to finding the fraction of the hyperellipsoidal volume (dictated by (7)) that
is removed by OR.

Solving this problem requires the identification of the boundary for R, which is computationally hard. We
therefore investigate the limit when N is sufficiently large enough so that the joint boundary 9R N 9R, as
depicted in figure 6, (i) has no disjointed regions and (ii) is approximately a hyperplane P containing the
boundary point rp with the largest likelihood. This hyperplane P has a normal 7 that is orthogonal to the
isolikelihood contour at 7p. As 9R is not convex, maximizing the likelihood over OR ¢ is typically a difficult
problem and one always has to rely on heuristic numerical methods. On the other hand, since #y is near
OR N IRy, clearly |rp — #iyr| is small and we may exploit this fact to estimate rp, and the corresponding
maximal likelihood value L% with a simple Monte Carlo algorithm in appendix B.

After obtaining Lfﬂf“) = Liax exp(—A(p) - By - A(rp) /2), it is possible to show that the estimated
fraction -y of the hyperellipsoid truncation is given in terms of the regularized incomplete beta function I, (a, b)
as

2 2 2

. (OR0)
I = min M) Le, )\int = Lm&) (11)
log A Limax

with which we arrive at the generalized interior-point statement s, ~ vV, )/ Vg,. For A = Ay, v =1
characterizes the optimistic size expression in (7). The approximate credibility has no simple closed form but
may be computed with the relation in (2) efficiently.
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Figure 4. Characteristic plots of s (95%-credible regions) against N'in (a), (c) linear and (b), (d) logarithmic scales. The two sets of
graphs in (a) and (b) refer to one particular experiment, and those in (c) and (d) refer to an average over many experiments. Data
marker descriptions follow figure 3.

Figure 5. (a) The Bayesian region R is centered at an interior #y thatis quite close to the boundary R, resulting in (b) the
truncation of a significant portion of the likelihood (orange surface covers points outside of 9R o). This occurs quite often whenever
r € ORoand Nis notlarge enough to avoid the influence of Ry even though the Gaussian approximation in (5) is accurate.

Details of the derivation of (11) is given in appendix C. More relevantly, Let us briefly discuss the volume
estimate characterized by the fraction in (11) in broad terms For this, we emphasize that OR o can be a highly
sophisticated surface with corners and edges. For instance, if R is the space of quantum states of Hilbert-space
dimension D = 2—the qubit space—, then IR ( that is enforced by the operator positivity constraintis a
2-sphere. However if D > 2, 0R is generally a complicated surface with corners and edges, for the convex
space is ‘neither a polytope nor a smooth body’ [20]. For such boundaries, the approximated volume fraction
offered by (11) is an overestimate of the actual fraction for any finite N due to the convex nature of R . If
however iy lies on a smooth OR N OR to which we may approximate the local boundary with a hyperplane,
then in the limit of large N, this overestimate approaches the exact answer, which applies, for instance, to the
qubit space.
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(0)

Figure 6. (a) If \is small enough so that the Bayesian region R is truncated, then approximating the joint boundary OR N OR ¢ with
ahyperplane Pallows us to estimate the volume of the actual truncated hyperellipsoid R. (b) The discrepancy (red shaded region
bounded by OR N OR and P) asymptotically goes to zero as N increases when OR N OR is smooth.

(b)

Figure 7. The case where #y lies precisely on the boundary R N R is predominantly due to the fact that (a) the actual ML estimator
v & Ro. That fiyp, = i, in this case is a measure-zero event. Such an observation is routine for aboundary-point r. (b) The
corresponding likelihood (orange) peak that is outside of R gives the maximum achievable value if the convex boundary OR g is
relaxed. Otherwise, the maximum of the likelihood function over Ry would be #yy .

Itis easy to see that this methodology gives the asymptotically exact, not an overestimated volume fraction in
single-parameter estimation (d = 1), as the OR N IR intersects P at exactly the point rp. We note, however,
that the likelihood near rpis exponential in . The corresponding quantities sy, ¢, and A, also admit analytical
expressions

log A — log Aint
VRl A(rp)|
0= |A(rP)|V2FML [’\/? - I‘(1/2’ —10g )‘)] + n()‘int - )\)()\ - )\int)
N2mFv [A(rp) | — Aine
m _ >\int
VRV P VR A

s= Vix+ 7N — N

)\crit = (12)

which can be derived by evaluating the one-dimensional version of the integral in (C.3). The limiting case in
which Ay — 0 can be confirmed right away.

3.3. Case 3: Boundary-point theory

If iy is on the joint boundary OR N IR, this practically means that if one actively searches for the ML
estimator without the external constraints of the parameters, the maximum #y ¢ that corresponds to this search
willlie outside of R (see figure 7). The single-phase estimation of a Mach—Zehnder interferometer is a simple
one-dimensional example where if the unknown true phase 0 < 6 < 27 is restricted in the interval

0, < 0 < 0, (possibly by some prior or physical limitations), then there can be a situation in which the

Opir, = 9ML,0, or equivalently Oumy = 0, or 0. Another important example is state tomography where if the true
state r — p is on the boundary of the state space, then there is a high probability that py; , lies outside the space
and p,; is arank-deficient estimator.
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ORo \ pr
\

Figure 8. In coping with the boundary-point case, (a) an expansion of the likelihood about the correct #y; to second orderin r — iy
gives a new Gaussian approximation (green) that is centered at r.. If N'is large enough, the Gaussian isocontours will match the
isolikelihood contours closely—1c & iy, o &~ fL. (b) The corresponding estimate for R is then the region (pink shaded) bounded
by the Gaussian isocontour for A and the hyperplane P’ that contains ;. and has a normal n’ perpendicular to the isocontour
intersecting 7. One may then estimate Vi by the volume of this region. For smooth R N R and sufficiently large N, this
estimate is asymptotically exact.

With the statistical conviction that the true parameter r is close to the boundary-point ML estimator #y, we
may again expand log L (D|r) to second order,

1
log L(D|r) = logLyax + A(r) - gy — E A(r) - Fyr - A(r),
& = Owmr log L(D|7Ay), 13)

where now evidently the first order does not vanish since #; is on the boundary and L., the maximal
likelihood value for R, is less than the exterior maximal value Ly = Lmax €Xp(gy - Fyi - 8L / 2) for the
approximated Gaussian function. Similar to Case 2, we may introduce a hyperplane P’ that contains #yy and
hasanormal n’ = g, thatis orthogonal to the Gaussian isocontour intersecting i . The volume V% of R can
then be (over)estimated with the shaded volume presented in figure 8. For smooth boundaries, this estimate
once more becomes asymptotically exact.

Interestingly, we point out the role changes for some relevant quantities: #i;; now takes the place of rp as the
boundary pointin the hyperplane and L,  is now replacing L, to be the largest possible likelihood. We may
nextdefine Aot = ALpax/Lmaxc < 1tobethe effective ‘X’ that characterizes the approximated Gaussian
likelihood with respect to the actual one. Finally, after realizing that the estimated volume for V3, falls on the
opposite side of the hyperplane in contrast with that in Case 2, we can write down the fraction

,Y/ _ Il—l’(ﬂ, ﬂ), I = log/\bd <1, A= m, (14)
2 2 2 10g )\eff Lmax,G

of the total hyperellipsoidal volume that contributes to the approximate size estimate s, = 'V »/Vg,.
The asymptotically exact region quantities for d = 1 can be obtained by taking the aforementioned role

changes into account. This suggests the replacements in (12) ( from Case 2 to Case 3)

[A@)| = gups Aint — Aefr/Aand A — Aqgr, which immediately gives rise to

N = _M) o= 1 - )\a )\crit = !

_—, (15)
VR, 8w VR, &1

with the appropriate sign changes due to the opposite ‘side’ of the truncation to Case 2.

3.4. Remarks on logarithmic divergence and V,

In all the Bayesian region property formulas developed ((7), (10), (11), (12), (14), (15)) as a means to provide an
asymptotic size and credibility certification for the ML estimator # , the size formulas exhibit logarithmic
divergences—s, ~ (—log A\)#?2 . This feature stems from the Gaussian approximations in (5) and (13) that pays
no attention to the parameter space boundary 9R\ (OR N IR ) that falls on ‘the other side’ of the joint one (if
there is any). These approximations are strictly valid for the likelihood portion sufficiently near the maximum.
For extremely small A values or high credibilities, the asymptotic size formulas either give highly conservative
(much larger) estimates for s, or gradually exceeds the unit physical upper bound.
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This reinforces the importance of measuring a sufficiently large number of copies N such that most portion
of the likelihood is approximately part of a Gaussian function. Put differently, there exists the sufficient
condition

N > N, where A(fp) - Fyy - A(rp) |N:Nmin = —210g>\ (16)

given a particularly interesting range of . This is geometrically equivalent to keeping the tails of the likelihood
from penetrating the boundary OR, = OR N 9R as much as possible, so that the logarithmic divergence has
no visible effect on the size estimation.

Furthermore, all operational formulas invoke the knowledge of the volume Vi, of R under the uniform
prior assertion. For parameter estimation settings with simple convex boundary constraints this can be found
very easily. For instance, Vi, for an a priori uniformly distributed phase a < 6 < bisb — a.In the case of
quantum-state characterization Vg, is much more complicated, but known to have closed forms for specialized
priors [21, 22]. Just as an example we shall take the prior to be the uniform distribution over the continuous
space Ry = Mp of D-dimensional complex positive matrices of unit trace that represent quantum states p, or
the Lebesgue prior for this space. For this prior, the volume for the (d = D* — 1)-dimensional state parameter r
has the closed form [22]

7D(D-1/2 D-1

- — 1
Vso =5 El i (17)

4. Examples in quantum-state tomography

4.1. Qubit
In quantum-state tomography of a single-qubit (D = 2), the space R = M, of statistical operators can be
conveniently represented as the 2 x 2 complex positive matrix

P = ( n mn — ir3) (18)

n+in 1—mn

in terms of the (d = 3)-dimensional state parameter r. The qubit space also has the nice property that the
boundary 0 M, is smooth—it is the surface of a 2-sphere. This implies that OM, is smooth and can eventually
be described by a hyperplane for sufficiently large N. We shall see that the expressionsin (11), (12), (14) and (15)
indeed exactly describe the actual size and credibility in this limit.

To verify our theoretical results, we may consider three different classes of qubit states. For the numerical
computation of s, and ¢,, one may first generate a set of qubit states for the integrations by performing uniform
rejection sampling. In accordance with the Lebesgue measure, the parametrization in (18) allows a uniform
sampling on the parameter ranges 0 < r; < land —1 < 7y, 13 < 1 depending on the class of qubit states, where
the range of r; trivially maintains the unit-trace constraint. From this set of random operators,rejection
sampling is then carried out by simply eliminating randomly generated operators this way that are not positive.
These matrices may be numerically filtered out by verifying efficiently that their Cholesky decompositions do
not exist [23]. In what follows, the yield percentage from uniform rejection sampling, that is the percentage ratio
of the number of positive operators out of the total number of sampled Hermitian operators, is calculated
explicitly for each of the three classes.

4.1.1. One-parameter qubit (d = 1)

Suppose we know that p corresponds to r, = r; = 0, so that only the single parameter r = r; needs to be
estimated. The POM considered shall then be the simple (M = 2)-outcome projective measurement onto the
eigenstates of o, = |0) (0] — |1) (1| that directly probesr,

nh= <0| P|0> =T,
p=(1 pl1) =1 —r. (19)

The value of V'  @-n is simply equal to one, the Lebesgue length of the interval 0 < r < 1. As the Lebesgue

prior is defined for the entire M(Zd:“, wehave L(D|r = 0) = L(D|r = 1) = 0 suchthatonlyCase 1and3
apply’. Rejection sampling is certainly not necessary for such a simple class of states. Figure 9 studies the
behaviors of theoretical results for these two cases.

"In [14], where we study single-phase estimation with Bayesian regions for a different purpose, Case 2 shall apply to an enforced uniform
prior that covers a subset of the phase interval since the likelihood at the boundary points can be nonzero in this case.

10
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Figure 9. Single-parameter qubit estimation. (a) For a one-dimensional qubit in a mixed state specified by r = 0.99, N = 301is
sufficiently large for boundary effects of M, to vanish, which explains the accuracy of the interior-point expressions in (7). The
plausible region, of 0.966 credibility, is defined with A;, = 0.08 (dashed line). (b) In the case where ;. = lisin OR N IR, while
N = 30avoids the tail-boundary effects at r = 0, the partatr = 1 modifies the behaviors of s, and c) according to (15). Here, the
plausible region, of 0.967 credibility, is constructed with A = 0.03.

4.1.2. Two-parameter qubit (d = 2)
If this time, we know that only r; = 0, then plies in the plane (r; — 1/2)* + r# < 1/4.The volume V ME=D of

this two-parameter subspace M= can then be easily calculated to be

s
V= [ drf dry =T, 20
Mz r,—l)2+r2/2<l 1 2 4 ( )

172 N

and the yield percentage through uniform rejection sampling for these states is therefore equal to 39.27%. The
POM employed is the M = 4 ‘crosshair’ measurement consisting of projections onto the eigenstates of both
Pauli operators o,and o, = [+) (+]| — |—) (—|:

1 n 1 1
:—0 0:—, - — :—1 2 5 21
P, 2<|p|> > Ps 2<+|p|+> 2( + 2n) (21
1 1—n 1 1
— (1] pl1) = , = Z(—| pl=) = =1 — 2n). 2
P, 2<Ipl> 5 Py 2< | pl=) 5 ) (22)

Figure 10 illustrates the validity of our theory.

4.1.3. Three-parameter qubit (d = 3)

For full qubit tomography, we require a minimum set of M = 2* = 4-outcome informationally complete (IC)
POM to completely characterize the qubit quantum state. One may consider the popular tetrahedron POM
comprising the four symmetrically oriented measurement outcomes (symmetric IC POM or SIC POM)

1 (! 1 (1 1 (1 (!
a=—lifm=s =1l @d= =1 @ =—|-1| (23)
N1 1 Bt B A1 (A8 i1 B

This qubit POM as well as its extensions to higher dimensions constitute an optimal class of measurements in
quantum information under certain conditions [24—26]. The volume of the M, under the Lebesgue prior can be
shown to be /6 either by setting D = 2 in (17) or simply calculating the spherical volume

4 (1)
V= [ dr! dr! dr3’:—7r(—) _r (24)
(r{—%) +r2/2+r3/2<% 3 2 6

The yield percentage for M, is 13.09%. The analyses of all three cases are described in figure 11.
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Figure 10. Two-parameter qubit estimation. (a) Tomography is carried out on a two-dimensional qubit which quantum state is
represented by r = (0.8 0.1)" inside the Bloch ball. The interior ML estimator #iyy, for N = 50 is far enough from the boundary

so that the results of Case 1 apply. The plausible region of 0.957 credibility is defined by Ay &~ 0.05. (b) For a different state

r = (0.8 0.4)', iy for N = 500is near OR N IR and the generalized solutions for Case 2 clearly resolve the curvature modifications
on s, (see also the inset for a blown up plot of s) and c). Here A¢ie &~ 0.003 1 gives a plausible region of 0.994 credibility. (¢) Similarly,
whenever Case 3 happens, the modifications resultin A\ & 0.0014 for a plausible region of 0.99 credibility with a given dataset.

4.2. Qutrit
The qutrit is the next simplest quantum system of dimension D = 3 which state

n 3+ in 5 + irg
p =l —in 1 r; + irg (25)
T5*i7'6 T7*iT3 1*7’1*7’2

can be completely characterized by the (d = 3> — 1 = 8)-dimensional state parameter r. Therefore the
minimum number of POM outcomes needed to estimate r is M = 9. The volume of the qutrit space, according
to (17),1s Vg, = m°/20160. To compute sy and ¢, over M, we may again perform uniform rejection sampling
over theranges0 < rj,7, < land —1 < 73, ...,73 < 1. This time, we see that the yield percentage for M; is
significantly lower than that for M,—2.4 x 10™>% to be more precise for the uniform Lebesgue prior.
Although it is possible to sample diagonal entries of p such that trp = 1 (i.e. sampling on any unit simplex)
without sample wastage by renormalizing exponentially distributed random real numbers [12, 13], inevitably as
D grows, the method of rejection sampling for off-diagonal parameters rapidly becomes an inefficient and
obsolete option for generating adequate parameter samples.

The qubit system possesses a dimension D small enough such that the average error E[|r — iy ]is small
and the Gaussian approximations in (5) and (13) are valid even when N is not very large. Quantum systems of
larger D, starting with the qutrit, generally requires a correspondingly larger N to achieve similar tomographic
precisions [27, 28]. For very large N values, the likelihood function becomes extremely narrow since its curvature
is asymptotically governed by Fy;p ~ N. As aresult, the size s, is tricky to calculate numerically with
sophisticated Monte Carlo methods [12, 13]. For the purpose of demonstrating the performance of our results,
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plausible region of 0.964 credibility at A;; = 0.0033.
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Figure 11. Full qubit estimation. Credible-region quantities are plotted for tomography on the complete qubit characterized by

r = (0.8, 0.4, 0.1) using the tetrahedron measurement by measuring data made up of N = 90 copies. (a) In the optimistic Case 1, the
plausible region, 0f 0.927 credibility, is defined by Ay &~ 0.017. (b) With the same N, boundary effects begin to influence the
characteristics of both region size and credibility when #y. is near R N M, asin Case 2, giving a plausible region of 0.963
credibility at A, & 0.015 for a particular dataset. (c) Case 3 happens rather frequently as well, with an example dataset that gives a

we may slightly circumvent this problem by considering an overcomplete POM (M > 9) while maintaininga

reasonable N value, which similarly reduces the average error [27] for the Gaussian approximations to hold.
Figure 12 showcases qutrit tomography for all the various cases discussed in section 3. For qutrits, the size

corrections are generally overestimates because of the complicated O Ms.

5. Conclusion

We provided an asymptotic theory of Bayesian regions for general convex parameter spaces that cover a wide

range of applications in quantum information whenever a uniform prior is used to describe the unknown true
parameter. This allows any observer to conduct asymptotic error certification for uniform priors that avoids NP-
hard Monte Carlo computations. The theory supplies analytical formulas for the region size and credibility in

cases where the true parameter is an interior point (equation (7), (10), (11) and (12)), as well as the case where the
true parameter is on the boundary of the parameter space (equation (14) and (15)). These expressions approach
the exact answers whenever the joint boundary of both the region and full parameter space is smooth. Otherwise
they generally give conservative overestimates for the region size as this is related to the way region truncations
are handled by the theory. When applied to examples in quantum-state tomography, these asymptotic
expressions give extremely accurate estimates in spite of the sophisticated state space boundaries. The theoretical
framework presented here can in principle be generalized to any other prior so long as analytical integrals for
Gaussian likelihoods and the volume of the parameter space are known for that prior. This, however, has to be

done on a case-by-case basis at the moment.
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Figure 12. Qutrit Bayesian regions constructed with a (M = 90)-outcome POM. (a) Case 1 (N = 150) and (b) Case 2 (N = 180) are

studied with the maximally-mixed true state p = 1/3.(c), (d) Case 3 refers to the true pure state described by the equal superposition

| ) = (l0) + [1) + [2))/~/3 of three orthonormal kets. The 3rd case is presented with an ML estimator of (c) rank-1 (N = 30) and

that for (d) rank-2 (N = 90). All insets blow up the scale for s. Panels (c) and (d) show that the (overesimated) size approximations

still fare much better than the optimistic expressions in (7). Improvements on s, estimates with asymptotic truncations become more

conspicuous especially when (c) logarithmic divergence dominates in the low-N regime, in which truncations can reduce a significant
amount of Gaussian approximation artifacts. Relevant values are found in the following table:

Case Theory i Theory ¢y, Simulated A, Simulated ¢
1 5.52 x 107* 0.931 410 x 107* 0.972
2 1.55 x 1074 0.971 112 x 1074 0.988
3 (rank-1 ML) 0.003 9 0.756 9.09 x 107* 0.938
3 (rank-2 ML) 1.44 x 1074 0.953 6.58 x 107> 0.988
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Appendix A. The derivation of (7)

We start with (1) and the Gaussian approximation in (5) for an interior ML estimator to first calculate the
credible-region size. We proceed by using the well-known integral representation
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dr e
x) = | —
) 27l t — i€

(A.1)

e=0

of the Heaviside step function and the recognition that (L (D|r) — ALy.x) = n(log L(D|r) — log(ALmay)) to
write

5= fR dr)x, (),

—it 10g(AL max)
— £ et o8 (d r/)eitlogL(]].‘Dlr’) (AZ)
2mi t — e Ro o
where after a reminder that (d ') is a normalized measure, the integral in 1/ can be simplified to
. eit log L max it = S
f (d r/)en log L(D|r') f H dr! efi(r —7mp)-Fume -(r' —Fy)
'Ro V'Ro ] J
itlogLmax (9 d/2
= e—(_w) (det{Fy })~'/2. (A.3)
VRO t
The integral in ¢ can then be completed with another identity
S— [7 dyyrree: (A4)
av (n—1Jo ry ) '
27)4/2 dt —it log A
5= 20 (det{Fpi})™"? | — .:27.
VR, 2mi (i) (r —ie) | _,
2 d/2 o) dr —it(log A+y)
= O _ettR 2 [y [
VR, (d/2 — 1)! 0 2wt — e 0
:f—log)\dy yd/z—l
0
Vi /2 -1/2
= V—(—210g A% 2(det{Fy}) . (A.5)
Ro

The credibility may be calculated either with (1) or (2). We choose the latter route as an example, along which
we need the ingredients

1
f d)\’(—logx\’)“ =a!—-T(a+1, —log)\),
A
Fla+1Ly)= al(a,y) + y%e” (4.6)

for the upper incomplete Gamma function. A little algebraic manipulation after that leads to the answer.

Appendix B. The estimation of rp

As iy is close to R N IR, the column 7 can be estimated by first generating a set {r®? }JL»:l of Lboundary

parameter columns, which can be done by generating many random d-dimensional coljumns €;of small
magnitudes and defining r](bd) = M(# + €)), where M is amap that brings any column that lies outside of
R to OR (the probability of generating a random boundary point without the action of M is effectively zero).
Then rp may be taken to be the boundary point that gives the maximal likelihood value L I%9

As an example, we suppose that in state tomography, iy isthe (d = D* — 1)-dimensional real parameter
column that uniquely represents the D-dimensional ML quantum state p,,; thatlies close to OR N 0R,. Thena
set of random columns €, distributed according to the standard Gaussian distribution for instance, is added to
firr one ata time and the resulting columns #; + €; — H;are transformed into the corresponding Hermitian
operators H; = H]T. We discard those Hs that are full-rank positive operators and move on to others that are
nonpositive, and apply the map M(-) = N -+0pin (-) 11to Hj, which adds a multiple of the identity equal to the
minimum eigenvalue o,,;, and trace-normalize the resulting operator. This turns the nonpositive Hjs into

boundary states p?bd) — r;bd) thatis near #y if €; is small enough.
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Appendix C. The derivation of (11)

With the Gaussian likelihood in (5) centered at #yyp , let us denote the full hyperellipsoid defined by the

isolikelihood contour at some value of Aas &,.If R = R, is truncated, then the region %A D Ry thatis

bounded 0&, N JP is an overestimate of R). The task here is to calculate the volume V7 of this region.
The hyperellipsoidal surface 9&, for any Ais described by the equation

(r—fu) - Fy - (r — ) = 1 (C.1)

with F;; = Fyy/(—2log \), or in terms of its more convenient diagonal-basis representation found with the
spectral decomposition Fy;; = OD O,

(r' =)D - (' — A =1, (C2)
where a’ = O' - a, where the diagonal entries D; of D are reciprocals of squares of the A-hyperellipsoidal axes
lengths. In the primed coordinates, the hyperplane P, which contains rf,, the ML estimator over OR g, and the

normaln’ o< D - (r, — #yy,), satisfies the equation n’ - +' = n’ - ;. One easy trick to calculate Vi would
then be to first start with the integral definition

Vi, = Vo, [@rin@ — (' = 7w - D - (¢ = )@ - (rp = 1), (C3)
and next perform the change of variables r' — r” = D'/2 . (r — #/;) to express this same volume

Vi
Vi, = ﬁ j;dil @rnm - ("1/? _ ﬁ(/IL) —n D V2. (C.4)
as a multiple of the volume of intersection between a corresponding unit (d — 1)-hypersphere S; ;anda
transformed hyperplane P’ described by the equation n’ - D~'/2 . ¢” = n’ - (r, — #y;) inthe r” reference
frame.

For the primitive prior and the earlier definition of n’, this intersection volume has a known analytical
answer, which depends on the shortest distance

l: l() — Inl ° (rl/J - fli/[L)l
ID=1/2 - |
_ (Gp—=rwu) - P - (rp = Pv) log Aint (C.5)
—2log A log A

between the center of the hypersphere and P’. It follows that the magnitude of J, increases with A. At the critical

value A = A, we have [, = 1, which tells us that at this critical value 0> ), NOP = @.Beyond A > A, we

must have the shortest distance [ = 1 set to unity since this would imply that V3 = Vg, = vV, \. It can then be

shown, for instance either refer to [29] or appendix D of [14], that V3 = Vg = 7V,

wherey =1 — Ill(ﬁ, u)
: 2 2
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