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Abstract
Bayesian error analysis paves theway to the construction of credible and plausible error regions for a
point estimator obtained from a given dataset.We introduce the concept of region accuracy for error
regions (a generalization of the point-estimatormean squared error) to quantify the average statistical
accuracy of all region points with respect to the unknown true parameter.We show that the increase in
region accuracy is closely related to the Bayesian region dual operations in Shang et al (2013New J.
Phys. 15 123026). Next with only the given dataset as viable evidence, we establish various adaptive
methods tomaximize the region accuracy relative to the true parameter subject to the type of reported
Bayesian region for a given point estimator.We highlight the performance of these adaptivemethods
by comparing themwith non-adaptive procedures in three quantum-parameter estimation examples.
The results of andmechanisms behind the adaptive schemes can be understood as the region analog of
adaptive approaches to achieving the quantumCramér–Rao bound for point estimators.

1. Introduction

Error estimation for a given particular point estimator of an unknownparameter constitutes an important
component in quantum estimation. The assigned error interval (or region) for the estimator conveys error
information about themeasured data that propagates to other physical quantities predicted with this estimator.

The preceding companion article [2] discussed asymptotic techniques for constructing Bayesian regions for
themaximum-likelihood (ML) estimator. Such a Bayesian region annotates the estimator with credibility that it
lies in this region of a given size. As a result, we see that this construction contains statistical elements from two
principal schools of thought. If one is pedantic about labeling these elements, onemight say that the concept of
an unknown, butfixed, parameter is that of a frequentist, whereas terminologies like size and credibility for a
distribution of parameters belong to viewpoints of a Bayesian [3–5].

In this article, rather thandistinguishingbetween these two schools,we shall understand theunderlyingmeaning
of statistical accuracy in the constructionofBayesian regions that is basedonelements fromthese twocamps.As a
means to eradicateunnecessary confusion,wenotehere that in relation toBayesian statistics, an importantpoint
estimatorof interest is the averageof theproductof both theparameter and its posterior distributionover the entire
parameter space—theBayesianmeanestimator. For this point estimator, conceptsof statistical accuracy exist [6, 7].

Inour context however, the relationbetween statistical accuracy for theunknown trueparameter andaspects of
Bayesian regions comes in adifferentflavor.Weare still interested in a frequentist accuracy for the trueparameter of
interest, just asmuchas anobserver is interested inpreparing aquantumsource in aparticular state, for instance.On
theotherhand, sincewearedealingwith error regions,which are sets of points,wenowspeakof the regionaccuracy,
that is the average accuracyofallpoints in the region relative to the trueparameter. In the limit of zero region size, the
regionaccuracybecomes theusual point-estimator accuracy.After a review in section2onBayesian regions,we shall
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see in section3 that thisnotionof regionaccuracy is intimately connected to thedual operations [1, 2]offixing the
region sizewhile increasing credibility, orfixing the credibility—both actions tend to increase the regionaccuracy, and
this tendencybecomes exact in single-parameter quantumestimation.

In section 4wewill proceed to develop operational schemes tomaximize region accuracy by either
adaptively optimizing over all credible regions offixed size/credibility, or over all plausible regions. The adaptive
schemes require solely the collected data and parameter dimension, and are in fact region analogs of adaptively
attaining the quantumCramér–Rao bound for point estimators [8–10]. These schemeswill be applied to three
examples in quantum estimation that can be categorized under quantummetrology andGaussian state
characterization. All symbols and notations from [2] are carried over to this article. The prior distribution for the
true parameter shall again be taken to be the uniformprimitive distribution in the parameter space.

2. Brief review onBayesian regions

For the purpose of laying out the foundations for subsequent discussion on region accuracy and adaptive
quantum estimation, we state the key properties of a Bayesian credible-region = l that is characterized by
0�λ�1with an isolikelihood boundary. The size and credibility ofl are defined in (1) of [2].

Fromhereon, we shall focus(see later section 3.5) on the situationwhere the true parameter r Ï ¶ , so
that for a sufficiently large data sample sizeN, the error region for all interesting values ofλ has boundary

0 ¶ Ç ¶ = Æ (Case 1 in [2]). For the case in point, we reiterate the relevant expressions
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for the size, credibility and the criticalλ=λcrit that defines the plausible-region—the credible-region that
contains all plausible parameters and nothing else. Based on these expressions, we can obtain the simple relation
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between sλ and cλ. These analytical results apply to the uniformprimitive prior with respect to the parameter r .
More explicitly, for r r r rd1 2

T= ¼ ( ) , the integralmeasure r r Vd dj j 0= ( ) ( ) .

3. Region accuracy and its connectionswith the dual region operations

3.1. General formalismof the region accuracy
Suppose that after collecting the experimental data, theML estimator rML is computed over the parameter
space 0 . Then the usualmean squared error(MSE) for this point estimator relative to the true parameter r ,

r r rEMSE , 3ML
2º -( ) [∣∣ ∣∣ ] ( )

measures the average statistical accuracy of rML over all possible data. It is known that if Case1 applies, then
for sufficiently largeN theML estimator will ultimately be unbiased ( r rE ML =[ ] ) and so r FMSE Tr 1 -( ) { }
approaches theCramér–Rao bound that is defined by the Fisher information F for r .

Wemay generalize this description of accuracy using the language of Bayesian analysis on theML estimator
rML . Since the object in this analysis is the Bayesian region, it is natural to introduce the region squared error
(RSE)
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thatmeasures the region accuracy relative to r , or the average accuracy of all the points in, where rd ¢( ) is the
normalized integralmeasure as defined in [2]. It is easy to see thatwhen r1 ML = =l= { }, we return to

r rRSE MSE=( ) ( ) since for any function rf ( ),
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To analyze the average region accuracy over all possible data for the error regions, wemay adopt themean region
squared error (MRSE)
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Statistically, theMRSE is a collective error feature of theMLpoint estimator rML and its surrounding states in
relative to r .

To understand how theMRSE behaveswith the Bayesian region properties in the asymptotic limit ofN, it is
necessary to calculate theMRSE in this limit. After some straightforward calculations in appendix A, it turns out
that for sufficiently largeNwhereCase1 holds, the RSE takes the simple form
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Weobserve that theRSE linearly fuses the regular ‘frequentist’point-estimator accuracymeasure, the squared errorof
rML for afixedunknown r ,with ‘Bayesian’ elements that characterize the region. Evidently,we get

r rRSE MSE=( ) ( )
for 1l = .With this,wemay invoke theproperty r rE ML [ ] for sufficiently largeN andarrive at the formula
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for theMRSE, wherewe have implicitly assumed that F F FNML 1» = in the asymptotic limit and F1 is the
Fisher information evaluatedwith r for a single copyN=1 of datum4. For convenience, we shall drop the
parametric variableλ hereafter.

3.2.Duality actions on credible-region accuracy
Equation (8) provides a basis for us to discuss the effects on the accuracy of credible regions depending on how
an observer chooses to optimize the region qualities.Wefirst emphasize that the action offixing the region size
while increasing credibility and that offixing the region credibility while reducing the size are dual actions in the
sense that after these actions, the credible-region is optimally defined [1]. Armedwith the concept of region
accuracy, we can endow the effects from these dual strategies with richer statisticalmeaning. To this end, we
analyze the uniform-priorMRSE for different parameter dimension d values.

3.2.1. d=1
In single-parameter estimation, the Fisher information is a numerical quantity F that is related to both the size s
and credibility c by

F
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the d=1 version of (2). The resultingMRSE for credible intervals is then given by
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as a function of s and c.
For d=1, the influence of the region dual operations on theMRSE is clear.When the credible-region size

s s0= isfixed, increasing the credibility c reduces theMRSE for a given r, as c1d 2
1G -- ( ) is a (strictly)

monotonically increasing function of c for any d. If c c0= isfixed instead, then reducing swould, of course,
reduce theMRSE. Therefore both dual strategies increases the region accuracy.

4
We recall that all data copies are i.i.d., such that F FML » is anNmultiple of F FML,1 1» .

3

New J. Phys. 20 (2018) 093010 COh et al



Atfirst sight, r s cMRSE ; ,cred ( )( ) in (10) is apparently independent of r . This thought ismisleading because as
amatter of fact, s and c are related to each other through F as stated in (9). If F is allowed to vary by changing the
measurement setup or procedure, then s and cwould behave as independent variables. Upon reviewing the dual
strategies oncemore, increasing c for afixed s s0= or decreasing s for afixed c c0= both require an increase in
the Fisher information F, which is really the underlying physical quantity that controls themechanisms behind
the dual actions. Hence, increasing c for afixed s s0= is dual to decreasing s for afixed c c0= in the sense that
they both reduces theMRSE for credible intervals.

3.2.2. d 2
Here,matters are slightly less straightforward, for theMRSE depends on amore complicated function of the
Fisher information F that is no longer a numerical value. Both s and c are related to each other through FDet{ },
while theMRSE is a function of FTr ML

1-{ }and logl- .
Wemay first consider the casewhere s s0= . This sets up the constraint

F
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for c and the functional dependenceofMRSEon F is nowelucidated.To increase c (reduceλ)under afixed s s0= , it
is clear that FDet{ } should increase so thatλdecreases inorder tomaintain afixed size.However, since FTr 1-{ } is
not a functionof FDet{ }, there is generally noguarantee that theMRSEwill decreasewith increasing FDet{ }. There
is however a trend that this is the case, and this statement canbemademoreprecisely by considering the largest

FTr 1-{ } for a given FDet{ }. Ifwemakeuse of the fact that for any givenphysical system, the Fisher information
must be trace class [11] ( F BTr { } for somepositive constantB), thenone canderive the simple inequality
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for a given FDet{ } (refer to appendix B for a short derivation). The stated upper bound is loose for d 2 , but is
sufficient tomake our case. After invoking the constraint, we then have
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We see that for d=1, the upper bound above reduces to the exact expression in (10). Otherwise, this upper
bound decreasesmonotonically with increasing c for d 2 . The same arguments applywhen c c0= , only that
now r s c sMRSE ; , const.cred

0
2 ´( )( ) and so decreasing s by increasing FDet{ } (see (2)) reduces the upper

bound quadratically.

3.3.Duality actions on the plausible-region accuracy
If we take critl l= , then this time, the dual strategies are carried outwith the additional constraint imposed on
the value ofλ. Hence, s and c are no longer independent variables. Nonetheless, wemay still choose to reduce s or
increase c subject to this plausible-region condition.

3.3.1. d=1
For single-parameter estimation, if we choose to increase c, then since
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we encounter the simple formula

r c
V c

MRSE ;
2

e 1
2 1

3
. 15cplaus

2
2 1 1 2

1
0 1 2

1

p
= +

G -
- G -

-
-

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( )

( )
( )( ) ( )

It follows that increasing c 1 1 2, 1 2 p- G( ) through increasing F appropriately, reduces
r cMRSE ,plaus ( )( ) monotonically.

On the other hand, if we choose to reduce s, then based on the one-dimensional identity
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aswell as the parametric form
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it turns out that theway to do this is, again, to increase F V2 e 2
0 p , so that r F s FMRSE ; ,plaus ( ( ))( ) decreases

monotonically.

4

New J. Phys. 20 (2018) 093010 COh et al



3.3.2. d 2
Likewise, wemay carry out the same analysis for d 2 by first remembering that raising FDet{ }does not
guarantee a reduction in FTr 1-{ }. Therefore using the inequality in (12), we can instead look at the upper bound
for theMRSE and find that
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It can then be shown that if one increases c d d1 2, 1 2 2 1 - G -( ) ( )!by raising FDet{ },
r cMRSE ;plaus ( )( ) decreasesmonotonically.

The same goes for the strategy of reducing s by increasing F VDet 2 e d 2
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parametric expression
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decreasesmonotonically.

3.4. The short summary
Wecannowdraw some succinct yet important conclusions, for any trace class Fisher information F , regarding
the statisticalmeaning of the dual strategies with Bayesian regions of uniformpriors. For credible regions, the
action of increasing cwith afixed s and its dual action either reduces theMRSEwhen d=1, or its upper bound
(set by a physical upper limit of FTr{ })when d 2 . The remarks for plausible regions are highly similar. Under
the constraint critl l= , if an observer either increases c or decreases s for the range e 0.6065crit

1 2l »- , then
either theMRSE (d= 1) or its upper bound (d 2 ) dropsmonotonically (see appendix C for the derivation of
plausible-region threshold values for which these behaviors hold).

So the dual operations for credible regions, or their constrained versions for plausible regions, precisely
enhance the region accuracy for d=1, or produce the tendency to do so for d 2 . As a final note, the upper
bound in (12)used to argue the general tendency in reducing theMRSEwith the dual strategies for d 2 may be
tightened if so desired. The conclusions are then further strengthenedwith these tighter bounds.

3.5. Situations forCase 2 and 3 from [2]
AgeneralMRSE formula that rigorously accounts for the occurrences of Case 2 and 3 is difficult to compute, and
there is no known exact relations with the duality actions when these cases are incorporated. However under the
condition of largeN, wemay state, with proof, the following conservativeness property for categorically
assuming only Case 1 in calculating theMRSE:

Conservativeness property. For the primitive prior, if we assume thatN is large enough, so that the region boundary

0 ¶ Ç ¶ is almost flat (refer to [2] for the relevant arguments) and statistical fluctuation is small enough such that
r rML»  , then calculating the data average of (7) (approximated with (8)) always produces a larger value than the
actualMRSE for any d.

Themain outline of the proof is to show that since theMRSE is the data average of the RSE, if we categorically
insist that Case 1 happenswhen in fact Case 2 or 3 has actually happened, then the corresponding as-ifRSE is
always larger than the actual RSE under the large data sample condition. Indeed, this categorical RSE is precisely
given by (7) evaluatedwith rML Î 5. Once this is settled, the resultingMRSE estimate, which is approximated
by (8), is in principle an overestimate.

The conservativeness of averaging (7) is clear for d=1. The categorical RSE reads

r a r a r a r r rRSE RSE ; ,
1

3
2 3 3 4 , 20dCAT 1 ML

2
ML

2
ML
2^ ^ ^= = - + + += ( ) [ ( ) ] ( )

which is the RSE for the as-ifBayesian interval a r a, 2 ML^ -[ ]centered at rML^ . Here a is data dependent. On the
other hand, the RSE of the actual Bayesian interval a b,[ ] is

r a b r a ab b r a b rRSE RSE ; , ,
1

3
, 21d 1 ML

2 2 2^= = + + - + += ( ) ( ) ( ) ( )

where b 0Î ¶ satisfies a r b r a2ML ML^ ^ < - , and the true parameter a r b  . Consistently, we have
RSE RSECAT= when b r a2 ML^= - . It is clear that if r rML^» ,

5
EvenwhenCase 3 does happen butCase 1 is assumed, under the large-N limit, the expression in equation (13) of [2] approaches the actual

likelihood that peaks at the correct unrestrictedmaximum, so that the calculations in appendix A also asymptotically yield the
categorical RSE.
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b r a b rRSE RSE
1

3
2 0, 22CAT - » - + -( )( ) ( )

which alsomeans that the categorical RSE is an overestimate of the actual RSE.
One can alsofind an example forwhich this conservative property is lost if r is far from rML^ orN is not large

enough.Wemay inspect the difference

a b r b r rRSE RSE
1

3
2 3 2 23CAT ML ML^ ^- = + - - +( )( ) ( )

andfind that in order for it to be positive, we simply need r r b3 2ML^ < -( ) . This shows that when d=1 using
(8) is always a conservative choice for Case2 and 3 only if r rML^» , which asymptotically holds in the large-N
limit. Armedwith the insights from d=1, appendixD separately proves the conservativeness property for
arbitrary d.

4. Adaptivemethods for optimizing region accuracy

4.1.Optimization of region accuracy
Our next goal is to devicemethods thatminimizes theMRSE for any r as defined in (8). For d=1,maximizing
the determinant of the Fisher information directly reduces theMRSE according to the assessments in section 3,
as the determinant is simply the numerical Fisher information itself. To optimize F NF1= or theMRSE, an
observermay choose to either increaseN for afixed POM that defines F1, or optimize F1 over feasible POMs for a
givenN. As an example, figures 1 and 2 express what happens to theMRSEwhenN is increasedwhen a fixed
two-outcome POM is used to perform single-parameter estimation. Inwhat follows, we shall address themore
interesting problemof optimizing theMRSE, and its optimization for d=1 is equivalent to the search for the
optimal POM that approaches thewell-known quantumFisher information F FQ [8–10] subject to either a
fixed s or cwhen reporting credible regions, or critl l= when reporting plausible regions.

When d 2 , the lesson learnt from section 3 shows that themaximization of FDet{ }does not guarantee a
minimization of theMRSE. In spite of this, an observermay still carry out POMoptimization tominimize the
MRSE subject to the kind of Bayesian region that he or she is interested in reporting alongwith theML estimator.
This is essentially the region analog ofmaximizing the quantumFisher information by virtue of equation (8).
The correctmaximumdepends on the true parameter r , which is always unknown to the observer. In view of
this, we shall develop numerical adaptive protocols that require only themeasured data and d to carry out the
MRSEminimization. These protocols are applicable in practical experimental situations where the
measurement settings for the POMare described by the variable m m m m md1 2

T
m

= ¼ Î ( ) with afinite
dimension dm.

4.2. Adaptive scheme for credible regions
Without knowing r , the experimental data, if IC in the d-dimensional vector space, can still give us a unique
ML estimator rML . In the limit of largeN, this asymptotically unbiasedML estimator is also presumed to be
statistically consistent (r rML  ).With these good properties, rML can be used as the a posteriori state in place of
r , withwhichwe canmake educated guesses for the optimal settings thatminimize theMRSE, where its
asymptotic expressions in terms of F are given as
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As a related side note on numerically implementing the adaptive schemes, wemention that whenN or d is
too large forMonteCarlo numerical calculations of s and c towork, the asymptotic tools presented in [2]may
be used.

Since s and c are independent, we have the following adaptive algorithm that carries out a total ofK adaptive
steps for a total ofNmeasurement copies (N/K copiesmeasured in each step) andfixed region size startingwith
Stepk=1:

MRSEminimization for credible regions

(i)Collect k with the setting mk and compute the d-dimensional rML with the accumulated dataset , , , k1 2  ¼{ }.
(ii) Set the a posteriori state r0 MLr =  , and generate L simulated datasets from 0r for each of nmmeasurement variables. Here nm should be a

reasonable number ofmeasurement-setting variables mj j
n

1
m
={ } that uniformly covers m .
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(Continued.)
(iii)With a total of Lnm simulated and kmeasured datasets, obtain the projectedML estimators r j l j l

n L
ML , 1, 1

,m
~

= ={ } and the corresponding

projectedMLFisher information F j l j l
n L

ML , 1, 1
,m~

= ={ } .

(iv)Minimize theMRSE (evaluatedwith the projected Fisher information using and averaged over all L datasets)with either s s0= or c c0=
and set tomeasure the optimal m kopt, .

(v) Increase k by one and repeat Steps(i) through (iv) until k=K.

Figure 1.Plots of (a), (c) uniform-prior credible and (e) plausible intervals, as well as (b), (d), (f) the corresponding RSE andMRSE
quantities for a uniform sample of r constrainedwithin the 0 interval r0.2 0.7  and a fixed two-outcome POM
p r p p1 2, 11 2 1= + = -[ ( ) ]used for collecting data of sample sizeN=100. Circularmarkers denote theML estimators, and lines
with filled circlesmark intervals that contain rwhereas thosewith empty circlesmark intervals that do not, with the correct probability
dictated by c as it should be. Panels (a) and (b) depict the situation of a fixed s s 0.050= = , and panels (c) and (d) concern that of a
fixed c c 0.950= = . Every interval in (a) and (c) are constructedwith a single dataset. The theoretical RSE (from (7)) does not usually
match the simulated one sinceN is small.
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4.3. Adaptive scheme for plausible regions
A similar adaptive protocol can be developed tominimize

F F
FV

d d
MRSE Tr 1

log 2

2

log Det

2
: 25

d
plaus 1

2
0 p

= +
+

+
+

-
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) { }

( ( ) ) ( { }) ( )( )

MRSEminimization for plausible regions

(i)Collect k with the setting mk and compute the d-dimensional rML with the accumulated dataset , , , k1 2  ¼{ }.
(ii) Set the a posteriori state r0 MLr =  , and generate L simulated datasets from 0r for each of nmmeasurement variables. Here nm should be a

reasonable number ofmeasurement-setting variables mj j
n

1
m
={ } that uniformly covers m .

(iii)With a total of Lnm simulated and kmeasured datasets, obtain the projectedML estimators r j l j l
n L

ML , 1, 1
,m

~
= ={ } and the corresponding

projectedMLFisher information F j l j l
n L

ML , 1, 1
,m~

= ={ } .

(iv)Minimize theMRSE (evaluatedwith the projected Fisher information and averaged over all L datasets)with critl l= and set tomeasure

the optimal m kopt, .

(v) Increase k by one and repeat Steps(i) through (iv) until k=K.

Figure 2. Similar plots as in figure 1 forN=10 000, where all other specifications remain unchanged. The RSE andMRSE are on
average lower than those in figure 1 by about two orders ofmagnitude. This is consistent with theway the credible intervals respond to
an increase inN.When c=0.95, all intervals become shorter, andwhen s=0.05, the intervals adjust their centers to increase the
statistical coverage of r. All intervals eventually align tominimize the average distance from r.
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4.4.Differences fromknownBayesian adaptive schemes
Beforeweproceedwith the examples, it is timely tomentionhere that there exist adaptive schemes that choose
optimal configurations for enhancing the tomographicquality of point estimators, for instance, in trackingdrifts in
quantumstates andprocesses [12, 13]. Theprimarymechanismbehind these adaptive schemes is to improve
accuracies of point estimatorsmeasuredbyobjective functions of theposteriorHessian that encodes geometrical
properties ofBayesian region around theposteriormaximumin the limit of largeN.

We emphasize that these previously proposed schemes are of a different qualitative nature from that of the
adaptiveMRSEminimization schemes presented here. The present concern is the accuracy of an error region, as
opposed to a single estimator. In this case, not only are the geometrical properties of the Bayesian region
around rML important in our considerations, but also the quality of every state within relative to the unknown
true parameter r .Maximizing theMRSE therefore operates on a higher hierarchical level—it is thewhole error
region, namely the point estimator rML and surrounding error states, that collectively possesses themaximum
(average) accuracy (minimumMRSE), not just rML .

That being said, the idea of region accuracy and itsmaximization not only forms one bridge that connects
parts of frequentist and Bayesian elements, but also directly support the Bayesian spirit that surrounding states
of rML are just as important (according to the prior) in parameter error analysis. The adaptivemethods
established in sections 4.2 and 4.3 aremeant for this distinct purpose.

5. Examples

5.1. Phase-shifted homodyne interferometer (d= 1)
An important single-parameter estimation task in quantum information is phase reconstruction for an
interferometer with quantum input resources [14–16]. A very common type of interferometer is the homodyne
measurement setup [17–20] that is employed in continuous-variable quantum tomography and cryptography.
An interesting case arises when both the source (mode a) and local oscillator (LO) arms of the homodyne setup
differ by an unknown relative phase r f= that can bemodeled by the phase-shifter described by a unitary
operatorU e a aif = f( ) †

. The job is to characterize the unknown phasef for the interferometer setup, which is a
one-dimensional problem (d= 1).

It is known in [21] that using a squeezed-vacuum state z zñá∣ ∣ formode a saturates the quantumCramér–Rao
bound inf estimation, where the Born probabilities

p x ,
e

2
,

1

2
cosh 2 cos 2 2 sinh 2 , 26

x 2

,
2

,
2

2
,

2

J
ps

s z J f z

=

= + -

J

s

J f

J f

- J J f

( )

[ ( ) ( ) ( )] ( )

/

encode the unknownphasef, the (real) squeeze parameter ζ and the homodyne local oscillator (LO)phaseϑ.
The adaptive schemes in section 4 are readily applicable to this one-dimensional quantum estimation

scenario. They equivalentlymaximize the Fisher information

F N
sinh 2 cosh 2 2

2
27

2
,

2 2

,
2

z z s

s
=

- - J f

J f

( ) [ ( ) ]
( )

for this problem. The optimal LOphase m cos tanh 2opt opt
1J f z= = - - ( ) that achieves themaximum

depends onf, and the adaptive schemes asymptotically select this value without this knowledge. Figures 3 and 4
demonstrate the advantage of employing adaptive schemes over non-adaptive ones in increasing region
accuracies with afixed total number of copiesN and ζ by performing the relevant optimization over the space m
of LOphase m J= . Figures 3 and 4 compare the difference inMRSE between adaptive and non-adaptive IC
schemes. Amore sophisticated second example in quantummetrology shall follow.

5.2. Three-path interferometer (d= 2)
Onemay generalize a typical two-arm interferometer, such as the homodyne setup discussed previously, to a
three-arm interferometer (modes a, b and c) of unknown relative phases r 1 2

Tf f= ( ) in the three arms, with 1f
being the phase difference betweenmodes a and c, and 2f between b and c. Such an interferometer poses a two-
parameter estimation problem andmay bemodeledwith the ordered sequence offirst a beam tritter (U3),
followed by a three-armphase shifter U ,1 2f f[ ( )], andfinally another beam tritter
—U U U U, ,three path 1 2 3 1 2 3f f f f=( ) ( )‐ —, where
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=
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⎝
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⎞

⎠
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To estimate a given unknown r , we shall suppose that incoming photons are initially in the three-mode
input state 1, 1, 1 1, 1, 1r = ñá∣ ∣ to be described by a tripartite Fock state, which, after traversing the
interferometer that is additionally encodedwithmeasurement control phases m 1 2

Ty y= ( ) for tuning the
final estimation accuracy, would then encounter idealized photon-counting detectors that result in the 10Born
probabilities p n n n U, ; , , , , 1, 1, 1n n n, , 1 2 1 2 1 2 3 three path 1 1 2 2

2
1 2 3

y y f f y f y f= á - - ñ( ) ∣ ∣ ( )∣ ∣‐

Figure 3.Plots of (a) the credible-interval properties and (b) MRSE cred( ) for r=1.179 and a fixed squeeze parameter 0.7z = .While
all numerical schemes are executedwith onlyML estimators, theMRSE graphs are plottedwith the true parameter to show the correct
accuracies, just like any analysis of the pointMSE. Aprimitive prior that extends to thefinite range 0 2 f p is assumed in the
simulation as prior knowledge about the unknown relative phase r. HereN=1000 copies are distributed equally toK=10 adaptive
steps that are carried out by each adaptive protocol. The non-adaptive versionsmeasure thefixed LOphase 1.837J = throughout the
run, which is less efficient than their adaptive counterparts that beginwith the same LOphase and eventually converge to the optimal
LOphase subject to the constraint imposed on  (fixed s or c).

Figure 4.Plots of (a) the plausible-interval properties and (b) MRSE plaus( ) for 1.179f = with identical specifications as infigure 3.We
see a reduction inMRSEwhen the adaptive scheme is applied for such intervals.
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(n n n 31 2 3+ + = ).We refer the interested Reader to the supplementary information of [22] for detailed
calculations of F and p , ; ,n n n, , 1 2 1 21 2 3

y y f f( ), and instead provide a comparison between adaptive and non-

adaptive protocols for such a two-parameter phase estimation problemwithfigures 5 and 6.

5.3. Squeezed state characterization (d= 2)
The third example thatwe shall investigate is related toGaussian states, which are important resources in
quantum information [23–26]. Every single-modeGaussian state (of knownmean) can be fully specified by the
covariance of its Gaussian quasiprobability distribution. For simplicity, we shall again take homodyne detection
as the POM forGaussian state characterization in this section. For a given orientation angleα of its phase-space
quasiprobability distributionwith respect to the x phase-space ordinate is known, its temperatureμ and squeeze
parameter ν, the covariance of theGaussian state is given by

Figure 5.Plots of (a) the credible-region properties and (b) MRSE cred( ) for the true parameter pair , 0.5, 1.01 2f f =( ) ( )with the step
number k. In each step,N=500 idealized photon-counting events are taken, so that at the end of every run, the observermeasures a
total ofN=5000 copies of data. The parameter space 0 2 0 20 1 1 2 2    f f p f f p= ´{ ∣ } { ∣ } is defined by the primitive
prior with respect to 1f and 2f . Similar to the one-dimensional parameter estimation scenario in section 5.1, the non-adaptive
schemes collect data with a fixed setting m 0, 0= ( ), whilst the adaptive schemes actively search formore optimal m sk at every step by
analyzing collected data.

Figure 6.Plots of (a) the plausible-region properties and (b) MRSE plaus( ) for the Gaussian squeezed state of parameters ,1 2f f =( )
0.5, 1.0( ). Similar behavior is witnessed here with the same figure specifications as figure 5.
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The task of characterizing G has been studied in [27–31].
An interesting situation iswhenμ is preliminarily known (possibly from thermal-light calibrations) and

normalized, andwearenow interested in characterizing the squeezingproperties r Tn a= ( ) of thisGaussian state
[32]. It canbe shown that if an IC setting m 1 2

TJ J= ( ) consisting of apair of LOphases ismeasured in such a two-
parameter estimationproblem, the complete two-dimensional Fisher information F F F1 2J J= + ( ) ( ) is the sum
of its independent Fisher information components,where F J ( ) contains the elements
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Figures 7 and 8 illustrate, once again, how adaptive schemes are indeed extremely useful for constructing
muchmore accurate Bayesian regions forML estimators whenever the observer begins the parameter estimation
experiment with poorly chosenmeasurement-setting variables, which frequently occurs as r is unknown.

6. Conclusion

The key results of this article revolve around the definition of region accuracy, which is introduced to endow
every Bayesian error regionwith the notion of a frequentist-flavored statistical accuracy (averaged over the entire
error region) relative to the unknown true parameter of interest. The region accuracy turns out to domore than
just this: it treats the point estimator and its surrounding states within the Bayesian region on equal footing (up
to the prior distribution) and endows aMSE collectively. This natural concept elucidates the statistical
consequences of eitherminimizing the credible-region sizewith fixed credibility, or the dual action of
maximizing its credibility with fixed size—both actions increase the region accuracy consistent with our
intuitive understanding of these Bayesian regions.

Efforts are then spent on establishing adaptive strategies to optimize region accuracy given only collected
data, the dimension of a given estimation problem and no other assumptions about the true parameter. These
adaptive procedures are applied to practically interesting examples in quantummetrology andGaussian state
characterization, all of which agree with their positive estimation performance.We believe that these adaptive

Figure 7.Plots of (a) the credible-region properties and (b) MRSE cred( ) for , 3.2580, 1.0517n a =( ) ( ), where 1000 copies are
measured in each step, which tallies to a total ofN=10 000. The primitive prior assigned for the simulations results in thefinite
parameter space 1 5 0 20    n n a a p= ´{ ∣ } { ∣ }. All schemes, regardless of whether they are adaptive or not, start with
the initial LOphase pair , 0.27, 1.01 2J J =( ) ( ), and the adaptive schemes findmuchmore optimal phase pairs to achieve the
minimumMRSE.
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numerical schemes, togetherwith the asymptotic techniques in the companion article [2], shall form a useful
toolkit for Bayesian region construction in practical experimental settings where the dimension of the problem
and data sample size are at leastmoderately large.
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AppendixA. The derivation of (7)

Following appendixA in [2], wewrite the numerator of rRSE ( ) as
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Thefirst termof (A.2), which is the secondmoment for amultivariate Gaussian distribution, can be calculated
by noting the calculus identity A A A ADet Det 1d d = -{ } { } for any full-rank A:

Figure 8.Plots of (a) the plausible-region properties and (b) MRSE plaus( ) for the Gaussian squeezed state of parameters ,n a =( )
3.2580, 1.0517( ). Once again we see the significant reduction in theMRSE using the adaptive numerical scheme for plausible
regions, in contrast with theMRSE corresponding to the non-adaptive one.
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The second term simply amounts to (A.3) in [2]. Altogether we have
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The t integrals can be handled in exactly the samemanner depicted in appendixAof [2], which leads to the final
answer.

Appendix B. The derivation of (12)

For a d-dimensional full-rank F offixed determinant F aDet ={ } and trace F bTr ={ } , the largest eigenvalue

dl from the ordered sequence d1 2  l l l¼ must satisfy the trivial inequality bd l , and the smallest
eigenvalue
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d d
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from above. Then clearly, if F BTr { } for some large constantB, a property of a trace class Fisher information,
the inequality in (12) is achieved.

As a side remark, we remind the Reader that the occasional pj=0 for some POMand r does not violate the
trace-class property of F , since these zero-probability events are ignoredwhen defining rL ( ∣ ) in the absence of
experimental imperfections.

AppendixC. Threshold values for the dual strategies on plausible regions

The task is to decrease the upper bounds of r cMRSE ;plaus ( )( ) and r F FsMRSE ; ,plaus ( ( ))( ) . For the upper bound
of r cMRSE ;plaus ( )( ) , the relevant function of interest is y c ce 1c
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maximum. Thismaximum stationary point can be obtain by calculating thefirst-order derivative
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for the inverse incomplete Gamma function. Setting y cd d 01 = then gives the solution
c d d1 2, 1 2 2 1max = - G -( ) ( )!. To show that cmax is indeed themaximum, one can calculate the second-
order derivative
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evaluated at c cmax= , which is clearly negative. This implies that beyond c cmax> , y c1( ), or the upper bound of
r cMRSE ;plaus ( )( ) , decreasesmonotonically.

To decrease the upper bound of r F FsMRSE ; ,plaus ( ( ))( ) monotonically, it suffices to obtain the threshold
value for FDet{ }beyondwhich Fs ( ) dropsmonotonically. Thismeanswe need to look at
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as it should be. So if FDet{ } increases beyond the threshold of V2 e d 2
0p( ) ( ), then swill decreasemonotonically.

These two threshold values (one for s and one for c) coincidewith the common value e 0.6065crit
1 2l = »- .

AppendixD. The conservativeness of averaging (7)

By invoking the asymptotic techniques in [2] used to copewithCase 2 and 3, we recall that the relevant Bayesian
region is essentially a truncated hyperellipsoid with 0¶ , and that this truncationmay be approximated to a
cut by a hyperplane for largeN. The general integral r rI fd ò= ¢ ¢( ) ( ) is then simply a sumof values of the

function f in such an approximated truncated hyperellipsoid.
To simplifymatters, we note that the truncated hyperellipsoid ismappable to a truncated hypersphere of

someλ-dependent radius R R= l in the diagonal basis of the covariance for the hyperellopsoid, so that we
essentially have I IS capd h1 » - ⧹ , the truncated hyperspherical integral with a cap of height h h R0  = l

removed. By invoking the hyperspherical coordinates and taking r rf 2¢ = ¢( ) (the squared errorwith the center
of the hypersphere assuming small statisticalfluctuation r r 0ML» = ), wemaywrite

I
d

R

d d

R h

2 1 2

2 1
d sin

2

1

2 cos
D.1

S

d h R
d

d d

cap

1 2

0

cos 1
2

2 2

d h1

1

ò
p

J J

J

=
-

´
+

-
+

-

- -
-

+ +

-

-

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

( )!
( )!

( )

( )

⧹
( ) ( )

after some simple geometry. The truncated volume ( rf 1¢ =( ) ) is also given by

V
d

R

d d

R h

2 1 2

2 1
d sin

1

cos
. D.2

S

d h R
d

d d

cap

1 2

0

cos 1
2

d h1

1

ò
p

J J

J

=
-

´ -
-

- -
-

-

-

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

( )!
( )!

( )

( )

⧹
( ) ( )

Altogether, we have r h R I VRSE RSE ; ,d S Scap capd h d h1 1
= = - -( ) ⧹ ⧹ .

The simple symmetry fact that r rR R RRSE ; 0, RSE ; ,d d=( ) ( ) forms thefirst key condition for the
conservativeness proof of (8). The second key condition for the proof is obtained by observing that the fraction
of the integrand for IS capd h1- ⧹ to that forVS capd h1- ⧹ strictly increases withϑ. It therefore suffices to prove the
followingmathematical lemma for discrete summations and carry it over to integrations, which are also limited
summations:

Lemma. Let a 0j j
N

0 ={ } and b 0j j
N

0 ={ } for which a b a b
j

N
j j

N
j0 0 0 0å å= = = and a b a bj j j j1 1< + + (strictly

increasing fractions) for j N1   . Then a b a b
j

k
j j

k
j0 0 0 0å å <= = for k N1 1  - and there is exactly

one uniqueminimum value at k k*= .

Proof.Define t k a b
j

k
j j

k
j0 0åº å= =( ) such that a b t t N00 0 = =( ) ( ).Wefirst note that

a b a a b b0 0 0 1 0 1 + +( ) ( ). If not, a b a b a bN N0 0 1 1< < < andwe have eventually the inequality
t k t k 1< +( ) ( ) for k N0 1  - . This contradicts the initial condition t t N0 =( ) ( ). Next, the fact that

k k N t k t k1, 1 1* * *$ = Î - +[ ] ∣ ( ) ( ) is obvious, andwhat remains is to show that k* is a unique point.
This is straightforward since t k t k t k a b1 k k1 1* * * * * + + +( ) ( ) ⟹ ( ) , and so the strictly increasing
fraction chain then tells us that t k t m* ( ) ( ) for k m N* < . ,

The above lemma implies that r rR R RRSE RSE RSE ; 0, RSE ; ,d dCAT = =( ) ( ), which implies that the
categorical RSE is an overestimate of the actual RSE for any d. The average sumof all these overestimates over all
possible data then gives an overestimatedMRSE. This is precisely the conservativeness property of (8).
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