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A B S T R A C T

We show that contrary to the claim in Feng and Wei (2017), the quantum Fisher information itself is not a valid
measure of the coherence based on the resource theory because it can increase via an incoherent operation.

In Ref. [1], the authors claim that the quantum Fisher information
(QFI) is a coherence measure that satisfies the conditions suggested by
Baumgratz et al. [2]. Here we demonstrate the opposite with a clear
counterexample for which the QFI increases via an incoherent opera-
tion.

The resource theory of coherence [2] with respect to a fixed basis
〉i{| } can be constructed by a set of incoherent states ∈δ Π that contain

only diagonal components, i.e., = ∑ 〉〈δ p i i| |i i and a set of incoherent
operations Φ which map every incoherent state into another incoherent
state, i.e., ⊆Φ(Π) Π. A coherence measure C ρ( ) for state ρ should then
satisfy the following conditions [2]:

• (C1) ⩾C ρ( ) 0 and =C ρ( ) 0 iff ∈ρ Π.

• (C2a) Non-increasing under an incoherent completely positive and
trace preserving operation OI , i.e., O⩾C ρ C ρ( ) ( [ ])I .

• (C2b) Non-increasing on average by selective incoherent operations,
i.e., ⩾ ∑C ρ p C A ρA p( ) ( / )n n n n n

† , where Kraus operators An is an in-
coherent map, = ∑ρ A ρAΦ( ) n n n

† and =p ρA ATrn n n
† .

• (C3) Convexity ∑ ⩾ ∑p C ρ C p ρ( ) ( )n n n n n n .

The authors of Ref. [1] claim that the QFI with respect to a given
Hamiltonain H
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satisfies all the conditions for a coherence measure (C1)–(C3) with re-
spect to the eigenbasis of the Hamiltonian H, where λi and 〉λ| i are ei-
genstates and eigenvalues of the quantum state ρ, respectively.

However, the proof of (C2) for the QFI is incorrect. There exists a
counterexample in which an incoherent operation can increase the QFI.
We consider a Hamiltonian in an N-level system with equal energy
spacing,
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=

H n n n| |.
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Assume that a quantum state 〉ψ| is initially given by

〉 = 〉 + 〉ψ| 1
2

(|0 |1 ).

We consider an incoherent unitary operation

∑= 〉〈 + 〉〈 + 〉〈 + 〉〈
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−

U N N n n| 1| |1 | |0 0| | |
n
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2

1

(1)

which simply exchanges 〉|1 and 〉N| , while leaving the other eigenstates
unchanged. It is important to note that U as an incoherent operation
maps any incoherent state into another incoherent state.

Under this incoherent unitary 〉U ψ,| evolves to

〉 = 〉 + 〉U ψ N| 1
2

(|0 | ).

Using the fact that the QFI equals to four times of the variance of H for a
pure quantum state, we can show that QFI before and after the in-
coherent unitary U is given by 〉 =F ψ H(| , ) 1 and 〉 =F U ψ H N( | , ) 2,
respectively. It is thus immediately clear that the QFI can increase
through an incoherent operation, and 〉 > 〉F U ψ H F ψ H( | , ) (| , ) for every

>N 2. We conclude that the quantum Fisher information in general
cannot be a valid coherence measure in the context of the resource
theory of coherence formulated in Ref. [2].

In particular, we point out some misleading points given in Ref. [1].
In the proof of (C2a) in Ref. [1], the following unitary transformation
was introduced:

=ρ θ U ρU( ) ,θ θ
†

where = −U iθHexp( )θ . Then an operator monotone function

https://doi.org/10.1016/j.rinp.2018.04.072
Received 23 February 2018; Received in revised form 13 April 2018; Accepted 29 April 2018

⁎ Corresponding author.
E-mail address: jeongh@snu.ac.kr (H. Jeong).

Results in Physics 9 (2018) 1594–1595

Available online 08 May 2018
2211-3797/ © 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/22113797
https://www.elsevier.com/locate/rinp
https://doi.org/10.1016/j.rinp.2018.04.072
https://doi.org/10.1016/j.rinp.2018.04.072
mailto:jeongh@snu.ac.kr
https://doi.org/10.1016/j.rinp.2018.04.072
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rinp.2018.04.072&domain=pdf


� �→+ +f : defines a positive linear mapping � � � �= −f ( )ρ
f

ρ ρ ρ
1 with

� =A ρA( )ρ and � =A Aρ( )ρ that leads to a generalized QFI function [3]

�= ∂ ∂−F θ ρ θ ρ θ( ) Tr[ ( )( ) ( ( ))].ρ
f
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Based on the monotonicity of f, the following inequality holds for the
linear mapping �ρ

f

� �∂ ∂ ⩽ ∂ ∂− −ρ θ ρ θ ρ θ ρ θTr[Φ( ( ))( ) Φ( ( ))] Tr[ ( )( ) ( )],θ ρ
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where the proof is given in Ref. [3]. However, it is important to notice
that the QFI after acting incoherent operation Φ is actually given by

�= ∂ ∂−F ρ H ρ θ ρ θ(Φ( ), ) Tr[ Φ( )( )( ) Φ( )( )]θ ρ
f

θΦ( )
1

by choosing an appropriate operator monotone function f. Thus the
following condition

= =ρ θ ρ θ U ρ UΦ( ( )) Φ( )( ) Φ( )θ θ
† (3)

is additionally required for an incoherent operation to prove (C2a)
completely by following the proof given in Ref. [1]. We point out that
this is not the case in general, since =U ρU U ρ UΦ( ) Φ( )θ θ θ θ

† † is a stronger
condition than ⊆Φ(Π) Π when H has nondegenerate eigenvalues. In
fact, the unitary operation given by Eq. (1) is an example of an in-
coherent operation that satisfies ⊆Φ(Π) Π but does not satisfy Eq. (3).

A similar issue can be raised concerning the proof of (C2b). The
authors in Ref. [1] assumed that the dynamic process of a system can be
expressed by a unitary operation in addition to an ancillary state 〉ψ| B
and Hamiltonian HB,

= ⊗ 〉 〈ρ t V ρ ψ ψ V( ) ( (0) | |) ,AB A B
†

where the unitary operator V satisfies

⊗ + ⊗ =V H I I H[ , ] 0.A B A B (4)

The selective operation is then defined by the projection 〉β{| }l B onto the
eigenstates of HB. Again, U given by Eq. (1) for = ∑ 〉〈

=
H n n n| |A n

N
1 does

not satisfy Eq. (4) although it is a valid incoherent operation, i.e.
⊗ + ⊗ ≠U H I I H[ , ] 0A B A B regardless of the choice of HB and 〉ψ| B.

This implies that a unitary evolution ⊗ 〉 〈V ρ ψ ψ V( | |)A B
† in addition to

the projection onto the support of HB is not sufficient to describe every
selective incoherent operation suggested in Ref. [2].

Nevertheless, the QFI and f-dependent QFI functions studied in Ref.
[1] may be useful quantities to characterize and quantify coherence
when we restrict incoherent operations to a set of translationally-cov-
ariant operations satisfying Eq. (3). In this case, the quantifiable
amount of coherence resource can be interpreted as the degree of
broken symmetry under a group transformation [4]. In this point of
view, beginning from its foremost application in quantum metrology

[5], the QFI and related asymmetry measures have been studied in
various contexts including reference frame alignment [6], quantum
speed limit [7], and quantum macroscopicity [8,9].

As we described in this paper, however, it should be carefully ad-
dressed in which regime quantum coherence is characterized among
different sets of incoherent operations, especially between a incoherent
map related to a fixed set of incoherent basis 〉i{| } and a set of trans-
lationally-covariant operations with respect to some generator H. These
difference notions of coherence have been well described in Ref. [10].

We finally point out that although the QFI itself is not a valid
measure of the coherence, a proper coherence measure can be defined
by optimizing the QFI as F ρ Hmax (Φ( ), )Φ over all possible incoherent
operations Φ as detailed in Ref. [11].
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