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different measures proposed to define and quantify macroscopic quantum superpositions and extend
such comparisons to several types of optical quantum states actively considered for experimental
implementations within recent research topics.
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1. Introduction

Many quantum phenomena, often radically different from our
intuitive predictions, are attributed to the fundamental principle
of quantum superposition that a physical system can be in a linear
superposition of two distinct states. When the principle of
quantum superposition is applied to multipartite physical systems,
it manifests another interesting feature of quantum mechanics,
namely quantum entanglement. Quantum entanglement is non-
classical correlation between local systems and is now widely
referred to as a key resource for quantum information processing.
Quantum phenomena are observed typically on microscopic
scales. However, as illustrated in Schrödinger's famous cat paradox
[1], quantum mechanics does not preclude, in principle, the
possibility of a macroscopic object being in a quantum super-
position or being a part of quantum entanglement. Natural
questions then follow. If “macroscopic and quantum” is somehow
a possible combination, how can we define, characterize and
quantify “macroscopic quantumness” or “quantum macroscopi-
city”? Further, how and to what extent can we implement such
macroscopic quantumness?

Of course, scientists have tried to answer these questions. In
the early days of quantum mechanics, such attempts were pri-
marily in the area of interpretations or philosophical discussions,
as they are not within the reach of experimental tests or imple-
mentations. Since then, however, a remarkable development of
quantum and atom optics has been brought about, which has
paved a way to control and detect individual quantum systems at
the level of single photons and atoms. Based on this progress,
further efforts are being made to collectively control larger
quantum systems, that is also closely related to the ability to
perform quantum information processing [2]. Now, we may say
that a significant amount of efforts made in physics and optics
research in the last few decades are more or less related to
explorations of macroscopic quantumness. In this paper, we
review two major research topics on macroscopic quantumness
– its quantifications and physical implementations using optical
fields – and attempt to make remarks on them.

2. Characterization and quantification of macroscopic
quantumness

We want to know whether and/or how much a physical system
is both macroscopic and quantum. Needless to say, it is not
sufficient for a state to be either macroscopic or quantum.
It should be quantum-mechanically macroscopic or macroscopically
quantum. This point may sound too obvious to make, but it is
nontrivial to technically define and quantify macroscopic quan-
tumness. Leggett posed a question along this line as “What is the
correct measure of ‘Schrödinger's-cattiness’?” and commented,
“Ideally, one would like a quantitative measure which corresponds
to our intuitive sense” [3].

A number of proposals have been made for quantification of
macroscopic quantum superpositions [4–16] based on the effective
number of particles that involve the superposition [4,5,11,13],
distinguishability between the constituent states [5,7,9,10,13,16]
and operational interpretations [7,14,15]. In the context of this
paper, we would like to pose three requirements for a desirable
measure of macroscopic quantumness. First, it should be applic-
able to a wide range of states, not limited to a specific type of
states. Second, we prefer to have a measure that quantifies the
degree of a genuine superposition against a classical mixture,
together with its effective size factor. In other words, it should be
applicable not only to pure states but also to mixed states. Third, if
a state is given, the degree should be unambiguously determined.

These points are important because our motivation is to compare
different types of states being considered as candidates for
macroscopic quantum superpositions using a conclusive measure.
In view of these points, we shall review in chronological order
such measures proposed to quantify macroscopic quantumness.

2.1. Disconnectivity

In 1980, Leggett in his pioneering work defined a measure
called “disconnectivity” D [4] that quantifies genuine multipartite
quantum correlations. Suppose that we are interested in charac-
terizing an N-mode bosonic system ρN . We first obtain a reduced
density operator ρn ðnoNÞ from ρN by tracing out every mode
except for n arbitrarily chosen modes. Quantity δn is introduced as

δn ¼
Sn

minmðSmþSn�mÞ
ð1Þ

where Sn ¼ �Tr½ρn ln ρn� is the von-Neumann entropy of ρn. By
definition, δn is set to be 1 when both the numerator and the
denominator are zero, and δ1 � 0. The disconnectivity D is defined
as the largest integer n that makes δn the smallest. For an ideal
Greenberger–Horne–Zeilinger (GHZ) state p jϕ〉�Nþjϕ?

〉�N with
an orthogonal basis fjϕ〉; jϕ?

〉g, it is clear that SN¼0 and Sn¼1 for
naN. Its disconnectivity is then D¼N that is the largest n
minimizing δn to be 0. However, D is always 1 for mixed states
p ϕ

�� �
ϕ �Nþ ϕ?

��� E
ϕ? �NþΓð ϕ

�� �
ϕ? �NþH:c:Þ

��D���D���D
regardless of

the values of N and Γ as far as Γo1. This means that macroscopic
quantumness for partially mixed states cannot be identified by D.

Leggett pointed out that the so-called “macroscopic quantum
phenomena” such as superconductivity or superfluidity do not
require the existence of a high-D state. Superfluidity can be
explained by a product of identical bosonic states of which
disconnectivity is obviously 1. A superconducting system
described by N Cooper pairs, ðj↑↑〉þeiϕj↓↓〉Þ�N also shows a small
value of disconnectivity D¼2 regardless of N. On the other hand,
multi-mode quantum correlations, in the form of pure states,
always give large values of D.

Even though disconnectivity sensibly quantifies multipartite
correlations for pure states, it is not always sensitive to distin-
guishability between the constituent states. This point shall be
clearer in the following example discussed by Dür et al. [5].

2.2. Effective size of Greenberger–Horne–Zeilinger type states

Dür et al. [5] considered the effective size of a generalized form
of the Greenberger–Horne–Zeilinger (GHZ) state:

jψϵ〉¼
1ffiffiffiffi
K

p ðj0〉�Nþjϵ〉�NÞ ð2Þ

where jϵ〉¼ cos ϵj0〉þ sin ϵj1〉. The disconnectivity of this state is
found to be D¼N regardless of ϵ even though ϵ obviously
contributes to the distinguishability between j0〉�N and j1〉�N .
It would be of particular interest to know whether jψϵ〉 can still be
a macroscopic superposition in comparison to an ideal GHZ state
when ϵ takes a small value. To put it concretely, they attempt to
find out what size of the ideal GHZ state (i.e., jψϵ ¼ π=2〉) state jψϵ〉

is equivalent to. Two different methods lead to the same result
that the effective size of state jψϵ〉 as a macroscopic superposition
approaches Nϵ2 when ϵ51. The first method is based on the rate
of decoherence and the second is related to the GHZ entanglement
distillation by local operations and classical communication
(LOCC). Consider a dephasing process that is described by a
completely positive map:

EðρÞ ¼ p0ρþð1�p0Þσzρσz ð3Þ

H. Jeong et al. / Optics Communications 337 (2015) 12–21 13



where p0 ¼ ð1þe�γtÞ=2, t is time, γ is the dephasing rate, and σz is
the Pauli-z operator. They show that the trace-norm of the off-
diagonal elements for state jψϵ〉 is e

�γNϵ2t when ϵ51 and that it is
e�γNt for state jψϵ ¼ π=2〉. Based on this comparison, they conclude
that the effective size of the generalized GHZ state jψϵ〉 is
equivalent to that of an ideal GHZ state jψϵ ¼ π=2〉 of size Nϵ2 for
small values of ϵ. This conclusion is also derived from depolarizing
decoherence where it gives exactly the same decay rate. Of course,
this analysis is limited only to a very specific type of states in the
form of Eq. (2).

2.3. Interference-based measure

Björk and Mana's suggestion [7] is based on their observation
that a quantum superposition is more sensitive than its constitu-
ent states for interferometric applications. Let us consider a pure
state jψ 〉 with a measurement outcome distribution of observable
Â as

〈Ajψ 〉 2 ¼ ψ ðAÞ 2 ¼ f ðA�A1Þþ f ðA�A2Þ
�������� ð4Þ

where f ðA�AiÞ is a function of a reasonably smooth form centered
at Ai with widthΔA. The operator eiθÂ is applied to state jψ 〉 where
θ corresponds to the degree of the interaction time and strength.
Generally, the overlap between the original and evolved states is

j〈ψ jeiθÂ jψ 〉j ¼ 2 cos
θðA2�A1Þ

2
�
Z

dA eiθAf ðAÞ ;j
����

����
���� ð5Þ

which becomes zero when θ¼ θsup � π=ðA2�A1Þ. In other words,
the original state jψ 〉 evolves to a state that is orthogonal to the
original one at a certain interaction time θ¼ θsup. Meanwhile, if
there was only a single peak f ðA�AiÞ (i¼1 or 2) for the distribution
of jψ 〉, the overlap simply would be

R
dA eiθAf ðAÞj

�� regardless of i
and its first local minimum (or a half of the initial value) would be
found at θ� θsing � π=ΔA. The measure of a macroscopic super-
position in terms of interferometric sensitivity is defined as the
ratio of the two interaction times:

θsing

θsup
¼ jA2�A1j

ΔA
: ð6Þ

Björk and Mana's approach has a distinguishing feature as an
operational measure based on a physical application even though
it is devised only for pure states. There is an ambiguity applying
this measure to mixed states about how close the evolved state
should be to the orthogonal state in determining θsup. This may
lead to ambiguity in comparing different types of states.

2.4. Indices p and q based on correlations of local observables

Shimizu and Miyadera proposed index p [6] that determines
whether a given form of N-mode state jψN〉 becomes macroscopi-
cally quantum as N increases. The index p is obtained as

max
Â

Vψ ðÂÞ ¼OðNpÞ; ð7Þ

where Vψ ðÂÞ is the variance for observable Â with state jψ 〉, N is
the number of modes, and f ðNÞ ¼ OðNpÞ if limN-1f ðNÞ=Np is a
nonzero constant. The maximum in Eq. (7) is taken over all
possible additive observables represented by Â ¼∑N

n ¼ 1Ân where
Ân is a local observable for mode n. The value of index p is found
to be p¼2 for GHZ-type entanglement while p¼1 for a simple
product form of state. A state is considered to be macro-
scopically quantum if its index is p¼2. The index p, however,
cannot be applied to mixed states. For example, a mixed state
0j i 0 �Nþ 1j i 1 �N

������
have the same value of index p¼2 as an ideal

GHZ state.

Shimizu and Morimae generalized the measure for arbitrary
mixed states [8]. The index q for state ρ is

max
Â ;η̂

ð〈Ĉ Â ;η̂ 〉;NÞ ¼ OðNqÞ ð8Þ

where η̂ is an arbitrary projection operator satisfying η̂2 ¼ η̂ and
Ĉ Â ;η̂ ¼ ½Â; ½Â; η̂��. The correlation can be represented as
〈Ĉ Â ;η̂ 〉¼∑i;jðai�ajÞ2〈aijη̂jaj〉〈ajjρjai〉 where jai〉 is an eigenstate of
Â with eigenvalue ai. It becomes OðN2Þ so that q¼2 when there is
non-negligible Oð1Þ coherence 〈ajjρjai〉 between the macroscopi-
cally distinct states of ai�aj ¼ OðNÞ

���� . The indices p and q are
equivalent for pure state, i.e., index p is a special case of index q.

The index q, as well as index p, does not give a value for a given
state; rather it identifies what kinds (or forms) of states can scale to
be macroscopically quantumwhen they become large multipartite
states of Nb1. Therefore, it cannot be directly applied to a single-
mode state such as jak〉þjal〉 where its macroscopicity depends on
jak�alj, nor is it a quantifier of macroscopic quantumness for a
given state.

2.5. Inequality for testing macroscopic superpositions

Cavalcanti and Reid proposed an inequality of which violations
verify macroscopic superpositions of continuous-variable states
[9]. Suppose a generalized macroscopic superposition

cþ jψ þ 〉þc0jψ0〉þc� jψ � 〉 ð9Þ

and a pointer-measurement X̂ giving macroscopically ranged out-
comes x. The domain for x can be partitioned into three regions for
I¼ �1, 0, and þ1 which correspond to xr�S=2, �S=2oxoS=2
and xZS=2. If the reference value S is sufficiently large, two
regions I ¼ �1 and þ1 are called macroscopically distinct.

In contrast to Eq. (9), a mixed state

ρ¼ pLρLþpRρR ð10Þ

is not a macroscopic superposition in the sense that the outcomes
of ρL only spread for xoS=2 ðI ¼ �1;0Þ and those of ρR for
x4�S=2 ðI ¼ 0; þ1Þ. In other words, state (10) does not incorpo-
rate a macroscopic superposition since the coherence element is
〈ψ þ jρjψ � 〉¼ 0. The authors derived an inequality that should be
satisfied by state (10):

ðΔ2
avexþP0δÞΔ2pZ1 ð11Þ

with

Δ2
avex¼ PþΔ

2
þ xþP�Δ

2
� x;

δ¼ fðμþ þS=2Þ2þðμ� �S=2Þ2þS=2gþΔ2
þ xþΔ2

� x ð12Þ

where P7 ðxÞ are the normalized probability distributions for
regions I ¼ 71, and μ7 and Δ2

7 x are their means and variances,
respectively.

Cavalcanti and Reid's inequality can be applied to a wide range
of states compared to previous measures, i.e., applicable to
arbitrary single-mode continuous-variable states and may be
extended to multi-mode continuous-variable states if appropriate
measurements are defined. However, it does not provide a degree
of macroscopic quantumness, but it works as a criterion of
macroscopic quantumness for a given state with respect to an
arbitrarily chosen scale S. Its calculations involve nontrivial
numerical integrations and optimization processes. Marquardt
et al. experimentally demonstrated violations of this inequality
using Gaussian states and showed that it critically depends on
purity of the states [17].

H. Jeong et al. / Optics Communications 337 (2015) 12–2114



2.6. Measurement-based measure

Korsbakken et al. [10] suggested an effective size of an
N-particle superposition state in the form of jψN〉p jA〉þjB〉 based
on how many measurements are required to distinguish jA〉 and
jB〉. The size measure for state jψN〉 is defined by

CδðjψN〉Þ ¼
N

nmin
ð13Þ

for a given probability 1�δ ðδ51Þ of distinguishing the two
constituent states by measuring nmin number of particles. The
discrimination probability is calculated as

P ¼ 1
2
ðTr½ρðnÞ

A EðnÞA �þTr½ρðnÞ
B EðnÞB �Þ ð14Þ

where ρðnÞ
A;B are reduced density matrices for n particles (nrN) and

EðnÞA;B are positive-operator valued measurements (POVMs) acting
nontrivially only on n particles. The maximum value of the
discrimination probability is obtained when the POVM is a
projective measurement in the eigenbasis of ρðnÞ

A �ρðnÞ
B :

P ¼ 1
2
þ1
4

TrjρðnÞ
A �ρðnÞ

B :j ð15Þ

Obviously, the two constituent states of an ideal GHZ state
jGHZN〉¼ j0〉�Nþj1〉�N can be distinguished by a single particle
σz measurement so that CδðjGHZN〉Þ ¼N regardless of δ.

Korsbakken et al. applied this measure to superconducting flux
qubits [12] where a superposition of macroscopically distinct
values of currents and magnetic moments is observed. They found
that the effective size of the flux qubits is surprisingly (but not
trivially) small despite the apparent large difference in macro-
scopic observables. The reason is that only a small fraction of all
electrons contribute to the superposition, while their speeds are
high enough to yield large currents or magnetic moments.

There is an ambiguity in using this measure due to the
arbitrariness of the choice of δ. For example, the size of the
superposition in the form of jDN〉p j0〉�Nþ∑N

k ¼ 0j1〉�kj0〉�N�K is
found to be CδðjDN〉Þ ¼ 2δðNþ1Þ [14]. Therefore, for example,
which of the two states, jGHZN〉 and jDN〉, is more “macroscopically
quantum” depends on the choice of δ.

2.7. Measure based on effective number of particles participating in
the superposition

Marquardt et al. define the size of quantum superposition by a
number of particles that effectively involve the superposition [11].
More precisely, for given constituent states jA〉 and jB〉 they count
how many single-particle operations are required to convert jA〉
into jB〉 or vice versa. As a simple example, an N-product
horizontal-polarization state jH〉�N can be converted into a
vertical-polarization state jV〉�N by acting ∏N

i ¼ 1â
†
V ;iâH;i, where â†

and â are, respectively, creation and annihilation operators for
corresponding modes of the subscripts. This operation is an N
number of single-particle operations, and the size of superposition
ðjH〉�NþjV〉�NÞ=

ffiffiffi
2

p
is N.

In general, jB〉 is obtained by superposing different states as
jB〉¼∑N

d ¼ 0βdjβd〉, where jβd〉 is a state converted from jA〉 by at
least d single particle operations. The average effective particle
number is then ∑d βd

2d
���� . In Ref. [11], the authors considered

jA〉p ðâ†ÞN j0〉 and jB〉p ð cos θâ†þ sin θb̂
†ÞN j0〉 for modes a and b.

The constituent state jB〉 is expanded as

jB〉¼
∑
N

d ¼ 0
βdðθÞ b̂

†d
â†N�d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d!ðN�dÞ!

p 0〉j ð16Þ

with coefficients βdðθÞ [11]. The state b̂
†d
â†N�dj0〉 can be obtained

by applying d times of the single particle operation b̂
†
â to ðâ†ÞN j0〉

implying that its effective number is d. The average effective
number is then N sin 2 θ and it becomes N for an ideal GHZ state
of θ¼ π=2. It is obvious that this measure cannot be applied to
mixed states.

2.8. Measure I based on the phase space structure

In the phase space of mutually conjugate variables, the Wigner
function of a macroscopic quantum superposition typically shows
an interference pattern with a high frequency. Taking note of this
point, Lee and Jeong [13] defined a measure of macroscopic
quantumness for an arbitrary harmonic-oscillator state. It simul-
taneously quantifies two different kinds of essential information:
the degree of quantum coherence and the effective size of the
physical system that involves the superposition. The basic idea is
to take an integral

R
d2ξðξ2r þξ2i ÞjχðξÞj2, where χðξÞ ¼ Tr½ρeξâ† �ξnâ�

is the characteristic function for state ρ, in order to measure
“frequency” and “magnitude” of the interference fringes at the
same time in the Wigner representation. In a continuous-variable
phase space, it effectively quantifies both “how widespread” the
constituent states of a given state are and “how quantum
mechanically pure” coherences between those constituent states
are, at the same time.

The formal definition of the measure I for an M-mode
harmonic oscillator system [13] is only slightly different:

I ðρÞ ¼ 1
2πM

Z
d2ξ ∑

M

m ¼ 1
½jξmj2�1�jχðξ1; ξ2;…; ξMÞj2 ð17Þ

where χðξ1; ξ2;…; ξMÞ is the M-mode characteristic function,R
d2ξ¼ R

d2ξ1
R
d2ξ2⋯

R
d2ξM . The value �1 has been inserted to

make any coherent states or their product states (regardless of
their amplitudes) a reference with I ¼ 0, but it may be removed to
guarantee positivity of the measure [18,19]. The maximum possi-
ble value of I for an optical state is shown to be its average photon
number [13].

Assuming the photon loss condition, dρ=dτ¼ âρâ†�fâ†â;ρg=2
with τ¼(decay rate � time), it turns out that the measure is
equivalent to the purity decay rate of the state:

I ðρÞ ¼ �1
2
dPðρÞ
dτ

ð18Þ

where PðρÞ ¼ Tr½ρ2� is the purity of state ρ. This is consistent with
the rapid decay of macroscopic superpositions, and the purity
decay rate itself and Eq. (18) may be an alternative definition of I .
It is possible to detect I for optical states using overlap measure-
ments without full tomography of quantum states [20].

The measure I is applicable to arbitrary harmonic oscillator
systems including mixed and multi-mode states. It is
decomposition-independent and straightforward to calculate for
any states represented in the phase space, giving definite values
for direct comparison between different types of states.

2.9. Fisher information as a measure of genuine macroscopic
quantum effects

Fröwis and Dür suggested using the Fisher information as a
measure of macroscopic quantumness for spin systems [14]. When
estimating an unknown parameter, ϕ, caused by an unitary
evolution eiϕÂ with Hamiltonian Â, the classical limit of the
estimation uncertainty is determined by ΔϕZ1=

ffiffiffiffi
N

p
where N is

the system size. It is well known that this limit can be lowered
down to ΔϕZ1=N using a quantum mechanically correlated
probe state. More generally, the limit of the estimation uncertainty
using probe state ρ is given by the Cramér–Rao bound [21],
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ΔϕZ1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðρ; ÂÞ

q
, where Fðρ; ÂÞ is the quantum Fisher informa-

tion1 for a given additive Hamiltonian Â. Therefore, Fðρ; ÂÞ ¼ OðN2Þ
implies that state ρ is capable of the parameter estimation over the
classical limit. Noting that this improvement is attributed to long-
range quantum correlations in the state ρ, Fröwis and Dür call it a
genuine macroscopic quantum effect, not an accumulation of
microscopic effects [14]. They call a quantum state ρ macroscopic
if maxÂAAFðρ; ÂÞ ¼ OðN2Þ, where the maximization is taken over
the entire set A of additive operators.

However, there are some cases where individual particles do
not show long-range quantum correlation while local groups of
them do [14]. Therefore, the aforementioned measure needs to be
generalized to

max
Â
0
AA0

Fðρ; Â 0Þ ¼ Oðn2Þ ð19Þ

where A0 is a set of extended additive operator Â
0 ¼∑n

i ¼ 1Âi with
each Âi locally acting on n¼OðNÞ distinct groups of particles sized
Oð1Þ. As indices p and q, Fröwis and Dür's approach in the forms of
Eq. (19) cannot be directly applied to a single-mode state. Such a
measure is defined as

Neff ¼ max
Â
0
AA0

Fðρ; Â 0Þ
4n

( )
ð20Þ

giving a definite number for a given state.
This proposal is applicable to arbitrary spin systems. It was

applied to cloned quantum states to find that they are macro-
scopically quantum [22]. Fröwis and Dür also compared [14]
several measures for spin systems [5–7,10,11] and concluded that
index p and their Fisher-information-base approach detect the
most broad set of macroscopic quantum states among those.

2.10. Measure based on minimal extension of quantum mechanics

Nimmrichter and Hornberger [15] call a quantum superposition
of a mechanical system to be macroscopic, if its experimental
demonstration allows one to rule out even a minimal modification
of quantum mechanics. In order to specify such minimal modifica-
tion, they consider an additional generator LN to the von Neumann
equation for N particle density matrix ρN as

∂ρN

∂t
¼ 1
iℏ
½H;ρN �þLNðρNÞ; ð21Þ

where

LNðρNÞ ¼
1
τe

Z
d3s d3qgeðs; qÞ½WNðs;qÞρNW

†
Nðs;qÞ

�fW†
Nðs;qÞWNðs;qÞ;ρNg� ð22Þ

and WNðs;qÞ ¼∑N
n ¼ 1ðmn=meÞWnððme=mnÞs;qÞ is the weighted sum

of the single particle operators Wnðx;pÞ ¼ exp½ði=ℏÞðP̂ � x�p � X̂ Þ�
giving the position translation x and the momentum boost p of the
n-th particle of mass mn. Here, me, τe, and geðs; qÞ are the mass, the
coherence time parameter, and the normalized distribution func-
tion for the reference particle, respectively. The reference particle
is chosen to be an electron, and the distribution ge is taken to be a
Gaussian distribution with standard deviations σs and σq for
position and momentum, respectively. The role of the generator
LðρNÞ in Eq. (21) is to wipe out the coherence from the original
distribution of ρN in the position-momentum phase space.

For an experimental demonstration of a quantum superposi-
tion in a mechanical system, it rules out a certain region of the
modification parameter so that there is a lower bound of the time
parameter τe. If such a lower bound is larger, the superposition

becomes more macroscopically quantum. The lower bounds of τe
for interference experiments with neutrons, electrons, Bose–Ein-
stein condensates, and molecules are obtained [15,23], and then
the measure of macroscopicity is defined as

μ¼ log 10
τe;max

1 s

� �
; ð23Þ

where τe;max is the greatest lower bound of the time parameter τe.
State-of-the-art interferometers achieve macroscopicities of up to
μ� 12 [15]. It can be applied to any mechanical phenomena and
successfully addressed various experiments [15,23]. However, it
may require more investigations to find out whether macroscopi-
city witnessed by this measure is in line with the idea of genuine
macroscopic superpositions, for example, in the context of Refs.
[1,3,4].

2.11. Distinguishability by classical photon number measurement

Sekatski et al.'s measure for optical states is determined by how
fuzzy (or how classical) a single-shot photon number measure-
ment can be to distinguish two constituent states of a super-
position [16]. A pointer system is initially assumed to be in a
Gaussian position distribution pi(x) with variance σ2. When a
quantum state Sj i interacts with the pointer, the final distribution
of the pointer becomes [16]

pSðxÞ ¼ Tr½piðxþ â† âÞ Sj i S �:
��� ð24Þ

For instance, if Sj i is an n photon number state nj i, the resultant
distribution is exactly shifted by �n from the original one. When σ
become larger, the resolution of the detector degrades and the
detector is considered to be more “classical.” The probability of a
correct discrimination between two constituent states, jA〉 and jB〉,
is

Pσ ½jA〉; jB〉� ¼ 1
2
ð1þD½pσAðxÞ; pσB ðxÞ�Þ; ð25Þ

where D½pσAðxÞ; pσB ðxÞ� ¼ 2�1 R dxjpσAðxÞ�pσB ðxÞj is the trace distance
between the outcome distributions pσAðxÞ and pσB ðxÞ. The size of a
superposition jA〉þjB〉 is then defined by the maximum tolerable σ
for Pσ ½jA〉; jB〉� to reach a certain reference value Pg.

A straightforward example discussed in Ref. [16] is a super-
position of the vacuum and a coherent state j0〉þjα〉 (unnorma-
lized). The measure is obtained as jαj2�2ðerf �1ð2Pg�1ÞÞ2 for large
α, which is proportional to the average photon number α 2

���� for
a fixed Pg. A more controversial example is an entangled state
generated by applying the displacement operation DðαÞ ¼
expðαâ†�αnâÞ on single-photon entanglement [24]:

ψ 0
D

�� �¼ 1ffiffiffi
2

p ðj1〉ADBðαÞj0〉Bþj0〉ADBðαÞj1〉BÞ ð26Þ

This state can be rewritten as DBðαÞð þj iAj�〉B�j� 〉A þj iBÞ
with 7j i ¼ ðj0〉7 j1〉Þ=

ffiffiffi
2

p
and DðαÞ 7j i can be considered as the

constituent states of entanglement. The measure is then found to
be

2α Erf �1ð2Pg�1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
πð2Pg�1Þ2

�2

s
; ð27Þ

which is proportional to α indicating that such a state is macro-
scopically quantum.

There arises a nontrivial question. The coherent states are
considered to be the most classical states among all pure states
[25,26]. A coherent state jα〉 can be rewritten as jα〉¼ ðDðαÞjþ 〉þ
DðαÞj� 〉Þ=

ffiffiffi
2

p
, and DðαÞjþ 〉 and DðαÞj� 〉 are macroscopically dis-

tinguishable according to this approach. We then have to conclude
that a coherent state, as far as its amplitude is large enough, is a
macroscopic superposition, which would probably be

1 Fðρ; ÂÞ ¼ 2∑2N

i;j ¼ 1ðπi�πjÞ2=ðπiþπjÞj〈ijÂjj〉j2 where πi and i
�� � are eigenvalues

and eigenvectors of ρ, respectively.
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unacceptable to many researchers in the community. It could also
be controversial whether merely a local displacement operation
can generate genuine macroscopic quantumness.

3. Implementations of macroscopic quantum states of light

Various attempts have been made for generating and detecting
macroscopic/mesoscopic quantum superpositions using atomic
and molecular systems [27,28], optical setups [29–33], super-
conducting circuits [34,35], and other mechanical systems [23].
Quantum optics has provided a testbed for such experimental
implementations in free-traveling light fields. For example, there
has been remarkable progress in generating superpositions of
coherent states (SCSs) and entangled coherent states (ECSs).
Another example is entanglement between macroscopic and
microscopic systems in several different forms [36–38] in line
with Schrödinger's original paradox [1]. There are yet another
examples for generating macroscopic quantum states such as
squeezed macro–macro entanglement [39–42], GHZ-type entan-
glement [43–46] and NOON states [47–50] that are beyond the
scope of this paper. In this section, we review several of such states
and their generation schemes that have been suggested and
experimentally performed. We also discuss their degrees as
macroscopic quantum superpositions or entanglement based on
some of the measures discussed in the previous section.

3.1. Superpositions and entanglement of coherent states

Let us first consider an SCS in the form of

jSCS〉¼N φðjα〉þeiφj�α〉Þ ð28Þ

where j7α〉 are coherent states of amplitudes 7α, φ is a real
relative phase factor, and N φ is the normalization factor. The SCSs
are often referred to as “Schrödinger cat states,” provided that α is
reasonably large, probably due to the following two reasons. First,
the coherent states are known as classical states due to several
reasons [25,26,51]. A classic criterion of nonclassicality for a
quantum state is whether its P-function [52,53] is well defined
[26]. The coherent states are the only kind of pure states that have
well-defined P-functions [26]. They are also robust against deco-
herence as “pointer states” [51] and the closest analogy of classical
point particles in the quantum phase space [25]. Second, the two
coherent states, j7α〉, are macroscopically distinguishable when α
is sufficiently large; they can be efficiently discriminated using
homodyne detection with a limited efficiency. Therefore, an SCS
generates quantum interferences between these two “classical”
but “macroscopically distinct” states as an analogy of Schrödin-
ger's paradox. Schleich et al. studied nonclassical properties of
SCSs such as sub-Poissonian and oscillatory photon statistics [54].
One may also consider entangled coherent states (ECSs) and one of
the simplest forms of such states is

jECS〉¼N 0
φðjα〉jα〉þeiφj�α〉j�α〉Þ ð29Þ

with normalization factor N 0
φ.

Several measures of macroscopic quantum superpositions
confirm that SCSs and ECSs are clearly macroscopically quantum.
The values of measure I for an SCS and an ECS are found to
be I ð SCSj iÞ ¼ jαj2ð1�e�2jαj2 Þ=ð1þe�2jαj2 Þ and I ð ECSj iÞ ¼ 2jαj2
ð1�e�4jαj2 Þ=ð1þe�4jαj2 Þ for ϕ¼ 0. In the case of αb1, they are
I ð SCSj iÞ � jαj2 and I ð ECSj iÞ � 2jαj2. As another evidence, we
numerically obtain the maximum value of S for an SCS to violate
Cavalcanti and Reid's inequality (11) [9] using homodyne detection
is Smax � 2jαj which corresponds to the distance between the two
peaks of the superposition in the phase space.

3.1.1. Schemes based on Kerr nonlinear interactions
Yurke and Stoler found that a coherent state in a Kerr nonlinear

medium evolves to an SCS in the form of ðjα〉þ ij�α〉Þ=
ffiffiffi
2

p
after a

certain interaction time [55], based on the calculations for an
anharmonic oscillator coupled to a zero-temperature heat bath by
Milburn and Holmes [56,57]. They explicitly referred it to as a
“quantum mechanical superposition of macroscopically distin-
guishable states” [55], quoting Einstein and Schödinger [1,58].
Mecozzi and Tombesi showed that a type of two-mode ECSs can be
generated using a two-mode nonlinear interaction [59]. Sanders
proposed a scheme to generate ECSs using a Mach–Zehnder
interferometer with a single-mode Kerr nonlinearity [60] and later
provided a comprehensive review on these kinds of states [61].
Gerry suggested using a cross-Kerr nonlinearity in a Mach–
Zehnder inteferometer setup with two photodetectors to generate
SCSs and ECSs [62]. Similar schemes using cross-Kerr effects and
beam-splitter interferences were independently developed by
D'Ariano et al. [63] and Howell and Yeazell [64]. Paris devised a
two-step scheme that generates a small SCS using a Kerr nonlinear
effect and then amplifies it using χð2Þ nonlinearity [65]. Paternostro
et al. studied a method to generate SCSs and ECSs via cross phase
modulation in a double electromagnetically induced transparency
(EIT) regime [66]. However, all these approaches have remained as
theoretical proposals yet. The required levels of nonlinearities are
extremely demanding even though there are developing techni-
ques such as EIT to obtain giant Kerr effects [67].

Fig. 1. Non-deterministic generation methods for SCSs and their amplification
scheme [91,95,97]. (a) N-photon subtraction on a squeezed vacuum ŜðrÞj0〉 using a
beam splitter (BS) with low reflectivity (R51) and a photodetector. (b) SCS
generation scheme using homodyne detection [31,87]. Homodyne conditioning
for measurements outcomes jxjox0 using a 50:50 beam splitter (BS) and homo-
dyne detection X̂ on a photon number state jn〉. The additional (optional) squeezed
vacuum SðsÞj0〉 may be used to control the degree of squeezing r of the output SCS.
(c) The SCS amplification scheme [82]. Two small SCSs with amplitudes α may be
used to conditionally generate an SCS of a larger amplitude

ffiffiffi
2

p
α using two 50:50

beam splitters (BS1 and BS2), an auxiliary coherent state j
ffiffiffi
2

p
α〉 and two imperfect

on/off photodetectors.
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There have been trials to reduce the required levels of non-
linearities. Jeong et al. found that it is possible to use a relatively
weak single-mode Kerr nonlinearity together with a conditioning
homodyne measurement to generate SCSs [68]. The idea of using a
weak cross-Kerr interaction has been discussed in the context of
the development of the Bell-state detection [69] and quantum
computation [70,71]. It was explicitly shown [72] that a cross-Kerr
nonlinearity can be used to generate SCSs and ECSs and this
approach can overcome decoherence due to photon losses. There
exist nontrivial problems to overcome even at a theoretical level in
order to utilize the approach based on a weak cross-Kerr non-
linearity [73–76]. Recently, He et al. showed that approximately
ideal cross-Kerr effects can be obtained using relatively weak
interactions between photon pulses in atomic ensembles [77].

3.1.2. Non-deterministic schemes
Non-deterministic methods based on linear optics and con-

ditioning measurements have been investigated [78–89] since
initial attempts by several authors [78–81]. Lund et al. showed
that an SCS with a small amplitude as αo1:2 can be well
approximated (F40:99) by applying the squeezing operation on
a single photon [82]. It can be achieved by subtracting a single
photon from a squeezed state and a number of experiments have
been performed along this line [90–93]. However, this type of
experiment cannot generate two separate peaks in the phase
space with interferences between them because the resulting
state is simply a squeezed form of the single photon. Ourjoumtsev
et al. attempted a different method: a number state is divided by a
50:50 beam splitter and conditioned by a homodyne detection to
generate an SCS [31]. The experiment with a number state of n¼2
has resulted in an approximate SCS with α� 1:6 with interfer-
ences between two clearly separate peaks in the phase space [31].
It can be used to generate arbitrarily large SCSs if large number
states are available [31]. Glancy and de Vasconcelos provided a
comprehensive review on various methods for producing SCSs in
optical systems in 2008 [94]. Marek et al. showed that multiple
photon subtractions result in large squeezed SCSs with extremely
high fidelities [89]. In this way, demonstrations of subtracting two
or more photons on a squeezed vacuum state have been per-
formed to generate SCSs [95–97].

Many of the non-deterministic yet feasible schemes are cate-
gorized into two major approaches. One is based on the squeezing
operation and photon subtractions [79,82,83,89,95–97] and the
other is based on the number state generation and homodyne
detection [31,87,88]. Fig. 1(a) and (b) presents schematics of the
two approaches. In fact, either the multiple photon subtraction
from a squeezed vacuum [89] or homodyning on the one part of
the number state divided by a beam splitter [31] yields a squeezed
SCS, i.e., SðrÞjSCS〉 where S(r) is the squeezing operator with the
squeezing parameter r as depicted in Fig. 1. In principle, as far as
one could perform the photon number subtraction of many
photons [89] or generate a large number state [31], a squeezed
SCS of a large amplitude and a high fidelity can be obtained. In
order to generate a normal SCS (without squeezing) with high
fidelity F40:9999, in addition to the scheme in Ref. [31], one may
use an additional squeezed vacuum as shown in Fig. 1(b) [87,88].
A generation scheme for arbitrary SCSs with unbalanced ratios was
suggested [98] and experimentally demonstrated [99]. It is worth
noting that large SCSs may be obtained in a non-deterministic way
out of small SCSs using realistic on/off detectors and an auxiliary
coherent state as shown in Fig. 1(c) [82,83], and there exists an
alternative amplification scheme using homodyne detection [100].

In general, the SCSs and ECSs are sensitive to a lossy environ-
ment and detection inefficiency as their amplitudes become large
[101]. Theoretical attempts were made using the squeezing

operation to make the SCSs more robust against losses [102,103]
or to amplify them [104,105]. Schemes for entanglement purifica-
tion for mixed ECSs [106,107] and concentration for pure ECSs
[106] were investigated using Bell-state measurements [106].
Ourjoumtsev et al. devised and experimentally demonstrated a
method to generate an ECS in a remote way using two SCSs and
two photodetectors [108]. Lund et al. suggested another scheme
for the same purpose that is made to be more robust against
detection inefficiency using an auxiliary coherent state [109].
Proposals to distribute ECSs using the quantum repeater protocol
were also suggested [110,111]. Superpositions and entanglement of
multiple numbers of coherent states have been theoretically
studied [112–115]. Lee et al. experimentally demonstrated quan-
tum teleportation of a single-photon-subtracted squeezed vacuum
(i.e., an approximate SCS) using the continuous variable teleporta-
tion protocol [116]. Generalization of SCSs and ECSs to highly
mixed forms has been studied for testing quantum theory in an
even more “classical” limit [117,118].

3.1.3. Applications
The wide scope of applications using SCSs and ECSs includes

quantum teleportation [106,113,119–121], quantum computation
[122–128], precision measurements [129–135], Bell-type inequal-
ity tests [136–148], Leggett-type inequality tests [149,150], quan-
tum contextuality tests [151] and quantum steering [152].
In particular, quantum teleportation and computation schemes
using SCSs and ECSs are considered as a strong candidate for the
optical implementation of quantum computation in terms of the
resource requirement and loss tolerance [153]. A proof-of-
principle experiment of this type of teleportation scheme was
performed by Neergaard-Nielsen et al. [154].

3.2. Towards microscopic–macroscopic entanglement

There have been attempts to generate entanglement between
microscopic and macroscopic (or quantum and classical) states of
light by using several different methods [24,36–38,155–160].

Fig. 2. Schematics for generating micro–macro entanglement. (a) A part of two-
photon polarization entanglement is amplified using quantum injected optical
parametric amplification (QIOPA) [36]. (b) A part of single-photon entanglement is
displaced to have a large photon number [159,160]. (c) Entanglement between a
single photon and a coherent state is generated using a coherent superposition of
two distinct operations [37].
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Implementations of such micro–macro entanglement are of spe-
cial interest in relation to Schrödinger's cat paradox where a cat as
a macroscopic classical object and an atom as a microscopic
quantum system are entangled [1]. We limit our discussions to
several examples using free-traveling optical systems mainly from
a theoretical point of view, while there are other examples such as
atom-field entanglement [29,30].

3.2.1. Amplifying microscopic entanglement by nonlinear amplifier
De Martini et al. suggested [36,155,156] and experimentally

demonstrated [36] a scheme depicted in Fig. 2a to amplify a local
part of microscopic entanglement using quantum injected optical
parametric amplification (QIOPA) [36,155,156]. The microscopic
entanglement is supposed to be a polarization entangled state,
Rj iA Lj iB� Lj iA Rj iBð Þ=

ffiffiffi
2

p
, where Rj iA ( Lj iB) is the left (right) circularly

polarization state for mode A (B). One of the modes, say B, is
amplified to be “macroscopic” using QIOPA [155,156]. The states
Rj i and Lj i then evolve into two orthogonal states with different
photon number distributions as

Rj i- ΦR
��� E

¼ ∑
1

i;j ¼ 0
Δij 2iþ1;R

�� �
2j; L
�� �

Lj i- ΦL
��� E

¼ ∑
1

i;j ¼ 0
Δij 2iþ1; L

�� �
2j;R
�� � ð30Þ

where k;R
�� �

( k; L
�� �

) is the photon number state with k photons and
the right (left) circularly polarization, and Δij are real coefficients2

with the amplification constant g. The amplification results in
entanglement between microscopic and macroscopic states:

jΦg〉¼ 1ffiffiffi
2

p Rj iA ΦL
��� E

B
� Lj iA ΦR

��� E
B

� �
: ð31Þ

It is straightforward to verify that state jΦg〉 has the maximum
value of measure I [13] as I ðjΨ g〉Þ ¼ 1þ∑1

i;j ¼ 0Δ
2
ijð2iþ2jþ1Þ that

corresponds to its average photon number. This result is implied in
the fact that the QIOPA causes jR〉 and jL〉 to be macroscopically
quantum as seen in Eq. (30). In fact, ΦR

��� E
and ΦL

��� E
themselves

have the maximum values of I . However, it is a separate question
whether ΦR

��� E
and ΦL

��� E
are truly macroscopically distinct in this

type of entanglement. In Ref. [36], the two states ΦR
��� E

and ΦL
��� E

are considered to be macroscopically distinct in the sense that
their average photon numbers for the R-polarization are sinh2 g
and 3 sinh2 gþ1, respectively. However, as we discussed in Section
2.11, this type of approach leads to a problem that becomes
more noticeable when it is applied to a single-mode superposition.
Once again, the example of a strong coherent state, jα〉¼
DðαÞjþ 〉þDðαÞj� 〉with αb1, may be considered for a comparison.
It can be simply shown that the difference between the average
photon numbers of constituent states DðαÞjþ 〉 and DðαÞj�〉 is 2jαj,
i.e., it monotonically increases with α although a coherent state
would not be regarded as a macroscopic superposition. In spite of
this ambiguity, a strong nonclassical feature of state jΦg〉 seems to
be evident based on the high value of I .

A perfect discrimination of ΦR
��� E

and ΦL
��� E

by a single-shot

measurement requires a photon-number resolving detector for a
parity measurement. In the real experiment [36], an alternative

procedure called the “orthogonality filter” was used where ΦR
��� E

and ΦL
��� E

are discriminated by field intensity measures for each

polarization in a non-deterministic and approximate way. There
have been considerable debates and discussions [157,161–164]
over whether the state generated in Ref. [36] possesses genuine

entanglement and how to verify this type of entanglement more
clearly.

3.2.2. Amplifying microscopic entanglement by local displacement
operations

Sekatski et al. proposed a scheme that uses the displacement
operation for an amplification process to generate macroscopic
entanglement [24]. The state is generated by locally displacing
each mode of single-photon entanglement as jψ″D〉¼DAðαÞ
DBðαÞðj1〉Aj0〉B�j0〉Aj1〉BÞ=

ffiffiffi
2

p
. They claim that DðαÞj0〉 and DðαÞj1〉

are macroscopically distinguishable since they exhibit 3 times
different photon number variances [24]. Bruno et al. [159] and
Lvovsky et al. [160] experimentally realized a simpler variant ψ 0

D

�� �
in Eq. (26), where only one of the modes is displaced for
generating micro–macro entanglement (see Fig. 2b).

In Refs. [159,160], it was shown that a single shot photon
number measurement can distinguish between DðαÞj0〉 and DðαÞj1〉
in the macroscopic part (B) of state (26) with 74% probability for
αb1. It can be improved up to 90% by changing the basis of the
initial microscopic state into 7j i ¼ ðj0〉7 j1〉Þ=

ffiffiffi
2

p
. However, we

already discussed in Sections 2.11 and 3.2.1 that this type of
approach does not seem to be very convincing. The value of
measure I for ψD

0�� �
, as well as ψD″

�� �
, is exactly the same as that

of microscopic single-photon entanglement ðj0〉j1〉�j1〉j0〉Þ=
ffiffiffi
2

p
. In

fact, measure I is invariant under the displacement operation that
does not change the structure of phase space distributions of any
states [13]. The same principle is applied to Cavalcanti and Reid's
inequality [9] so that neither ψD

0�� �
nor ψD″

�� �
is found macro-

scopically quantum.
In the experiments [159,160], entanglement was detected after

applying the “reverse” displacement operation, DBð�αÞ, to state
(26). Bruno et al. observed entanglement with more than 500
photons using photodetectors [159]. Lvovsky et al. achieved the
displacement operations with jαj2 � 1:6� 108 and entanglement
was observed using homodyne tomography [160].

Ghobadi et al. [158] investigated an alternative proposal to
create micro–macro entanglement by applying the squeezing
operation S(r) to one mode of single-photon entanglement as
ψ S

�� �¼ SBðrÞðj1〉Aj0〉Bþj0〉Aj1〉BÞ=
ffiffiffi
2

p
. It was shown that two states

SðrÞj0〉 and SðrÞj1〉 can be discriminated by the mean photon
number contained in each state which are 3 times different for
large enough squeezing. The squeezing operation changes the
structure of the phase space distribution and the degree of
macroscopic quantumness I ð ψ S

�� �Þ ¼ 2 sinh2 rþ1 increases as r
becomes larger while the tricky issue explained above on macro-
scopic distinctness between SðrÞj0〉 and SðrÞj1〉 remains. This state
can be categorized into the same type of state with the one in
Eq. (31).

3.2.3. Generating hybrid entanglement by photon addition or
subtraction

Recently, hybrid entanglement between particle-like (or quan-
tum) and wave-like (or classical) states was experimentally
demonstrated by Jeong et al. [37] and Morin et al. [38]. A form
of such state is

jΨα〉¼
1ffiffiffi
2

p ðj0〉jα〉þj1〉j�α〉Þ: ð32Þ

It takes the maximum value of I for αb1 as I ðjΨα〉Þ � jαj2þ1=2.
Jeong et al.'s scheme uses an idea of superposing two distinct
quantum operations. Initially, a coherent state jαi〉 and the vacuum
are prepared with two photon addition devices [165] and a beam
splitter with appropriate ratio as shown in Fig. 2(c). When only
one of the two detectors D1 and D2 clicks, one does not know
which mode the single photon was added to. The resulting state is
then superpositioned as â†

Aj0〉Ajαi〉Bþj0〉Aâ†
Bjαi〉B (unnormalized)2 Δij ¼ ðcosh gÞ�2 �tanh g=2

� 	i tanh g=2
� 	j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2iþ1Þ!ð2jÞ!
p

=i!j!
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that can be made to be an approximate state of jΨα〉 by applying
an appropriate displacement operation. However, hybrid entan-
glement with only small values of α can be obtained in this way.
Experimentally, a fidelity of F � 0:76 and an entanglement of
negativity N � 0:45 were shown with α� 0:31 [37]. More sophis-
ticated methods such as the tele-amplification method [154] need
to be used to obtain large values of α for such hybrid states [37].

Morin et al.'s experiment [38] is based on a similar type of idea
but using the photon subtraction with a beam splitter and a
photodetector, a two-mode squeezed state with a very low gain,
and a single-mode squeezed state in order to generate a slightly
different type of target state such as ð þj ijα〉þeiφj� 〉j�α〉Þ=

ffiffiffi
2

p
.

Entanglement of negativity N � 0:7 and fidelity F � 0:77 were
observed with amplitude α� 0:9 [38]. This type of idea is also
found in Andersen and Neergaard-Nielsen's previous proposal
where a single photon, a single-mode squeezed state and a
detector with a beam splitter for the photon subtraction are
required [166]. The target states of all these schemes [37,38,166]
show strong properties as macroscopic quantum states, i.e., the
maximum values of I for αb1. Kreis and van Loock investigated
how to classify and quantify various types of hybrid entangle-
ments between discrete and continuous variable states [167].

3.2.4. Applications
Entanglement between microscopic and macroscopic states is

closely related to Schrödinger's Gedanken experiment [1]. Micro–
macro (or hybrid-type) entangled states are useful for loophole-
free Bell-type inequality tests [168–172], quantum information
processing [173–178], and exploring quantum gravity [180].
In particular, optical hybrid states benefit from both their discrete-
and continuous-variable features in such a way that they are
useful resources for quantum teleportation [175,176], quantum
computation [176], and quantum key distribution [177,178]. Sheng
et al. proposed an entanglement purification scheme for hybrid
entanglement using linear optics elements and photon number
measurements [179].

4. Remarks

We have reviewed and discussed proposed measures of macro-
scopic quantumness together with several attempts for imple-
menting macroscopic quantum states using optical fields. In line
with our discussions, three [13–15] among the discussed measures
seem to be a little more general than the others in the sense that
they are applicable to various kinds of quantum states and serve as
unambiguous quantifiers. Those measures are particularly suitable
for light fields [13], spin systems [14], and mechanical systems
[15]. It seems that the former two [13,14] stick to the idea of
genuine macroscopic quantum superpositions [1,3,4], i.e., super-
positions of macroscopically distinct states or genuine macro-
scopic quantum effects over mere accumulation of microscopic
quantum effects. On the other hand, the latter [15] seems to
approach macroscopic quantumness in a broader way.

It would be interesting to find out relations between measures
for different physical systems from an inclusive point of view. Very
recently, Fröwis et al. investigated macroscopic quantumness of
several optical states using measures for spin systems [181]. They
mapped a photonic state into a spin state using an ideal interac-
tion model and found that some different measures show strong
mathematical connections and give a similar classification of
macroscopic quantum states.

There have been various attempts to generate macroscopic
quantum states using light fields. The arbitrariness of the decom-
position for a quantum state leads to a question of whether certain
quantum states [159,160] are truly macroscopically quantum, at a

theoretical level, even though they seem so with certain criteria
[16]. We exemplified the case where even a coherent state, jα〉, is
categorized into a macroscopic superposition under a certain
decomposition using this type of approach [16]. Perhaps, this
suggests that more stringent considerations are necessary for
classifications of macroscopic quantum states.
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