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We study a microscopic model for a disordered superlattice system, which 
simulates the effect of intrinsic alloy fluctuation on localization in alloy 
superlattices. Numerical investigation of scaling behavior of the localiza- 
tion length shows that excitations along and perpendicular to the super- 
lattice axis undergo a localization transition at a nonzero critical disorder. 
Therefore, we contend that for localization, the alloy superlattices should 
be viewed as a 3-dimensional anisotropic material. At the transition, the 
localization length diverges with critical exponent v = 1.2 t 0.2. We 
expect that the model belongs to the same universality class as the 3 
dimensional isotropic Anderson model. 0 1997 Elsevier Science Ltd. All 
rights reserved 

Recently, much attention [l-6] has been paid to the study 
of the localization transition in anisotropic materials. It 
seems now that there is general agreement that the critical 
disorder at which the localization transition takes place 
and the critical exponent of the localization length are 
independent of the direction of measurement in spite of 
the anisotropy. 

On the other hand, a careful study by way of a fully 
3-dimensional (3D) model is necessary for disordered 
superlattice (SL) system, where most theoretical studies 
[7] are based upon l-dimensional (1D) models. In an 
ideal SL, i.e. no disorder present, the excitation along the 
SL axis is decoupled from those in other directions so 
that it is essentially described by 1D equations of motion. 
Almost all electronic and vibrational excitations are 
known to be localized in 1D space at any nonzero dis- 
order [8,9]. Since a certain degree of disorder is always 
present in real SLs, localization of any excitation is 
inevitable in the 1D pictures of SL. However, on the 
experimental side, it has been shown [lo] that Bloch 
transport along the SL axis can take place for relatively 
small alloy concentration. Moreover, it has been shown 
[ 1 l] that there exists a confined-to-propagating transition 
of GaAs optical phonons and low energy electronic 
excitations in GaAs/Al,Gai_,As SL as the alloy concen- 
tration x is varied. These experimental findings cast 

doubt on the 1D pictures of SL in the presence of disorder 
and suggest that for localization disordered SLs should 
be considered as a 3D anisotropic material. 

The impurities in real SL cannot be taken into 
account fully within 1D models since disorder effects 
arise not only from randomness along the SL axis but 
also from the fact that impurities exist in the form of the 
in-plane (parallel to the SL layers) randomness. In the 
presence of 3-dimensional (3D) disorder, the three spa- 
tial components of an excitation are coupled with one 
another and the equations of motion do not reduce to 1D 
ones. A more interesting but rarely investigated case 
involving the in-plane randomness is the alloy SLs, e.g. 
GaAs/Al,Gal_,As. A disorder normally considered in 
the GaAs/Al,Gat_,As system is the well-width fluctua- 
tion, which is dealt with in 1D picture. The intrinsic alloy 
disorder cannot be properly treated in this picture and 
there is no established result for the effect of the 3D alloy 
scattering on the localization transition. 

In this paper, we construct a simple microscopic 
model for a disordered SL system. In our model, the 
3D character of the disorder distribution is fully taken 
into account, i.e. there exist the in-plane randomness as 
well as the randomness along the SL axis. Numerical 
investigation of the scaling behavior of the localization 
length shows that the excitations along the SL axis 
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undergo a localization transition at a nonzero critical 
disorder, which has not been expected in 1D models. 
Furthermore, the excitations perpendicular to the SL 
axis, i.e. in-plane excitations, also become localized at 
approximately the same value of disorder. At the transi- 
tion, the localization length diverges with critical expo- 
nent Y = 1.2 + 0.2. We expect that our model belongs to 
the same universality class as the 3D isotropic Anderson 
model. Our result suggests that for localization, the 
excitations of the SL in the presence of in-plane disorder 
such as the alloy fluctuation should be treated as those 
in 3D anisotropic materials. This applies to even the 
“perfect” alloy SL with no well-width fluctuations. 

We consider a tight binding Hamiltonian defined on 
the simple cubic lattice as 

H = x e,lrXrl + 1 V(lrXr’I + Ir’Xrl>, (1) r bJ’) 
where Ir) is a Wannier state at the site r = (n,, nr, n,), n, 
being integers and the second sum is over the nearest 
neighbor pairs. The hopping energies V of a pair of 
nearest neighbor sites is constant, being set to 1 through- 
out this work. The on-site energy, er, is 0 in alternating 
layers along the z-direction, i.e. for those sites with n, 
odd, but is a random variable which is uniformly dis- 
tributed in the interval (A - W/2, A + W/2) for sites on 
layers in between. When W is zero, our model reduces to 
a SL of the formABABAB~~* along the z-direction where 
the on-site energy of the layerA is zero and that of B is A. 
The SL character of our model comes from the periodic 
arrangement of the on-site energy. For the ordered 
system, there exist two SL minibands in our model; the 
energy is given as 

E=2(c0sk,+c0sk,)+ 45 
A2 
-4- + 4 cos2 k,, (4 

where the plus (minus) sign is for the upper (lower) 
branch of the minibands. k represents the index in 
momentum space. The first term of equation (2) repre- 
sents the free propagation of electron within SL layers 
and the last term the energy splitting by the super- 
periodicity of 2 X (lattice constant). There are two pos- 
sible interpretations regarding the Wannier state Ir); one 
is that it represents a unit consisting of group of real 
atoms, the periodic arrangement of which constructs an 
SL and the other that it represents a single atomic orbital 
of an atom at site r. The former is a more commonly used 
one while in case of the latter, the model (1) may be 
regarded as a single layer SL system. For A > 6, the 
excitation at E = A is situated at the band center of a 
homogeneous medium constructed solely by the layer B 
while that by the layer A cannot sustain an excitation at 
that energy. Therefore by investigating the behavior of 

the excitation at E = A as W increases from zero, one can 
study the disorder-induced localization transition. 

The quantity of main interest here is the localization 
length [12]. For a bar-shaped geometry of L X L X N, the 
localization length along the z-direction, hL(E,W), is 
calculated from 

1 -= - 
&(J% W) 

lim llog IG(l,N;E, W,L)I 
N-m N (3) 

where G( 1, N; E, W, L) designates the Green’s function 
coupling pairs of atoms at opposite ends of the bar of 
length N. We calculate the Green’s function recursively 
by the method of MacKinnon and Kramer [12] for 
L 5 16. The method can be found in several literatures 
[12,13], so that only the results of our model calculations 
are presented below. 

Figure 1 shows the L-dependence of A = XJL for 
several values of W and for E = A = 9; A has been 
chosen to be 9 so that the layer A play a role as periodic 
barriers. Periodic boundary condition has been imposed 
in the x- and y-directions and only even numbers of L 
have been considered in our calculation since the data for 
odd L form distinct sequences from those of even L. It 
can be seen in Fig. 1 that 1ogA first decreases as L 
increases for all values of W presented [14]. This is 
reasonable since, for smaller L, 1D nature of the system 
would be more dominant and hence one can expect a 
trend towards localization for all values of W. However, 
1ogA for smaller values of W eventually turns around 

0 

-1 

g 
g 

-2 

-3 

0 
+ 

0 

x xxx X 

AAAAA 

0 1 2 3 

IogL 
Fig. 1. Log-log plot of the renormalized exponential 
decay length for excitations along the SL axis as a func- 
tion of L for various values of W: W = 4 (O), 5 (+), 6 
(Q, 7 (x), g (A), 9(m), 10 (o), II (+), 12 (0 13 (X), 
14 (A) and 16 (X) from top to bottom. The uncertainty of 
each data point is less than the symbol size. 
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and increases as L increases, which implies that the states 
are extended in the macroscopic limit. Inverse of the 
positions of the minimum, L,in, in the 1ogA vs L curve 
are shown in Fig. 2 as a function of W. It clearly suggests 
that L,ti approaches infinity at a finite value of W. This 
implies the existence of a critical value of WC such that 
for W < WC (W > WC), 1ogA approaches infinity (minus 
infinity) as L-m. From the behavior of Lmin vs W in 
Fig. 2, one might say that W,, where l/L,i” = 0, is within 
the range of 8 < W < 14. 

In the standard 3D Anderson model [12], similar 
plots corresponding to Fig. 1 do not show the turn-around 
behavior present in Fig. 1 and could be analyzed in terms 
of the scaling form 

logA=f 
L ( ) [(E,w) 9 (4) 

with [(E, W) - I W - WC I - “. However, in our case, Fig. 
1 suggests that the strict form of equation (4) cannot be 
applied. In particular, we attribute the turn-around behav- 
ior to the effect of the correction-to-scaling terms. We 
thus assume that the localization length takes the scaling 
form [15, 161 

X, = bF[(W - W,)b”“,Llb, b-%1 (5) 

upon the renormalization group transformation where b 
is the scale change factor, 0 is the leading correction-to- 
scaling exponent and u is the first irrelevant scaling 
variable. Setting b = L and expanding with respect to 
u, we obtain 

X,/L =F[(W- w,)L1’y,l,L-eu] 

=F[(W - WJLl’“, 1, O] 

+F’[(W- WJLl’“, l,O]u/LB + ‘a*. 

Keeping only the leading term of the corrections, one 
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Fig. 2. Plot of l/L,i” vs W. The uncertainty of each data 
point is comparable to the symbol size. 

sees that equation (4) is modified into the form 

L 
l%NW,L) =f [(& w) + ;, ( > 
where f(x) = log&?” , 1,O) and c is a constant. At 
W = WC, equation (6) then predicts that 

log A( WC, L) = log Ac + 3, (7) 

where logA, = logA(W,, m) = f(0). We have found 
that for L 2 6, broad range of data for 9 I W I 13 
could be fitted reasonably well to the form equation 
(6). The resulting estimated values of logA, and 0 are 
shown in Table 1, for each tentative values of WC. For W 
near W,, equations (6) and (7) implies 

logA(W,L) - logA(W,,L) = a(W - WJLl’“, (8) 

invoking the usual argument of analyticity of the scaling 
function in W for finite L. Therefore, estimates of Y 
can be obtained from the variation of the slopes of 
logA( W, L) - logA( WC, L) with respect to (W - WC) 
using data sets W = WC - 1, W, and WC + 1 with 
L L 6. The resulting values of Y are listed in the fourth 
column of Table 1. Compared with 0, variation of v with 
the change of estimate of W is smaller, which indicates 
that the uncertainty in v is relatively small regardless of 
the choice of WC. 

To determine which set of parameters (WC, v) is close 
to the true critical values, we examine the scaling plots to 
see if all the data fall on a same curve with the parameters 
obtained in the previous procedures. Since the vs have 
been obtained from neighboring data sets of Ws, i.e. 
W = WC - 1, W, and WC + 1, it is not guaranteed that 
other data should scale with the exponent v unless W, is 
chosen correctly. The scaled plots show that the best 
scaling behavior is obtained for the whole data set of 
7 5 W I 16 when W, is taken as 11. The result is shown 
in Fig. 3. The scaling of data is quite good in spite of a 
somewhat crude approximation of equation (8). 

Therefore we have the final estimate of the localiza- 
tion exponent with WC = 11 + 1: v = 1.2 + 0.2. The 
uncertainty, which has been deduced from Table 1, 
represents the typical change in the exponent when WC 
is varied by unity. We have also performed numerical 

Table 1. Values of fitting parameters when tentative 
value of W, has been chosen as 9,10,11,12 and 13 

WC logA, 8 V 

9 - 1.63 1.24 1.35 
10 - 1.99 0.70 1.16 
11 - 2.85 0.34 1.15 
12 - 3.67 0.24 1.37 
13 - 9.32 0.07 1.46 
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Fig. 3. Scaling behavior of log X(W,L) - log A( W,,L) 
with respect to log (Ll W - W,l”) when W, has been 
chosen as 11; the data for W = 7 (O), 8 (+), 9 (m) and 
10 (X) collapse into the upper branch and the data for 
W = 12 (A), 13 (m), 14 (0) and 16 (+) into the lower 
branch. 

calculation for the localization length of excitations 
perpendicular to the SL axis. The results are shown in 
Fig. 4 for the same values of parameters, i.e. E = A = 9. 
By the similar procedures as for the excitations along the 
SL axis, we have found following results: W,,, = 10 2 1 
with exponent around 1.1-1.5. This is consistent with the 
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Fig. 4. Log-log plot of the renormalized exponential 
decay length for excitations perpendicular to the SL 
axis as a function of L for various values of W: W = 8 
(O), 9 (+), 9.5 (a), 10 (X), 10.5 (A), 11 (s), 12 (0) 13 
(+) and 14 (iTi) from top to bottom. The uncertainty of 
each data point is less than the symbol size. 
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expectation that the model undergoes the localization 
transition at the same value of disorder with the same 
value of v, regardless of the direction of measurement. 
These findings are in an accordance with reported results 
that for anisotropic media, the anisotropy is irrelevant in 
the renormalization group sense [l, 2, 61. Estimates of 
the value of Y for the 3D isotropic Anderson model varies 
from 1.2 + 0.3 [12] to 1.5 t 0.1 [9], but more recent 
value, 1.35 + 0.15 [17] is consistent with our result 
within the errors. Therefore we expect that our model 
belongs to the same universality class as the isotropic 
Anderson model and the anisotropic model of Zambetaki 
et al. [6]. 

The 3D feature of localization transition of our SL 
model suggests that one may consider SL with in-plane 
disorder as a 3D anisotropic material. Therefore our 
results provide a microscopic ground for the previous 
studies [18, 191 where a disordered SL system has been 
treated as an effective anisotropic materials with finite 
concentration of scattering centers. 

An implication of our result for a real SL sample with 
small degree of impurities is that their contribution to its 
transport property can be treated simply as a weak 
perturbation. Since the SL behaves as a 3D material 
with respect to this kind of disorder, the correction to 
conductivity induced by the impurities is a well-defined 
finite quantity even in infinite-size samples at zero 
temperature. If the transport properties of SL were to 
follow 1D feature, i.e. localize at arbitrarily small dis- 
order, they would always suffer from the localization 
effect, which becomes more serious at a larger system 
size and lower temperature. Therefore, our result justifies 
the basic assumption that theoretical results for ideal SLs, 
in which a perfect translational symmetry is assumed, 
will be valid in real SL samples of sufficiently small 
disorder or alloy fluctuation. 

Our result strongly suggests that the experimentally 
reported transition [ll] of GaAs optical phonons and low 
energy electronic excitations in GaAs/Al,Gai_,As SL 
are indeed the localization transitions induced by the 
intrinsic alloy fluctuation within the layer Al,Gat_,As. 
Further research including other sources of disorder, e.g. 
interface roughness, is under progress. 
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