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Abstract. We introduce a simple algorithm that constructs scale-free random graphs
efficiently: each vertex i has a prescribed weight Pi ∝ i−µ (0 < µ < 1) and an edge
can connect vertices i and j with rate PiPj . Corresponding equilibrium ensemble is
identified and the problem is solved by the q → 1 limit of the q-state Potts model with
inhomogeneous interactions for all pairs of spins. The number of loops as well as the
giant cluster size and the mean cluster size are obtained in the thermodynamic limit as
a function of the edge density. Various critical exponents associated with the percolation
transition are also obtained together with finite-size scaling forms. The process of forming
the giant cluster is qualitatively different between the cases of λ > 3 and 2 < λ <
3, where λ = 1 + µ−1 is the degree distribution exponent. While for the former, the
giant cluster forms abruptly at the percolation transition, for the latter, however, the
formation of the giant cluster is gradual and the mean cluster size for finite N shows double
peaks.
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1. Introduction

Graph theoretic approach is of great value to characterize complex systems found in
social, informational and biological areas. Here, a system is represented as a graph
or network whose vertices and edges stand for its constituents and interactions.
A simple model for such networks is the random graph model proposed by Erdős
and Rényi (ER) [1]. In the ER model, N number of vertices are present from
the beginning and edges are added one by one in the system, connecting pairs of
vertices selected randomly. The degree distribution is Poissonian. However, many
real-world networks such as the world-wide web, the Internet, the coauthorship, the
protein interaction networks and so on display power-law behaviors in the degree
distribution. Such networks are called scale-free (SF) networks [2]. Thanks to recent
extensive studies of SF networks, various properties of SF network structures have
been uncovered [3–5].

There have been several attempts to describe scale-free networks in the framework
of equilibrium statistical physics, even though the number of vertices N grows

1149



D-S Lee et al

with time in many real-world networks [6–18]. To proceed, one needs to define
equilibrium network ensemble of graphs with appropriate weights, where one graph
corresponds to one state of the ensemble. In the microcanonical ensemble approach,
given a degree distribution Pd(k), a degree sequence is given: that is Pd(0)N vertices
have 0 degree, Pd(1)N vertices have degree 1, etc. so that the degree ki of each
vertex is fixed. Then those links emanating from each vertex are randomly joined
with uniform weights [11]. In the canonical ensemble approach, the total number
of links L is fixed but the links are rewired with certain weights so that the degree
sequence is satisfied in the average sense.

A grandcanonical ensemble can also be defined, where the number of edges is
also a fluctuating variable while keeping the SF nature of the degree distributions.
The grandcanonical ensemble for SF random graphs is realized in various ways
[13–18]. One of the simplest and elegant way is the static model introduced by Goh
et al [13] and analyzed by Lee et al [19]. The name ‘static’ originates from the fact
that the number of vertices is fixed from the beginning. Here each vertex i has a
prescribed weight Pi summed to 1 and an edge can connect vertices i and j with
rate PiPj . A chemical potential-like parameter K that can be regarded as ‘time’
in the process of attaching edges controls the mean number of edges so that 〈L〉
increases with increasing K. The probability of vertex i and j being connected is
then

fij = 1− e−2NKPiPj . (1)

This is in marked contrast to other grandcanonical ensemble approaches where fij

are expressed as a product of vertex weights. However, note that fij in eq. (1)
properly incorporates the ‘fermionic’ constraint; fij → 1 as K →∞.

As the parameter K increases, a giant cluster, or giant component, forms in the
system. Here the giant cluster means the largest cluster of connected vertices whose
size is O(N). Often such a giant cluster appears at the percolation transition point.
In equilibrium statistical physics, the percolation problem can be studied through
a spin model, the q-state Potts model in the q → 1-limit [20]. Using the relation,
in this paper, we study the evolution of SF random graphs from the perspective of
equilibrium statistical physics.

The formulation in terms of the spin model facilitates explicit derivation of vari-
ous properties of the SF network. Thus we derive the formula for the giant cluster
size, the mean cluster size, and in particular, the number of loops and clusters.
These quantities are explicitly evaluated analytically for the static model with
Pi ∝ i−µ (0 < µ < 1) in the thermodynamic limit as a function of the edge density,
and their critical properties are also studied. The degree exponent λ is related to
µ by λ = 1 + 1/µ. Moreover, their finite-size scaling behaviors are obtained using
the finite largest cluster size for finite N that in turn is evaluated from the cluster
size distribution. From these, we are able to elucidate the process of formation of
the giant cluster. While for the case λ > 3, the giant cluster forms abruptly at
the percolation transition point Kc, for the case 2 < λ < 3 where most real-world
networks belong to, however, the formation of the giant cluster is gradual and the
mean cluster size for finite N shows double peaks. Note that SF networks can also
be constructed on Euclidean space using similar idea [21].
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2. Static model: Random graphs with weighted vertices

The static model introduced in Goh et al [13] is defined as follows:

1. The number of vertices N is fixed (static) and each vertex i = 1, . . . , N
is given a probability Pi summed to 1. The ER model of random graphs
corresponds to assigning Pi = 1/N for all i. To construct a SF graph, we use
for definiteness,

Pi =
i−µ

∑N
j=1 j−µ

≈ 1− µ

N1−µ
i−µ, (2)

where µ, the Zipf exponent, is in the range 0 < µ < 1. Note that Pi ¿ 1 for
all i.

2. In each unit time duration, two vertices i and j are selected with probabilities
Pi and Pj .

3. If i = j or an edge connecting i and j already exists, do nothing (fermionic
constraint); otherwise, an edge is added between the vertices i and j.

4. Steps 2 and 3 are repeated for NK times.

Then the probability that a given pair of vertices i and j (i 6= j) is not connected
by an edge is given by (1− 2PiPj)NK ' e−2NKPiPj ≡ 1− fij , while that it does is
fij = 1 − e−2NKPiPj . Since each edge bij is produced independently, this process
generates a graph G with probability

P (G) =
∏

bij∈G

(1− e−2NKPiPj )
∏

bij /∈G

e−2NKPiPj

= e−2NK
P

i>j PiPj
∏

bij∈G

(e2NKPiPj − 1)

= e−NK(1−M2)
∏

bij∈G

(e2NKPiPj − 1), (3)

where we used the notation Mn ≡
∑N

i=1 Pn
i . By a graph G, we mean a configuration

of undirected edges connecting a subset of N(N − 1)/2 pairs of labeled vertices
i = 1, 2, . . . , N .

We then evaluate the ensemble average of any graph theoretical quantity A by

〈A〉 =
∑

G

P (G)A(G). (4)

The generating function of ki, gi(ω) ≡ 〈ωki〉, is first expressed as

gi(ω) = exp
{ ∑

j(6=i)

ln[1− (1− ω)fij ]
}

. (5)
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For the static model, the sum is evaluated as [19],

gi(ω) = e−(1−ω)2NKPi . (6)

From this, one has, when K` ¿ K ¿ Ku with K` ∼ N−µ and Ku ∼ N1−µ,

〈ki〉 = ω
d
dω

gi(ω)
∣∣∣∣
ω=1

=
∑

j(6=i)

(1− e−2NKPiPj ) = 2KNPi ∝ i−µ, (7)

and the average degree 〈k〉 is

〈k〉 =
2〈L〉
N

=
1
N

∑

i

〈ki〉 = 2K. (8)

From eq. (7) one immediately sees that the degree exponent λ is related to the Zipf
exponent µ by

λ = 1 + 1/µ. (9)

Note that since 2KNPiPj ∼ N2µ−1/(ij)µ for finite K,

fij ≈ 2KNPiPj (10)

when 0 < µ < 1/2 (λ > 3). This is the bosonic limit. However, when 1/2 < µ < 1
(2 < λ < 3), which most interesting real-world networks satisfy, fij does not
necessarily take the form of eq. (10). In fact,

fij ≈
{

1 when ij ¿ N2−1/µ,

2KNPiPj when ij À N2−1/µ.
(11)

This is due to the fermionic constraint. Thus, for 2 < λ < 3, one has two distinct
regions in the i–j plane as shown in figure 1.
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Figure 1. The occupation probability of a bond for finite K has two distinct
regions due to the fermionic constraint when 2 < λ < 3.
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3. Potts model formulation

It is well-known that the q-state Potts model provides a useful connection be-
tween the geometric bond percolation problem and the thermal systems through
the Kasteleyn construction [20]. The q → 1 limit of the Potts model corresponds
to the bond percolation problem. The same approach can be used for the random
graph problem. From the viewpoint of the thermal spin system, this is basically
the infinite range model since all pairs of spins interact with each other albeit with
inhomogeneous interaction strength.

Consider the q-state Potts Hamiltonian given by

−H = 2NK
∑

i>j

PiPj [δ(σi, σj)− 1] + h0

N∑

i=1

[qδ(σi, 1)− 1], (12)

where K is the interaction, h0 is a symmetry-breaking field, δ(x, y) the Kronecker
delta function, and σi the Potts spins taking integer values 1, 2, . . . , q ≡ r + 1. The
partition function ZN (q, h0) is

ZN (q, h0) = Tr e−H = Tr
∏

i>j

[
e−2NKPiPj + (1− e−2NKPiPj )δ(σi, σj)

]

×
∏

i

eh0(qδ(σi,1)−1), (13)

where Tr denotes the sum over qN spin states. Expanding the first product and
taking the Tr operation, one has

ZN (q, h0) =
∑

G

P (G)
∏

s≥1

(esrh0 + re−sh0)nG(s), (14)

where nG(s) is the number of s-clusters, a cluster with s vertices in a given graph
G. In particular, ZN (q, 0) = 〈qC〉, where C =

∑
s nG(s) is the total number of

clusters in graph G. Thus ZN (q, 0) is the generating function of C.
The magnetization of the Potts model at q = 1 is

m(1, h0) = lim
q→1

1
rN

∂

∂h0
ln ZN (q, h0)

=
∑

s≥1

P (s)(1− e−sh0) = 1− P(e−h0), (15)

where we have introduced the cluster size distribution P (s) ≡ n(s)(s/N) with
n(s) = 〈nG(s)〉 and the generating function P(z) =

∑
s≥1 P (s)zs.

When h0 = 0, the magnetization vanishes for finite N . However, when we
take the limit h0 → 0 after the thermodynamic limit N → ∞, the contribution
from the giant cluster whose size is S can survive to give
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m(1, h0 → 0) =
〈

S

N

〉
. (16)

The susceptibility defined as χ(q, h0) ≡ (1/q)(∂/∂h0)m(q, h0) on the other hand
is related to the mean cluster size:

s̄ = χ(1, h0 → 0) = lim
h0→0

lim
N→∞

∑
s

P (s)se−sh0 =
∑

s 6=〈S〉
sP (s), (17)

while the number of loops per vertex 〈Nloop〉/N is given as

` ≡ 〈Nloop〉
N

=
〈L〉
N

− 1 +
1
N

∂

∂q
[lnZN (q, 0)]q=1 . (18)

3.1 Partition function and free energy

A convenient way to evaluate the partition function is to resort to the vector-spin
representation where one associates an r-dimensional vector ~S(σi) of unit length to
each spin value σi, where ~S(1) = (1, 0, . . . , 0) and ~S(σi) with σi = 2, 3, . . . , q point
to the remaining r corners of the r-dimensional tetrahedron. The interaction term

in the Hamiltonian then takes the form of a perfect square,
[∑

i Pi
~S(σi)

]2

, and the
standard saddle point analysis can be applied [19]. As a result, the free energy can
be evaluated for general q. In the q → 1 limits, it becomes

F (y, h0) =
1

4K
y2 − 1

N

N∑

i=1

(e−hi − 1 + hi), (19)

where hi = h0 + NPiy and y is the solution of

y

2K
=

N∑

i=1

Pi(1− e−hi). (20)

When h0 → 0, a non-trivial solution of eq. (20) begins to appear when (2K)−1 <

N
∑N

i=1 P 2
i , which gives the following characteristic value Kc

Kc =
1

2N
∑N

i=1 P 2
i

≈




1−2µ
2(1−µ)2 0 < µ < 1/2

1
2(1−µ)2ζ(2µ)N

−(2µ−1) 1/2 < µ < 1.
(21)

Since 〈k〉 = 2K and 〈k2〉 = (1/N)
∑N

i=1〈k2
i 〉 = 〈k〉 + N−1

∑N
i=1〈ki〉2 = 2K +

4NK2
∑N

i=1 P 2
i , the condition K = Kc is equivalent to the well-known condition

〈k2〉/〈k〉 = 2 [11]. The thermodynamic quantities, m, s̄, and ` evaluated from
eqs (19) and (20) are shown in figure 2.
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Figure 2. Giant cluster size m, mean cluster size s̄, and number of loops
` = 〈Nloop〉/N vs. K for µ = 5/19 (λ = 4.8) (a), µ = 5/13 (λ = 3.6) (b),
and µ = 5/7 (λ = 2.4) (c). Also shown in the panel are the critical expo-
nents associated with the percolation transition, defined by m ∼ (K −Kc)

β ,
s̄ ∼ (K −Kc)

−γ , and ` ∼ (K −Kc)
ν̄ .

4. Cluster size distribution and largest cluster size

Beyond the largest cluster size or the mean cluster size, the whole distribu-
tion of cluster size P (s) for the static model can be derived from eqs (19) and
(20). The result is the same as that obtained from the branching process ap-
proach [12,19]. In the branching process approach, one neglects the presence
of loops. For K > Kc, we do have a macroscopic number of loops but they
mostly belong to the giant cluster, leaving the finite clusters effectively trees.
Thus one can neglect the loops as long as the properties of finite clusters are con-
cerned.

The cluster size distribution P (s) near Kc(N) takes the form

P (s) ∼ s1−τe−s/sc (22)

with sc ∼ (K −Kc)−1/σ. The critical exponents τ and σ are evaluated as shown
in table 1. These values are the same as those derived by Cohen et al [22] for
the site percolation problem except τ = λ for 2 < λ < 3. The giant cluster size
〈S〉 = mN can be obtained from the relation

∑
s 6=〈S〉 P (s) = 1− 〈S〉

N . In particular,
at K = Kc(N), it scales as

〈S〉 ∼
{

N1/(τ−1) (λ > 3),

Kc(N)N1/(τ−1) ∼ N1−µ (2 < λ < 3).
(23)
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Table 1. The critical exponents τ and σ
describing the cluster size distribution.

τ σ

λ > 4
5

2

1

2

3 < λ < 4
2λ− 3

λ− 2

λ− 3

λ− 2

2 < λ < 3 λ
3− λ

λ− 2

Similarly, s̄ at Kc(N) for finite N can be obtained from s̄ ∼ ∫
s<〈S〉 s

2−τds. We
find

s̄− 1 ∼
{

N1/ν̄ (λ > 3),

Kc(N)2N1/ν̄ ∼ N−1/ν̄ (2 < λ < 3).
(24)

5. Evolution of the scale-free random graphs

As K, the mean number of links per node, increases, nodes join to form small
clusters and the clusters join to form bigger clusters. Thus the mean cluster size
increases. For λ > 3, there exists a sharp percolation transition at which the giant
cluster appears suddenly. Also cycles of all order (i.e., loops of arbitrary size)
appear near the transition. Since there are many large but finite clusters, the mean
cluster size s̄ diverges. Soon after K > Kc, however, the giant cluster begins to
swallow up those big finite clusters and s̄ becomes smaller.

Such standard percolation transition picture is radically modified for 2 < λ < 3
since Kc(N) ∼ N−1/ν̄ . The mean cluster size as a function of K is of interest in
particular. Figure 3 shows s̄ vs K for four values of N ; 104, 105, 106, and 107. As
N increases, the mean cluster size s̄ approaches the exact solution represented by
the solid line in figure 3. It does not diverge at any value of K, but instead its peak
height decreases as N increases. We additionally find that the mean cluster size s̄
has a small peak at Kp1, which scales as N1−2µ as shown in the inset of figure 3.
The value of Kp1 is close to Kc(N). The peak height scales as s̄ at Kc(N) derived
in the previous section: s̄− 1 ∼ N−1/ν̄ = N1−2µ. The reason for the peak at Kp1

is as follows. As K increases, the largest cluster size 〈S〉 and the mean cluster size
s̄ =

∑
s 6=〈S〉 sP (s) also increase. However, as K approaches Kc(N), the cluster size

distribution P (s) begins to develop the exponentially decaying part in its tail, i.e.,
for s À sc. sc decreases with increasing K after K passes Kc. At Kp1, 〈S〉 and sc are
equal. After K passing Kp1, the mean cluster size is dominated by sc, which makes s̄
decrease for K > Kp1. However, the mean cluster size increases again as soon as K

becomes much larger than Kp1 or Kc(N) because of a prefactor K1/µ of the cluster
size distribution P (s) for 1 ¿ s ¿ sc which increases with increasing K. The mean
cluster size decreases only after the second peak at Kp2 = O(1), where sc = O(1),
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Figure 3. Mean cluster size s̄ as a function of K in semi-logarithmic scales
with µ = 5/7 for N = 104 (4), 105 (3), 106 (2), and 107 (◦). In addition to
the peak at Kp1, another peak is shown at Kp2 ' 0.1 N for N = 105, 106, and
107, respectively. The solid line represents the exact solution. The measured
values of Kp1 (◦) as a function of N are plotted in the inset together with the
guide line whose slope is 1− 2µ for comparison.

Figure 4. The ‘phase diagram’ of the scale-free random graph as a function
of the link density K.

as shown in figure 3 as well as in the exact solution in figure 2. As in the case of
λ > 3, cycles of all order begin to appear at K ∼ K1−2µ ∼ Kc(N). Therefore, the
system may be regarded as being in the percolating phase for K > Kc(N).

In summary, the ‘phase diagram’ of the scale-free random graph may be repre-
sented as in figure 4.

6. Conclusion

We have studied the percolation transition of the SF random graphs constructed
by attaching edges with probability proportional to the products of two vertex
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weights. By utilizing the Potts model representation, the giant cluster size, the
mean cluster size, and the numbers of loops and clusters are obtained from the Potts
model free energy in the thermodynamic limit. Our general formulae for the giant
cluster size and the mean cluster size are equivalent to those results obtained for a
given degree sequence if the latter expressions are averaged over the grandcanonical
ensemble. The Potts model formulation allows one to derive other quantities such
as the number of loops easily. Using this approach, we then investigated the critical
behaviors of the SF network realized by the static model in detail. Furthermore,
to derive the finite-size scaling properties of the phase transition, the cluster size
distribution and the largest cluster size in finite-size systems are also obtained and
used. We found that there is a percolation transition for λ = 1 + 1/µ > 3 so that
a giant cluster appears abruptly when K = 〈L〉/N is equal to Kc given by eq. (21)
while such a giant cluster is generated gradually without a transition for 2 < λ < 3.
Thus the process of formation of the giant cluster for the case of 2 < λ < 3 is
fundamentally different from that of λ > 3.
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[15] B Söderberg, Phys. Rev. E66, 066121 (2002)
[16] F Chung and L Lu, Ann. Combinatorics 6, 125 (2002)
[17] W Aiello, F Chung and L Lu, Exp. Math. 10, 53 (2001)

1158 Pramana – J. Phys., Vol. 64, No. 6, June 2005



Scale-free random graphs and Potts model

[18] J Park and M E J Newman, Phys. Rev. E68, 026112 (2003); Phys. Rev. E70, 066117
(2004)

[19] D-S Lee, K-I Goh, B Kahng and D Kim, Nucl. Phys. B696, 351 (2004)
[20] P W Kasteleyn and C M Fortuin, J. Phys. Soc. Jpn. Suppl. 16, 11 (1969)

C M Fortuin and P W Kasteleyn, Physica 57, 536 (1972)
Also see F Y Wu, Rev. Mod. Phys. 54, 235 (1982)

[21] S S Manna and P Sen, Phys. Rev. E66, 066114 (2002)
P Sen, K Banerjee and T Biswas, Phys. Rev. E66, 037102 (2002)

[22] R Cohen, D ben-Avraham and S Havlin, Phys. Rev. E66, 036113 (2002)

Pramana – J. Phys., Vol. 64, No. 6, June 2005 1159


