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Abstract

Avalanche dynamics is an indispensable feature of complex systems. Here, we study the
self-organized critical dynamics of avalanches on scale-free networks with degree exponent �
through the Bak–Tang–Wiesenfeld (BTW) sandpile model. The threshold height of a node i
is set as k1−�

i with 06 �¡ 1, where ki is the degree of node i. Using the branching process
approach, we obtain the avalanche size and the duration distribution of sand toppling, which
follow power-laws with exponents � and �, respectively. They are given as �=(�−2�)=(�−1−�)
and �= (�− 1− �)=(�− 2) for �¡ 3− �, 3=2 and 2 for �¿ 3− �, respectively. The power-law
distributions are modi5ed by a logarithmic correction at �= 3 − �.
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1. Introduction

Frequently, complex systems in nature as well as in human society su>er massive
catastrophes triggered from only a small fraction of their constituents. Unexpected epi-
demic spread of diseases and the power outage in the eastern US of the last year are
the examples of such avalanche phenomena. Such a cascading dynamics is not always
harmful to us. The information cascades making popular hits of books, movies, and
albums are good to writers, actors, and singers, respectively. Thus, it is interesting to
understand and predict how those cascades propagate in complex system. Recently,
the network approach, by which a system is viewed as a network consisting of nodes
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representing its constituents and links interactions between them, simpli5es compli-
cated details of complex systems. Such a simpli5cation unveils a hidden order such as
scale-free behavior in the degree distribution.
Here degree is the number of links connected to a certain node. The Internet at the

autonomous system level, the World-Wide Web, social acquaintance networks, biologi-
cal networks, and other many complex networks exhibit power-law degree distributions,
pd(k) ∼ k−�. The networks following such power-law degree distributions are called
scale-free (SF) networks [1], where non-negligible fractions of hubs, the nodes with
extraneously large degrees, exist.
In this paper, we investigate the avalanche dynamics on such SF networks through

the Bak–Tang–Wiesenfeld (BTW) sandpile model [2], a prototypical model exhibiting
self-organized criticality (SOC). The study of sandpile dynamics has been carried out
mostly on regular lattices in the Euclidean space. In the stationary state, which can be
reached without tuning a parameter, the system exhibit scale-invariant features in the
power-law form of the avalanche size distribution pa(s) and the duration or lifetime
distribution ‘(t) as

pa(s) ∼ s−� and ‘(t) ∼ t−� : (1)

Recently, Bonabeau has studied the sandpile dynamics on the Erdős–RJenyi (ER) ran-
dom networks [3] and found that the avalanche size distribution follows a power law
with the exponent � � 1:5, consistent with the mean-5eld solution [4]. Recently, Lise
and Paczuski [5] studied the Olami–Feder–Christensen model [6] on regular ER net-
works, where degree of each node is uniform but connections are random. They found
the exponent to be � ≈ 1:65. However, when degree of each node is not uniform,
they found no criticality in the avalanche size distribution. Note that they assumed
that the threshold of each node is uniform, whereas degree is not. Here we study
the BTW sandpile model on SF networks, where the threshold zi of the node i is
given as k1−�

i with ki the degree of i and 06 �¡ 1. We 5nd that the exponents for
the avalanche size and the duration distribution depend on the degree exponent � as
�= (�− 2�)=(�− 1− �) and �= (�− 1− �)=(�− 2) for �¡ 3− � while, for �¿ 3− �,
they show the same behaviors as the conventional mean-5eld solutions as observed for
the ER random networks.

2. Sandpile model

We present the dynamic rule of the BTW sandpile model on a given network.

(1) Each node i is given a prescribed threshold zi (6 ki). The smallest integer not
smaller than zi is denoted as �zi� (�zi�6 ki).

(2) At each time step, a grain is added at a randomly chosen node i. The integer-
valued height of the node i, hi, increases by 1.

(3) If the height at the node i reaches or exceeds zi, then it becomes unstable and the
�zi� grains at the node topple to its �zi� randomly chosen adjacent nodes among
ki ones; hi → hi − �zi�, and hj = hj + 1 for all nodes j which are chosen.
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(4) If this toppling causes any of the adjacent nodes receiving grains to be unstable,
subsequent topplings follow on those nodes in parallel until there is no unstable
node left. This process de5nes an avalanche.

(5) Repeat (2)–(4).

Here, the threshold zi of node i is given as

zi = k1−�
i (06 �¡ 1) (2)

which is a generalization of zi = ki previously investigated in Ref. [7]. We concentrate
on the distributions of (i) the avalanche area A, i.e., the number of distinct nodes
involving in a given avalanche, (ii) the avalanche size S, i.e., the number of toppling
events in a given avalanche, and (iii) the duration T of a given avalanche.

3. Branching process approach

The mapping of each avalanche to a tree provides a useful way of understanding
the statistics of avalanche dynamics analytically. For each avalanche event, one can
draw a corresponding tree: The node where an avalanche is triggered corresponds to
the originator of the tree and the following nodes to descendants. In the tree structure,
a descendant born at time t is located away from the originator by distance t along the
shortest pathway. The tree stops to grow when no further avalanche proceeds. Then
the ensemble of avalanches can be identi5ed with that of trees grown through the
branching process. In this mapping, the avalanche duration T is equal to the lifetime
of the tree minus one, and the avalanche size S di>ers from the tree size only by
the number of boundary nodes of the tree, which is relatively small when the overall
tree size is very large. If one assumes that branching events at di>erent nodes occur
independently and that there is no loop in the tree, the tree size and lifetime distribution
can be obtained analytically [8,9]. Those distributions are expected to share the same
asymptotic behaviors with the avalanche size and duration distribution, respectively,
due to the near-equivalence between an avalanche and its corresponding tree in their
scales as mentioned above.
In the branching process describing an avalanche, after initial branching into k de-

scendants with probability q0(k), successive branchings are assumed to occur inde-
pendently with probability q(k). q0(k) and q(k) may be di>erent in general, but the
statistics of the overall size and duration of an avalanche is determined dominantly by
q(k). We checked also numerically the case where a new grain is added to a node with
the probability proportional to the degree of that node, which gives di>erent q0(k) from
that in the case where a new grain is added randomly, and found that the nature of the
avalanche dynamics is the same in both cases. Thus, for simplicity, we consider the
branching process where every branching occur with probability q(k). For the BTW
model in the Euclidean space, where the threshold zi of node i is equal to its degree
ki, q(k) has a 5nite cut-o> such that q(k)=0 for k ¿ zi =const, because the degree of
each node is uniform and 5nite. Consequently, the exponents of the avalanche size and
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the duration distributions in Eq. (1) come out to be the so-called mean-5eld values;
�= 3

2 and �=2 [8,9]. These results are known to hold for the BTW model on regular
lattices with dimensions larger than 4 [4]. Note that when dimension is smaller than 4,
the branching process approach cannot be applied, so that the values of the exponents
� and � would not be trivial.
In SF networks, avalanches usually do not form loops, generating tree-structures:

According to the numerical simulations of the BTW model for the case of zi = ki on
SF networks [7], the statistics of the two quantities A and S are nearly equal when they
are large: For example, the maximum area and size (Amax, Smax) among avalanches are
(5127, 5128), (12058, 12059) and (19692, 19692) for scale-free networks with �=2:01,
3.0, and ∞, respectively. The fact that A and S are almost the same implies that the
avalanche structure can be treated as a tree. From now on, we shall not distinguish
A and S, denoted by s. Thus, it is valid to use the branching process approach to
understand the avalanche dynamics on SF networks.
We study the BTW model on SF networks with the degree exponent � and the

threshold given as Eq. (2). The branching probability q(k) consists of two factors, that
is, q(k)=q1(k)q2(k), where q1(k) is the probability that the threshold zi of node i is in
the range k − 1¡zi6 k and q2(k) is the probability that the total number of grains at
the node reaches or exceeds the threshold. If zi=f(ki) with f(x) a monotonic increasing
function of x satisfying f(x)6 x for all x¿ 1, the condition of k −1¡zi6 k implies
that q1(k) is nothing but the probability that a node i connected to the one end of a
randomly chosen edge has its degree ki in the region (f−1(k − 1); f−1(k)], and thus

q1(k) =
�f−1(k)�∑

k′=�f−1(k−1)�+1

k ′pd(k ′)=〈k〉 ;

where �x� is the largest integer not larger than x. Notice that
∑∞

k=1 1(k) = 1 and
q1(k) ∼ k(1−�+�)=(1−�) for large k if f(x) � x1−� (06 �¡ 1) for large x. q2(k) is
the probability that the node i has height k − 1 at the moment of receiving a grain
from one of its neighbors. We have checked numerically that a typical height of node
is absent, so that all possible k values 0; 1; : : : ; k − 1 are equally likely [10]. Thus
we set q2(k) = 1=k. As a result, the branching probability q(k) for large k is given
asymptotically as

q(k) =
1
k
q1(k) ∼ k−�′

(
�′ =

� − 2�
1 − �

)
: (3)

When zi = ki or �=0, �′ is reduced to �. Since we are interested in the case of �¿ 2
and 06 �¡ 1, �′ ¿ 0.
Using the independence of the branchings from di>erent parent-nodes, one can derive

the following self-consistent relation for the tree size distribution p(s) as [8,9]

p(s) = q(0)�s;1 +
∞∑
k=1

q(k)
∞∑
s1=1

∞∑
s2=1

· · ·
∞∑
sk=1

p(s1)p(s2) : : : p(sk)�∑k
i=1 si ;s−1 : (4)
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This relation can be written in a more compact form by introducing the generating
functions, P(y) =

∑∞
s=1 p(s)ys and Q(!) =

∑∞
k=0 q(k)!k as

P(y) = yQ(P(y)) : (5)

Then !=P(y) is obtained by inverting y =P−1(!) = !=Q(!).
The average size 〈s〉 of a 5nite tree can be obtained easily from the generating

functions.

〈s〉 =
5nite∑
s=1

sp(s) =P′(1) ; (6)

where P′(y) = dP(y)=dy. Using the relation, Eq. (5), we obtain

〈s〉 =P′(1) =
Q(P(1))

1 − Q′(P(1))
; (7)

where again Q′(!) = dQ(!)=d!.
The distribution of duration, i.e., the lifetime of the tree can be evaluated similarly

[8,9]. Let r(t) be the probability that a branching process stops at or prior to time t.
Then following the similar steps leading to Eq. (4), i.e., r(t)=

∑∞
k=0 qk [r(t−1)]k , one

has

r(t) = Q(r(t − 1)) : (8)

For large t, r(t) comes close to 1. One can obtain ! = r(t − 1) by solving d!=dt �
r(t) − r(t − 1) = Q(!) − !. Then the lifetime distribution ‘(t) is obtained through
‘(t) = r(t) − r(t − 1) � d!=dt.

4. Avalanche size and duration distribution

The growth of a tree depends on the average number of branches de5ned as

C =
∞∑
k=1

kq(k) : (9)

When C¿ 1 (C¡ 1), a tree can (cannot) grow in5nitely in a probabilistic sense. Thus
the case of C =1 is a critical point for the growth of a tree. One can see that for any
branching process with

q(k) = (1=k)q1(k)(k¿ 1) and
∞∑
k=1

q1(k) = 1 ;

the average number of branches C is always 1, independent of detailed structural prop-
erties of networks. Therefore our assumption q2(k) = 1=k corresponds to the condition
for the self-organized criticality (SOC) of the sandpile model.
The inverse function P−1(!) satis5es P−1(1) = 1. When C = 1, the 5rst-order

derivative 9P−1(!)=9! at ! = 1 is zero and thus P(y) becomes singular at y = 1.
P(y) is expanded around y=1 as P(y) � 1−b(1−y)! with constant b and 0¡!¡ 1.
Then the asymptotic behavior of the avalanche size distribution p(s) for large s is given
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by p(s) ∼ s−!−1, because if a series
∑∞

s=0 asys with the radius of convergence 1 has
the asymptotic behavior

∞∑
s=0

asys ∼ (1 − y)! as y → 1 then as ∼ s−!−1 as s → ∞ : (10)

The functional form of the branching probability q(k) determines the singularity of
P(y). To illustrate this, we 5rst consider a simple case that

q(k) =




1 − a (k = 0) ;

a (k = 2) ;

0 (otherwise) ;

(11)

where 0¡a¡ 1. Then the average number of branches C =
∑

kq(k) = 2a and the
generating function

Q(!) =
∞∑
k=0

q(k)!k = 1 − a+ a!2 :

Using the relations of y = !=Q(!) and !=P(y), it is obtained that

P(y) =
1 −

√
1 − 4a(1 − a)y2

2ay
: (12)

The value of P(1) =
5nite∑
s=1

p(s) is given as

P(1) =
1 − |1 − 2a|

2a
=




1 for 0¡a6
1
2

(C6 1) ;

1 − a
a

for 1
2 ¡a¡ 1 (C¿ 1)

(13)

which means that when 1
2 ¡a¡ 1 (C¿ 1), a tree can grow in5nitely with probability

1−P(1) = (2a− 1)=a, and the critical point is located at ac = 1
2 . Near y=1, P(y) ≈

1− √
2(1 − y) from Eq. (12), leading to != 1

2 . Then, the avalanche size distribution
p(s) behaves as p(s) ∼ s−3=2. On the other hand, using Eq. (7),

〈s〉 =P′(1) =




1
2(ac − a)

(a¡ac) ;

1 − a
2a(a − ac)

(a¿ac) :
(14)

Even for the case that q(k) has a 5nite cut-o> larger than 2 or decays exponentially,
the above result holds. This is the conventional mean-5eld solution for the avalanche
size distribution [4,8,9] and has been shown to hold for the BTW model on the ER
random networks [3].
When q(k) decays slowly as in Eq. (3), however, its generating function Q(!)

is singular at ! = 1. For q(k) in Eq. (3), the expansion of Q(!) around ! = 1 is
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given as

Q(!) � 1 − (1 − !) +




A1(1 − !)�
′−1 (2¡�¡�c) ;

−A2(1 − !)2ln(1 − !) (�= �c) ;

A3(1 − !)2 (�¿�c) ;

(15)

where Ai’s are constants, �′ is given in Eq. (3), and �c = 3 − �. The derivation of the
logarithmic correction for the case of �= �c can be found in Ref. [11]. Note that the
singular term (1−!)�

′−1 is the second leading term of 1−Q(!) for �¡�c. Using the
relation P−1(!) =!=Q(!) in Eq. (5), the behavior of P(y) around y=1 is obtained
for each region of � from Eq. (15), and in turn, using Eq. (10), p(s) for s → ∞. We
5nd that

p(s) ∼




s−(�−2�)=(�−1−�) (2¡�¡�c) ;

s−3=2(ln s)−1=2 (�= �c) ;

s−3=2 (�¿�c) :

(16)

Thus, the exponent � is given as �= (�− 2�)=(�− 1− �) for 2¡�¡�c and �= 3
2 for

�¿ �c.
Also obtained is r(t) from Eq. (15) by using Eq. (8). The duration distribution ‘(t),

which is the derivative of r(t), is found to be

‘(t) ∼




t−(�−1−�)=(�−2) (2¡�¡�c) ;

t−2(ln t)−1 (�= �c) ;

t−2 (�¿�c) :

(17)

That is, the exponent � is given as � = (� − 1 − �)=(� − 2) for 2¡�¡�c and � = 2
for �¿ �c.

5. Conclusion

We have studied the BTW sandpile model on SF networks with the degree exponent
� to understand the avalanche dynamics in complex systems. The main results are the
avalanche size and duration distribution. The exponents � and � increase with increasing
�, implying that the hubs play a role of reservoir, that is, sustain large amount of grains
to make the SF network resilient under avalanche dynamics. This is reminiscent of
the structural resilience of the SF network under random removal of nodes for �6 3
[12–14]. We also checked the case where the threshold zi contains noise in the way
that zi = #iki with #i being distributed uniformly in [0,1]. We 5nd that such a variation
does not change the nature of the avalanche dynamics. However, when the threshold is
given in terms of a quantity other than degree, e.g., load, the corresponding avalanche
dynamics has no reason to follow the same statistics as studied in this paper, which
remains further works.
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