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We study the zero-temperature phase transition of a two-dimensional disordered boson Hubbard model.
The phase diagram is constructed in terms of the disorder strength and the chemical potential. Via Monte
Carlo simulations, we find a multicritical line separating the weak-disorder regime, where the Mott-
insulator-to-superfluid transition occurs, from the strong-disorder regime, where the Bose-glass-to-
superfluid transition occurs. On the multicritical line, the insulator-to-superfluid transition has the
dynamical critical exponent z � 1.35 6 0.05 and the correlation length critical exponent n � 0.67 6

0.03. We suggest that the proliferation of the particle-hole pairs screens out the weak-disorder effects.
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The boson localization due to a random potential has
continuously attracted significant attention as a paradigm
of the zero-temperature quantum phase transition [1]. The
superconductor-insulator transition has been believed to be
a manifestation of the boson localization transition. Two-
dimensional realization of this transition may be found
in disordered thin-film superconductors [2], Josephson-
junction arrays [3], and 4He films adsorbed in porous me-
dia [4]. An interacting boson model, called the boson
Hubbard model, has been proposed [5] to describe the tran-
sition between an insulator and a superfluid (SF). In the
disorder-free case, the insulating ground state is a Mott in-
sulator (MI), which has commensurate boson density and
a finite Mott gap which suppresses the excitations of freely
moving particles or holes. As the gap vanishes the system
becomes a superfluid. In the presence of disorder, even
with a vanishing energy gap, particles or holes excited can
be localized by a random potential, resulting in a Bose
glass (BG) insulator.

The interplay of interaction and disorder has attracted
considerable interest in this model. It has been argued that
in the presence of disorder the transition from the insu-
lating to the superfluid state occurs only through the BG
phase on the assumption that arbitrarily weak disorder is
always relevant in two dimensions [5]. Recently, however,
quantum Monte Carlo studies of the boson Hubbard model
in the Villain representation have shown that transitions at
[6] or near [7] the tip of the MI lobes, the points with the
particle-hole symmetry, are most likely direct from the MI
state to the SF state for weak disorder. Path-integral quan-
tum Monte Carlo simulations [8] and real-space renormal-
ization calculations [9,10] of the boson Hubbard model
support the scenario of the direct MI-SF transition at the
tips. A simple scaling argument combined with renormal-
ization calculation at the mean-field level predicts [11] that
the direct MI-SF is possible around the tip of the MI lobe
in high dimensions (d . 4) while it is possible only at
the tip in low dimensions (2 # d , 4). Field-theoretical
renormalization group studies at the tip, on the other hand,
show that disorder is always relevant in two dimensions
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[12,13]. Strong-expansion studies suggest that the direct
transition is always unlikely to occur in the presence of
disorder [14]. Similar problems in one dimension have
also attracted considerable interest recently [15]. Here, it
appears that a direct MI-SF transition is not supported.

In this work, we investigate the onset of the superflu-
idity in a two-dimensional boson Hubbard model in the
presence of disorder via quantum Monte Carlo simula-
tions which employ a (2 1 1)-dimensional classical ac-
tion. We find that a multicritical line exists, separating
the weak-disorder regime from the strong-disorder regime,
and on the line, the insulator-to-superfluid transition is as-
sociated with novel values of the critical exponents: i.e.,
z � 1.35 6 0.05 and n � 0.67 6 0.03, where z and n are
the dynamical and the correlation length critical exponents,
respectively. These results are summarized in Fig. 1. It
shows that the direct MI-SF transition survives around the

FIG. 1. Schematic phase diagram of a disordered boson
Hubbard model. Here m is the chemical potential, D is the
strength of disorder, and K is the parameter characterizing
the hopping of bosons. The particle-hole symmetry is defined
by the condition m � 0. The multicritical line separates the
critical surface into the direct MI-SF transition region and the
BG-SF transition region.
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tip of the MI lobe for weak disorder. This means that the
weak disorder is irrelevant for the localization transition in
two-dimensional interacting boson systems that have near
integer fillings. Strong disorder changes the nature of the
transition to that of the BG-SF transition.

We consider a boson Hubbard model on the two-
dimensional square lattice, given by the Hamiltonian
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where b
y
i �bi� denotes the boson creation (destruction)

operator at site i (ni � b
y
i bi), mi denotes the local chemi-

cal potentials, U denotes the on-site repulsion energy,
t denotes the hopping strength to the nearest neighbors,
and finally the last sum is over nearest neighbor pairs.
The disorder effect is embedded in local chemical po-
tential as mi � m 1 yi, where yi are random variables
independently and uniformly distributed in the range
�2D, D�. Thus D characterizes the strength of disorder.

To perform Monte Carlo simulations, we follow the
standard procedure [16] to transform the two-dimensional
Hamiltonian in Eq. (1) to the (2 1 1)-dimensional classi-
cal action
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1
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� �J2�x,y, t� 2 2�m 1 yi�Jt�x, y, t�� ,

(2)

where x and y are spatial coordinates and t is the
imaginary-temporal coordinate. Here K 	

p
t�U,

analogous to the temperature in classical systems, and
�J�x, y, t� is the integer current vectors which measure
the fluctuations along the corresponding direction of the
components. In the transformation from Eq. (1) to Eq. (2)
one assumes that superfluidity is destroyed only by phase
fluctuations.

We are interested in the phase diagram of Eq. (2) in
the space of �K, m, D�. The transition described by the
classical action is studied by Monte Carlo simulations.
We perform the simulations on the lattice of various sizes,
denoted by L 3 L 3 Lt, where L and Lt are sizes of
the systems along a spatial and the imaginary-temporal
axis, respectively. The periodic boundary conditions are
adopted. In order to extract the critical properties of the
transition, we analyze the data using the finite-size scaling
theory. An important quantity which indicates the onset
of the superfluidity is the superfluid stiffness, which is
measured by the formula

r �
1

Lt

��n2
x��av , (3)

where nx � �1�L�
P

�x,y,t� Jx�x, y, t� is the winding num-
ber along the x direction. Here �. . .�av denotes the average
over different realizations of disorder. The finite-size scal-
ing behavior of the superfluid stiffness is given by [17]
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r � L2�d1z22�r̃�L1�nd, Lt�Lz� , (4)

where d � �K 2 Kc� is the distance from the critical point
Kc for each D and m, r̃ is a scaling function, and d
is the spatial dimension. Throughout this work, we set
d � 2. Another useful quantity is the compressibility,
which directly shows whether the Mott gap vanishes at the
transition. It is given by the formula

k �
Lt

Ld
��n2

t� 2 �nt �2�av (5)

with nt � �1�Lt�
P

�x,y,t� Jt�x, y, t�, and is assumed to
take the scaling form

k � Lz2dk̃�L1�nd, Lt�Lz� (6)

with another scaling function k̃.
In order to investigate the scaling behavior of the su-

perfluid stiffness and the compressibility, one must spec-
ify the dynamical critical exponent, z, in advance so as
to fix the aspect ratio Lt�Lz throughout the simulations.
We have tried various values of z and have chosen the one
which gives the best scaling behavior satisfying Eq. (4).
For lattices with noninteger Lt , the superfluid stiffness is
obtained by a simple interpolation of the two values mea-
sured in the lattices of nearby integer sizes.

The effect of disorder at various strengths is investi-
gated on the m � 0 plane. For strong disorder, say for
D . 0.45, the onset of superfluidity follows the BG-SF
transition behavior with z � 2 and n � 0.9, and the com-
pressibility is finite at the transition as suggested by the
scaling argument [5] and confirmed by subsequent numeri-
cal simulations [16]. For D , 0.35, however, the transi-
tions take the signature of the direct MI-SF transition with
z � 1 and n � 0.67, as reported in the recent simulations
[6], while the compressibility vanishes at the transition. At
the intermediate strength of disorder, naive scaling analy-
sis using either z � 1 or z � 2 fails. In this work, we take
a different approach and allow the possibility of interme-
diate values of z by varying the aspect ratio Lt�Lz until
the scaling plots collapse onto a single curve.

A new scaling behavior emerges, at the intermediate
strength of disorder, which has z � 1.35 6 0.05 and n �
0.67 6 0.03. This scaling behavior is shown in Fig. 2.
We observe the best scaling when z � 1.35. In addition,
with this value of z, Kc’s obtained from the scaling behav-
ior of the superfluid stiffness and the compressibility data
curves are consistent with each other. The compressibil-
ity vanishes at the transition as expected for z , d [see
Fig. 2(b)]. Kisker and Rieger reported [6] z 
 1.4 for the
intermediate strength of disorder, D � 0.4. However, they
interpreted the result as simply measuring an effective ex-
ponent. As we can see in Fig. 2, the robust finite-size scal-
ing behavior for various sizes strongly suggests that the
transition truly has new values of the critical exponents. In
order to rule out the possibility that we are disguised by
finite-size effects, we have performed simulations adopting
247006-2



VOLUME 87, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 10 DECEMBER 2001
0.25 0.275 0.3 0.325

K

0

1

2

3

4

5

ρL
z

6x6x6.72
8x8x8.90
10x10x12.78
12x12x12.12
14x14x20

-2 -1 0 1 2

(K −  K
c
) L

 1/ν

0

1

2

3

4

5

(a)

0.25 0.275 0.3 0.325
K

0

0.5

1

1.5

2

κ L
d−z

6x6x6.72
8x8x8.90
10x10x12.78
12x12x17.12
14x14x20

-2 -1 0 1 2

(K- K
c
)L

1/ν

0

0.5

1

1.5

(b)(b)
FIG. 2. The finite-size scaling behavior of (a) the superfluid
stiffness and (b) the compressibility at the tip of the MI lobe
�m � 0� with D � 0.40. We set z � 1.35. The curves cross
at Kc � 0.292. The insets show the scaled data along the K
direction with n � 0.67.

a different aspect ratio and find the same critical exponents.
The value of the correlation length critical exponent hap-
pens to be the same as the pure transition at the tip.

This behavior persists even off the tip �m fi 0�. The
off-tip transition of the pure case, usually called the generic
transition, is of a mean-field type, so that z � 2 and
n � 1�2 for the MI-SF transition. If disorder is relevant,
we expect in general that the correlation length critical
exponent has a different value [18]. Thus, we can nu-
merically identify the BG-SF transition from the MI-SF
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transition by measuring n as well as by observing the com-
pressibility. Previously Park et al. have reported [7] that
even in the presence of weak disorder, the generic tran-
sition survives near the tip. As D increases, the generic
MI-SF transition ends at the critical value, Dc�m�, above
which the BG-SF transition occurs.

The critical strength of disorder, Dc�m�, therefore de-
fines a multicritical line, separating the critical surface
Kc�m, D� into the two regions: the strong-disorder re-
gion and the weak-disorder one. Figure 3 is the measured
Dc�m�. Numerically we find good scaling behaviors using
the above exponents for a range of parameters (see Fig. 3
inset). The error bars in Fig. 3 show such ranges. We be-
lieve that, in larger systems, the finite range should shrink
to a point. Otherwise, the existence of an incompressible
localized phase other than the BG phase is required, which
is unreasonable.

The existence of the multicriticality strongly suggests
that in the presence of disorder two different universal-
ity classes exist, in one of which disorder is irrelevant.
The irrelevance of weak disorder may be understood from
the abundance of the particle-hole pairs excited. At the
tips, the proliferation of particle-hole pairs near the tran-
sition modifies the particle propagation to yield z � 1
(otherwise z � 2) in the pure case. These particle-hole
pairs may screen the disorder effects. In order to directly
check the possibility that the proliferation of particle-hole
pairs may screen out the weak-disorder effects, we have
repeated Monte Carlo simulations of the classical model
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FIG. 3. The critical strength of disorder, Dc�m�, as a function
of the chemical potential m. At the tip �m � 0�, we have tuned
the value of D to find the critical one. The error bar indicates the
range in which the scaling plots show the behavior expected on
the multicritical point. Off the tip m is tuned instead, while D
is fixed. Inset: the superfluid stiffness scaling curves away from
the tip �m � 0.175� at D � 0.2 with z � 1.35 and n � 0.67.
247006-3



VOLUME 87, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 10 DECEMBER 2001
0.29 0.3 0.31 0.32

K

0

1

2

3

4

5

ρL
z

7 x 7 x  8.47
8 x 8 x 11.06
9 x 9 x 14

-0.2 -0.1 0 0.1 0.2

(K −  K
c
) L

 1/ν

0

1

2

3

4

5

FIG. 4. The finite-size scaling behavior of the superfluid stiff-
ness at D � 0.3 �m � 0� for the systems in which the particle-
hole pair fluctuations are completely suppressed. We set z � 2.
The inset shows the scaled data along the K direction with
n � 0.9. These exponents indicate that the nature of the transi-
tion is of the BG-SF one.

given by Eq. (2) under the condition that the background
particle-hole fluctuations are completely suppressed.
For simulations of the system governed by the action
of Eq. (2), one should generate all possible current
configurations � �J�x, y, t�� [16]. The suppression of the
particle-hole fluctuations is realized by disallowing any
Monte Carlo updating which generates local particle-hole
current loops. In the spatial planes, however, all possible
current configurations are allowed as usual. Thus the
allowed current configurations, if they are not restricted in
a spatial plane, percolate in the t direction (the imaginary
temporal direction).

Figure 4 shows the scaling behavior of the superfluid
stiffness when the particle-hole fluctuations are suppressed
at the tip �m � 0� for relatively weak disorder (D � 0.3).
The scaling shows that the critical exponents are z � 2
and n � 0.9, indicating the BG-SF transition occurs. Note
that, with the particle-hole fluctuations, the transition has
the behavior of the MI-SF transition [6,7] at this strength
of disorder. This simulation result, therefore, is consistent
with the argument that the particle-hole pair fluctuations
make the weak disorder irrelevant to the transition.

Now one may question how the particle-hole fluctua-
tions screen the disorder. In the mean-field picture, ig-
noring the particle-hole fluctuations, particles (holes) are
localized by arbitrarily weak disorder due to the coher-
ent impurity backscattering. However, the proliferation of
the particle-hole pairs could hinder the coherent backscat-
tering. A particle propagating could be captured and de-
stroyed by holes, and a new particle starts to propagate. A
phase shift which accompanies such a particle-exchange
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process may destroy the coherent backscattering of the
particle. As a result, this effect could screen out a weak
random potential, making it irrelevant. Slightly off the
tip, there are still abundant particle-hole pairs fluctuating.
Thus this screening effect will survive even off the tip.

In summary, via quantum Monte Carlo simulations
of the phase-only model of a disordered boson Hubbard
model, we have found that there is a multicritical line
which divides the universality of this model into the
weak-disorder regime and the strong-disorder regime. In
the weak-disorder regime, disorder is irrelevant for the
insulator-to-superfluid transition. On the multicritical line,
the dynamical critical exponent z � 1.35 6 0.05 and
the correlation exponent n � 0.67 6 0.03 are obtained.
Our result strongly suggests the direct MI-SF transition
survives for weak disorder. We argue that the particle-hole
pairs fluctuating near the tip will screen out disorder to
make a weak random potential irrelevant.
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