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Universality class of the restricted solid-on-solid model with hopping
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We study the restricted solid-on-soliRSOS model with finite hopping distandg, using both analytical
and numerical methods. Analytically, we use the hard-core bosonic field theory developed by the authors
[Phys. Rev. E62, 7642 (2000] and derive the Villain-Lai-Das Sarm@/LD) equation for thely=c case,
which corresponds to the conserved RS@RSOS model and the Kardar-Parisi-ZhafiigPZ) equation for
all finite values ofly. Consequently, we find that the CRSOS model belongs to the VLD universality class and
that the RSOS models with any finite hopping distance belong to the KPZ universality class. There is no phase
transition at a certain finite hopping distance contrary to the previous result. We confirm the analytic results
using the Monte Carlo simulations for several values of the finite hopping distance.
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[. INTRODUCTION equations is a simple comparison of critical exponents deter-
mined from computer simulations of the discrete model with
In recent years, the field of nonequilibrium surface growthexponents for the continuous equation.
has been investigated using various discrete models and con- There have also been attempts to establish the correspon-
tinuous equationfl]. The comprehension of nonequilibrium dence in an explicit way. The systematic procedure for es-
surface growth plays an important role in understanding angablishing a continuous equation corresponding to discrete
controlling many interesting interface processes, such as vanodels, starting from the master equation in discrete space
por deposition2], crystal growth[3], molecular beam epi- was proposed by Vvedensley al.[5] and has been success-
taxy (MBE) [4], and so on. During the MBE growth process, fully applied to the derivation of growth equations for some
the conserved growth condition is applied without defectsdiscrete models, including the solid-on-soll0S model,
such as overhangs and vacancies. Various discrete conservig@ restricted solid-on-solidRSOS model, as well as the
models for MBE, describing the kinetic properties of this wolf-Villain and Das Sarma-Tamborenea modéB—8§.
type of surface growth, have been proposed and studied tyowever, there are several difficulties with this procedure; in
intensive numerical simulations. particular, in converting from the equation system for a dis-
The main purpose of studying discrete models is to meacrete set of heights to an equation for a continuous function
sure scaling exponents for the kinetic roughening, which den(x,t), the procedure requires the regularization step, in
termines the asymptotic behavior of surface growth on avhich the nonanalytic quantities are expanded and replaced
large length scale in a long time limit. The important resultwith analytic quantities, i.e., the step function is approxi-
of the kinetic roughening studies is that a large variety ofmated by an analytic shifted hyperbolic tangent function ex-
different discrete growth models can be divided into only apanded in a Taylor series. However, the form of the regular-
few universality classes. The surface width which mea- ized function is uncertain, and different choices of this
sures the root-mean-square fluctuation of the surface heigffunction lead to different results. Some forms of the regular-
scales as ized function have been suggested, but the problem of a
proper choice of a regularization scheme has not been dis-
W(L,t)~Lf(t/L?), (1) cussed.

To overcome this kind of uncertainty, the authors pro-
where the asymptotic behavior of the scaling functi¢x) is posed a new schematic formalig®i, deriving the continu-
constant fox>1 andx” for x<1 with 8=a/z. The scaling ous equations, such as the Edwards-Wilking&iv) [10]
behavior of the growth is characterized by three exponentaand Kardar-Parisi-ZhangKPZ) [11] equations, from the
the roughness exponenf the growth exponeng, and the  body centered solid-on-solid model and the RSOS model. In
dynamical exponent. These exponents determine the uni-this paper, we apply our formalism to a new kind of MBE
versality class. growth model proposed by Kim, Park, and Kib2]. This

In the coarse-grained picture, evolution of the growingmodel allows the deposited particle to relax to the nearest
surface is usually described by a stochastic differential equasite where the RSOS condition on neighboring heights is
tion (SDE) for the height variabléa(x,t) as a function of the satisfied and has the conserved growth condition constraint,
surface coordinate and time. For discrete models of MBEwvhich means the deposited particles are possible to hop for
growth, several SDEs were suggested and it was generalBn infinite distance until they eventually find the site with the
believed that there is a correspondence between discreRSOS condition satisfied. Applying our formalism to the
growth models and continuum SDEs. The common way ofabove conserved RSQERSOS model, we not only derive
establishing the link between discrete models and continuouke Villain-Lai-Das Sarma(VLD) equation[13] for the
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model which belongs to a different universality class from

the EW and KPZ equations, but also we are able to predict
the coefficients in the VLD equation, which was not possible

by other methods.

Observing that the RSOS model belongs to the KPZ class
and the CRSOS model belongs to the VLD class, we went
one step further to study the RSOS model with the finite
range hoppindRSOS/H. In this RSOS/H model, it is pos-
sible for the deposited particles to hop a finite distahce
until they find the site with the RSOS condition satisfied. If  F|G. 1. Relation of species to the height slope. We use the
they fail to find the site with the RSOS condition satisfiedinteger to indicate the location of particles and the half-integer for
within the distancé, in both directions, the deposition pro- the height configuration. Hence the RSOS condition atrsitg is
cess is rejected. The RSOS model corresponds to thdetermined by the situation at sitesandn+ 1.

RSOS/H model with ;=0 and to the CRSOS model with

[o=o. We apply our formalism to the RSOS/H model with probability with which the system is in sta@at timet, and

|0 finite and find that this model be|0ngS to the KPZ CIaSS,H, called a Ham”tonian, is an evolution Operator

contrary to the previous report by Kim and Yopk4], who
concluded that there is a phase transition between the KPZ o
class to the VLD class along the paramétgr H=2> (I-R,—AyL,, 2

In Sec. Il our formalism to derive the continuous equation
from the discrete model is briefly explained and the proce-
dure of derivation is described. The detailed calculations ar(\_{,vhere
attached in the appendices. Extensive numerical simulations ol
are presented in Sec. lll and the summary and discussion are
given in Sec. IV.

j j
IT Ryt IT Roi], (3

II. DERIVATION OF THE STOCHASTIC EQUATION and

In this section, we derive continuous equations for the
one-dimensional RSOS/H model with a hopping distalce
and for the CRSOS model correspondingl §e=o. We re- R . R
strict ourselves to the case wherein the height difference be- An=(a]+b,) (8,1 +b1, ). (4)
tween two nearest neighbors is not larger than 1. For a suc-
cinct description of the dynamics, we introduce theThe role of the rejection operat®, is to check the stability
nomenclature that if a siten satisfies the conditioth,,+1  of siten+ 3, that is, if a configuratiofC) has a stable site at

—hpme+1/ =<1, this site is called _“stable.” Following_this no- 41 ﬁn|C>=0 and otherwis&n|c>=|C>. The adsorption
menclature, the growth algorithm of the one-dimensional ~ . . .
RSOS/H model is as followsi) We choose a siten ran- operatorA, describes the configuration change after a suc-

domly. (ii) Sites fromm—1, to m+1, are examined to de- cessful depositiona,(by) is thAe annihilation operator of an
termine if they are stable site6ii) If a stable site is found A(B) particle at siten and éﬁ(b;) is the corresponding cre-
within the interval fromm—1, to m+1,, a new particle is ation operator, satisfying the mixed commutation relations
deposited to the nearest stable site fronimitself can be a  presented in Ref9],

candidate for depositionHowever, if stable sites are nonex-

istent in the examined interval, the particle drop is rejected a,a'=b,b'=71—a'a,—b'b,, a,p,=alb'=0. (5
and the system remains unchanged. After this try, the time is

increased by 1/, wherel is the system size. We assume Al operators at different sites commute with each other.
periodic boundary conditions. To find the SDE for the RSOS/H model, we apply the
~ Since the height difference between two nearest neighborgiethod recently introduced by the authg®. First we as-

is restricted not to be larger than 1, the RSOS/H model isyme the existence of the lattice version of the SDEs in terms

mapped onto the reaction-diffusion system of hard-core pargf density. Those equations are supposed to take the forms
ticles with two species. The step-(jglown) is mapped to an

A(B) particle. If two nearest neighbor sites have equal R A ABLE

height, a particle vacuum is located between these two sites.  dian=Ch({a},{b})+ X, [ghnén(D)+gnoeB(1)],  (6)
The site where the particles reside is labeled by an integer, m

and the site for height by a half-integer. This mapping is

depicted in Fig. 1. According to this mapping, the dynamics _ B n BAZA (1) 1 oBBgB

of the RSOS/H model can be described by timaginary 9y =Cr({at.{b}) % [Gnmém(D)+ Gnmbm(D)], - (7)
time) Schralinger equation q/at)|¥;t)=—H|W¥;t) for the

state vector|W;t)=3.P(C;t)|C), where P(C;t) is the whered,=d/dt and¢&l, £ are white noises with correlation

& _ata Lot F ata ff 0
Rh=anan+ by 1001838005 1001,
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(EDES ()= Sumdxxr S(t—t")

(X,X"=either A or B), (8)

where 6,, and 8y x are Kronecker deltas ané(t—t’") is
the Dirac delta function. The matrig is related to the
Kramers-Moyal coefficient in such a way that

2 gXX'

r, X"

=X ({a}.{b})

(X, X", X"=either A or B). 9

Here we are using the liaterpretation. The field(b) in the
curly bracket represents the density of spedéB) at all
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[ala,[A,a]a,]]
=@ a1+ bl DL +anal_+b, )L, )

_§I,n+lalé—n+1|:n_5I,n—1ané-$—1|:n—1: (13)
[6|T6| 1[H yngn]]
= é\In(k’in

- 5I,n+16n6;+1|:n

1+6n—1)|:n—1)

(14)

(&n+1+bl )L +blAN
- 5I,n71626n71£n711

[a/a,[A,blba]1= 6110080 1L o+ 8 0-1bfE] 4L, s,
(15)

sites. From here on, without a hat above itself a mathemati-

cal symbol is a pure number as opposed to an operaor.
should not be confused with,. The former is a density at

site n that runs over real numbers, while the latter is an

where §,,, is a Kronecker delta. Following thigurization
we find the Kramers-Moyal coefficients. For a later purpose,

we give some examples of the figurization. The figurization

annihilation operator. By requiring that the noise average off Ry is Ry—>Ry=a,+b,.1—a,by.1, and the symbolic
observables in Eqg6) and (7) has the same behavior with representation of the figurization of the productRi is

the ensemble average of the number operator, we[¥hd
(Coy=([H.,aja,]),
(Cy=([H.blb]):.

ahaml D,

(Chmi=(Crne=([8an.[H.BlDrm] D),

(Chm=(biby [H.Bbm):.

(Chiye=([ala,.,[H (10

where the(--+); on the left hand side represents the average
over noise at time and that on the right hand side stands for

i

Il R

(16)

n+k'_)R{’]1

where the superscript should not be confused with the
power. Whenj =1, Rﬁ is denoted aR,, ;. R}, are given by
the following recursion relations:

j+1
Rh=an 1R+ (1=aneo) [] bne, (17)
j+1
I:zn j—2— bn 1Rn i— 2+(1_bn—1)k1;[2 An—k, (18

the ensemble average. The arguments of the Kramers-Moyal

coefficients are dropped for brevity.

wherej=1 and we defineRﬂzl. The physical meaning of

As presented in Refl9], the ensemble average of any Eqs.(17) and(18) is as follows: We divide the situation that

operator can be interpreted as an average of number operngrohibits the height increase at sites+3,n+3,...,

tors due to the property of the projection statg which is

n+j
+ 2 by the condition at site+ 1. If there is anA particle at

defined as a sum over all possible microscopic configurationsite n+ 1, the height increase is suppressed atrsite irre-

and is itself a left eigenstate &f with eigenvalue 0, and in  spective of the condition at site+ 2. Hence the first term of
turn, the ensemble average of a number operator is mappéd]. (17) follows. If there is noA particle at siten+1, to

to the noise average of density. This procedure leads us tguppress the deposition at siter 2, there must exist &
find the Kramers-Moyal coefficient§, CXY, in terms of  particle at siten+2 and this should be continued until the
siten+j+1, because at site+k(2=<k=j) no A patrticle is

the density fields. We call this procedu‘rgurlzation which
means “expression in number.” To represent flgeirization ~ present; this condition is represented by the second term. To
comprehend Eq(18), we only have to perform the mirror

we use the symbotb> to the left of which is an operatdor
transformation relative to sita. By the mirror transforma-

a product of operatoysand to the right of which is the cor-
responding density representation. tion relative to a siten, we mean the exchange afandb

To complete the derivation, we perform the commutation(a<b), followed by n+k«<n—k. Under this transforma-
relations between the Hamiltonian and the density operatorgon, R/, changes intd?g_k_j_2 for an arbitraryk. The
and so forth; mirror transformation of Eq(17) is Eq. (18).

With these notions, we will find the SDE of the RSOS/H

[H,a'a,1=4a(a,,,+b] DL, —an(al_;+b,_ )Ll 1, model. At first, the deterministic part of SDE is found. Since
(1)  the main concern is not the respective dynamics ofitlaad
o A A o R R B particles, but it isD,=a,—b, (the local slopg and S,
[H,b/b,]1=—bn(a.1+b, DL +bl(A _ +b,_)L,_1, =a,+b, (the slope density we will write the SDE forD

(12 and Srather than for thé\, B particles. The Kramers-Moyal
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coefficientCE is obtained by subtracting E¢12) from Eq.  where
(11) and Cﬁ by adding Eq.(12) and (11) followed by the

SR 21,
figurization

L= p'(1+1-pl). (25)
2l =0

D_1 I _oRl i i
Cn—zjzl[Rn—z 2R+ Ry (Rn 27 2R 1 For finitely we found

j 20p+1 2|0+1 2lp+1 R2lo+1 A
TR DI ER, R R o R % 0), ah=v.+ vih+ > (ah)2+ D), (26)
19
EX D) EX 1)) =DgeS(Xx—x")6(t—1"),
C§:2_3(an+bn)_(bnan+l+anbnfl_3bnbn+l < > ¢
21, where

—3apa,_ )+ > (R-R_,—R_+R_._,)
R B L=1-R(2lg+1)=1-p2[L+(V2—1)l]+O(p™0),

_bn(l_sn+1)bn+2_an(1_Snfl)anfz

_%(R2|0+1+R2|0+1 +R2|o+l 2|o+l_2)

n-2ly—1 n—2l 21, V2 3—v2 a1,
- | i =p2%(lo+1)(2lo+1)| - lot+ —5—| +0(p2),
- ]2::1 bnan+1RJn+1+bn(1_Sn+1)kl;[2 bn+k (27
_ 2ol _ A=—26(2ly+1)
+ba(1=bn DRE 5|~ J_Zl anbn1RL_j_3 1
B | |
i p2o(1+10)(1+21g)| 1+ Io)+0<pi°),

+an(1_snfl)k1:[2 anfk"'an(l_anfl)RL . (20)

2v2-1 2, 615V2  19/2-22
. . . Dee=—5—|17p." g T4 o
As pointed out in Ref[15], the mass term in Eq20) makes
the step density saturate fast. As a result, the step defsity +O(p4'°)

becomes a slave field of the slopetakes the form

_ 2. with p,.=(2—v2)/2. The numerical values qf(ly), v(lo),
S=2p(lo)* pollo) 9D+ bo(10) D7+, @) and \(lo) are given for several values &f in Table I. For

where 2(l,) is the (mean-field stationary step density and nfinite lo
mo and 8, may depend or,. Here d=d/d,. Since this

system has the mirror symmetry whose continuum version is dth=vo=Da*h+\d*(sh)*+E(x,1), (28)
invariant under the transformatioi3— —D and ¢— —d, _ _ _
we do not expect the occurrence Bfin Eq. (21). The pa- (EXDEX" 1)) =Dged(x—x") 8(t—t"),

rametersp(lg), mo(lg), and 6y(ly) are determined by the
stationarity of Eq(20). In Appendix A, we obtairp, 6,, and  Where
Mo as functions of, and show the approximate solutions of

these parameters. We can now rewrite E®) in terms of v.=1,
the height fieldh using Eq.(21) and
_ 21-122
D=¢h. (22) LR
The last task is to determine the noise strength. This is ac- . 10-3v2
complished using Eqe6) and (7). After eliminating S in A= 5 (29
favor of D, there is only one kind of noise with strength
Crm=Ciam+ CBE—CAE—CEA. (23 g 22l
33 2 :
Using figurizationof Eq. (10) and keeping the most relevant
term, we find Equation(26) directly shows that the RSOS/H model, for
any finitely, belongs to the KPZ class, and E88) suggests
am=—(1=p)?L(8y ms1—28nm+ Snm-1)+" ", that the CRSOS model is described by the VLD equation.

(29 However, the first line of Eq(19) has the form
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TABLE 1. Numerical values op(l), v(lg), and(lg).

lo p(lo) v(lo) A(lo)
0 1 1 -5
3 3 6
1 0.299 027 750 50 3.388710 ¢ —9.5709x 10!
2 0.293696 759 81 9.733010 2 —2.9204x107?
3 0.292 988 255 45 1.956910 2 —6.0527< 102
4 0.292903 676 47 3.265610°° —1.0287x10°?
5 0.292 894 314 95 4.829910 % —1.5406<10 3
6 0.292 893329 94 6.567410 ° —2.1140<10°*
7 0.292 893229 81 8.396410 ° —2.721710°°
8 0.292 893 219 88 1.024210°° —3.3380<10 ©
9 0.292893 21892 1.203810 7 —3.9408< 10"’
10 0.292 893 218 82 1.373010°8 —4.5115<1078
% 0.292893 21881 0 0
20 ‘ ‘ To clarify the crossover behavior, a scaling plot is given
> [R,_,—2R_,+R} in Fig. 3. The anticipated scaling form of the saturated width
=1 is

—{mirror terms of (R,_,—2R._,+R)}],
(30

Wsa(|0,L)=LaV|dg(|g/L), (31)

wherey is the crossover exponent. The asymptotic behavior
which has the following implications: If the continuum ver- of the scaling functiorg is expected to be
sion of R, _,—2R!),_, + R/, has a nonvanishing coefficient of
#%(D?"*1) with a non-negative integet it is not certain that const  whenx—c,
Eq. (30) is a lattice version ob*; consider the mirror trans- 9(x)~ X~ %pz  when X—0. (32
formation in the continuum limit. The occurrence of

192(D2;r++12 in Eq. (30 is directly related to the appearance of The pest fit for the data set shown in Fig. 2 corresponds to
a(ah) in Eq. (28), which generates an EW term by the , .—0.9 andy=2.0. The fitting parametet,4 obtained is

dynamic renormalization grouf6]. Appendix B shows that  somewhat smaller than the known value of the roughness
this is not the case. The vanishing®df" ** in the continuum

limit of R, guarantees the vanishing @f(D?*1) in 100 100

T T T 100 T
i i . . lp=5 lp=6 lp=7
R._,—2R/_,;+R!. In view of this, we conclude that the 0 ¢ 0
ggztmuum equation of the CRSOS model is the VLD equa—% wl et g ol o 3 .l ‘#/:ffzoﬁz_
. & .v.v"’"ﬂ P~ v o g -‘;‘»?";,
To confirm this conclusion, we have performed Monte Y <. L% “ L™
Carlo simulations as outlined in Sec. Ill. 7 L . 7 Lo . P .
100 1000 100 1000 100 1000
L L L
IIl. NUMERICAL STUDY 100 P . 100 P . 100 N .
0= 0= 0=
Although the RSOS/H model was studied numerically by ~ s N Sl PN s
. . . = 2 7056] 23 Sopessl 2 L
Kim and Yook [14], their results are contradictory to our % 10} o~ 13 0p & 1% 0F &
derivation. As a result, we need to perform extensive numeri-= ;"f’”"Lm = ;?'*"Lo,84 = ',;‘/*”Lo,se
cal simulations to verify our results. In the derivation, we
found that the coefficients of the EW terms and the KPZ 7 “jg 1000 T 1000 T ™0 1000
terms are vanishingly small, though finite, for largg. L L L

Hence, we may find a crossover of roughness exponents

from VLD (a,q=0.95) to KPZ (@,,,=0.5). We are preoc- g ¢or varioud ,. We find the saturation width by a least-squares
cupied with the numerical observation of this CroSSOVer. it ang the error bars represent three times the standard deviation,
In Fig. 2, we draw the saturated widtis,;as function of — yhich includes 99% of the data. We fit the data as a functioh of

the system sizé for somely’s. The system sizes are 64, 90, and find two exponents. The exponents for the smaller system sizes
128, 180, 256, 360, 512, 720, and 1024. For relatively smalhre written in the bottom left and those of the larger system sizes in
system sizes, the roughness exponents are near to the valugs upper right. The lines show the fitting results. Up to 512, it
reported in Ref[14]. As expected from our derivation, we seems plausible to insist that the systems are in the scaling regime,
see a crossover for large system sizes. but the data for 1024 show the clear discrepancy within an error bar.

FIG. 2. Plots for the saturation width as a function of the system
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B APPENDIX A: CONTINUUM LIMIT AND
DETERMINATION OF 6y AND p,
. . . In this appendix, we derive the continuum limit Bfwk
0.01 102 101 10° 10! where n is the reference point. One may obtain the con-
1,Y/L tinuum limit directly from Eq.(17), but we do not follow this

route. Rather, we make recursion relation about the param-
FIG. 3. Scaling plot of saturated widths of the one-dimensional€ters that appear in front of the fielsee below. The use of

RSOS/H model. The scaling variablelL. The values of, are  Ed.(21) makes it possible to represent the continuum limit in

equal to those in Fig. 2. We also draw the Ixfee *kz=x%%as a  terms of D, which is directly related to the height by Eq.

guide to the eye. (22). We can find the correct coefficient that appears in Eq.
(21) after we find the continuum limit oR!_ , .

exponent of the CRSOS model. This is most likely due to the The continuum limit ofR}, , takes the form

smallness of,. For example, the data fdp=10 in Fig. 2 L )

yield 0.86 rather than 0.95. The meaning1ofs as follows: Rnt k=R +y(1,k)D+ 6(1,k)D“+ w(l,k) gD +- -,

When the system size is sufficiently large, we expect the (A1)

width of the pharacteristic mogntain 10 bel. % Due to the \yhere the implicit dependence ég is assumed and the ar-

RSOS condition, the linear size of the mountain is also ex

gument of D is dropped for simplicity. The symbol ="

pected to be-L®e= The smaller the system size, the less the,o ) oants the continuum limit of a quantity. Equatia)

rejection evgntsﬂoc_cur due to tt):]e s_hrr]mrI:m? of the_ Cha][aﬁteréllows us to find the recursion relations. Before going fur-
'S;'C mountain. Mo is ‘?Oka’az“a he with the finear S'Z% Oht € ther, the explicit form oR(l) in the case of no tilt boundary
characteristic mountainL("), the system starts to behave 4 ition is found. The recursion relation becomes
differently. Eventually, the system with small sizkfz

<ly, cannot feel the existence ¢f. Thus the crossover R(D=pR(I—=1)+(1—p)p,

lengthL* is expected to bda”“kpz, that is, y= llay,,= 2.
0 kP —p IR()=p "DR(I-1)+1-p (A2)

IV. SUMMARY AND DISCUSSION with an (sort of initial condition R(1)=2p—p2. p is the
bbreviation ofp(ly) in Eq. (21). It is trivial to find the

We studied the RSOS/H model using both analytical an olution that reads

numerical methods. We derived the continuum equation for

t_he_z microscopic discretgz model analytically, gnd found coef- R(H=p'+p'(1—p)l. (A3)
ficients of the EW tern¥-h, the KPZ term gh)~, as well as

the VLD termd%(oh)?. We observed that the coefficients of To find the recursion relations, we need a continuum limit of

the EW and KPZ terms behave asa’ °l3 for sufficiently PI‘, which is defined as

large Iy, which is consistent with the previous numerical I+1
study [14]. Acc_or_dlngly, we concluded that the RSOS/H PFE(l—aMH)H Brsks m=P Pnsksis1. (Ad)
model for any finitel; eventually belongs to the KPZ class m=2

and the CRSOS model belongs to the VLD class. Numeri- . i o
cally, we reported the crossover from the VLD class to the@n€ may directly calculate the continuum limit Bf, but
KPZ one, which confirms our derivation. Moreover, we We follow another path. Let the continuum limit & be

found a crossover exponemt which is argued to be 2. Ko o~ 2
Besides these studies, we can offer(aanrigorous plau- Pr=(1-p)p' +y2(1,Lk)D+ 01(1,K)D+ w1 (I, k) 9D +- -

sible) argument to anticipate the universality class of the (AS)
RSOS/H model by employing the block spin concept ofFrom Eq.(A4), we find the recursion relation$2)
Kadanoff's. Consider a system with linear sizeand hop-
ping distancé,. Similar to the block spin in the Ising model, vl y(=1k) 1-p
we introduce a coarse-graining parameberwhich blocks o Pt 2p '
the b sites by one. Although the exact transformation of
coarse-graining cannot be determined, we expect that if it O1(1,k)  0:(1=1k)  y1(1=1k) —p
: ; ' = =1 1t , (A6)
exists,|, may be renormalized asly/b” . Hence, we ex- p p 2 2p
pect that the stable fixed point correspondite 0, which is
the KK model[17] and the unstable fixed point corresponds pa(l k) pa(l=1Kk) —p

1
to lo=00, which is the CRSOS modé¢18]. o' p T F(mo—k=1=1) 2p
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with initial conditions
71( 1,k) = %v

01(1K)=7(1+26,—4p ), (A7)

pa(1K)=3(mo— k—2=2pug+p).

0, andw are functions of; as shown in Eq(21), which are
to be determined by Eq20). The solutions of Eq(A6)
under the conditioriA7) are (=1)

1_
71(|,k>=p'—1[y1<1.k>—T”(l—l)}.

-1

— J’__
bo—pbo >

2p

01(I,k)=p'1[01(1,k)+
1-p
+W(I_l)(l_2) , (A8)
-1 1-p
ma(lLk)=p [/—Ll(lak)"" — (mo—k=2)(1-1)

1-p
—TI(I—l)

Now we can obtain the continuum limit & ., . Using Egs.
(17), (A5), and (A8), we find the recursion relations of pa-
rameters given in EqAL)

(LK) =py(l—=1k+1),
0(1,k)=pO(1 —1Lk+1)+ 6,(1,k) + %pl_i [I—p(1—1)],

w(l,K)=pu(l—1k+1)+ uq(l,k)
ol
+ T(1+k+ﬂo)[| —p(I-1)],

with conditions
y(1k)=0,

(1K) =3+ 6o(1—p), (A9)

m(1K)=(1=p)(po~32)-

We solve Eq.(A9) step by step. It is trivial to find that
y(l,k)=0. As shown in Appendix B, the vanishing ofis
not a coincidence. Sincé(l,k) has nok dependence, we
expect thatd(l,k) also has ndk dependence. We find

o(1)=I '—13+9(1— )+| 260—2 A Lt
=1lp 4 0 P 0 Po 2p 4
1-p
+%(|—1)(|—2) , (A10)
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wherek is removed from the argument éfdue to the inde-
pendenceu(l,k) seems to have an explidit dependence,
but by insertingu4(l,k) directly, we find the independence
of u(l,k) on k. The result readg¢we dropk by the same
reason ag)

I(1+1 2
1D 2#0—5—5), (Al1)

p(h=@1=p)p''—

By requiring C§=0 at the stationary state, we can deter-
mine p, 6y, and uq as a function ofy. To find p, 6y, and
Mo, We need the continuum limit of

|
1 I+1
[T byi=p' 21— 5P (1+1)D+p' 1 ——(1+4p o) D?
k=0

l+1
+pIT(2,u,0—|)r7D. (A12)

We determinep(ly) from Eq. (20). p is the solution of the
equation

2x2—4x+1— x0T 1—x(5+ 2l5) +x%(3+2l4)]=0,
(A13)

whose approximate solution is

p(|0)%px[l+%pilo+l(2lo+ 1] +0(p"9), (A19)
with p,,=(2—v2)/2, which is the solution for infinité,. By
the same reasoning, we can fiigland xo, whose approxi-
mate solutions read

6—-5v2 21-1w2

+
4 g o

©

V2
90('0)”7

1+p

2—Vv2

V2
it 5

4lg
3 +0(p..°),

2 3
15+ = 1o

AT o 32 4-1mE 24V,
/*LO( O)N 4 P T 12 0 2 0

2+2v2
J’_—

13 (A15)

+0(p2).

For finite |y, the most relevant terms arise from the sec-
ond line of Eqg.(19) and the resulting equation is the KPZ
one, with coefficients

v=—u(2lg+1), N=-260(2ly+1). (Al6)
We give the numerical values @f », and\ in the table.
These numbers are determined from the direct calculation of
p, 8o and uq using Eqg.(19). These\'s should be compared
with the previous numerical result$4]. Note that\ in Ref.
[14] is one half of\ here.

For infinite Iy, the second line of Eq19) vanishes, of
which the physical meaning is that a dropped particle even-
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tually finds a stable site. Hence the continuum equation be-

comes the VLD equation with coefficients
e s lg

ju(),  X=52 j6(). (ALD)
1 i=1

APPENDIX B: DISAPPEARANCE OF ODD POWERS
OFDIN R

This appendix proves that the first line of E49) does
not generate termg?(oh)?**, wherei is a non-negative
integer. To this end, consider a Taylor expansio®Rof, and
set the lattice constant to be 0. We call this quaanlﬁ( D),
and the corresponding quantity fSrSO(D). One should not

confuse this procedure with the continuum limit. It is enough

to prove thatT:O(— D)=T:°(D). It is clear thatT:O(D) has

no k dependence because the lattice constant is setto 0. T

fact enables us to write the recursion reIatioanﬁ(D) in
the symmetric form

PHYSICAL REVIEW E55 036108

| | S,O(D)+D
2T (D) =8,(D)T% (D) +| 1- ———
S,(D)-D}' SIO(D)—D)
XN | ———
S,(D)+D)!
X(T (B1)

Hence we see that

2[T(D)~T\%(~D)]=8,(D)[T\° ;(D)~ T2 ,(~D)].

(B2)
The mirror symmetry of this system restricts the forrrSpOf
to be even inD, so T, ,(D)=T,° ,(—D) implies T,%(D)
=T\%(~D). IndeedT(D) =S, +(S,~D?)/4 and the logic
of the mathematical induction proves the disappearance of
the odd powers oD in T:O(D). The vanishingy(l,k) in
hAsppendixA is a consequence of this property. As a result, we

can safely affirm that the CRSOS model is described by the
VLD equation.
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