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Universality class of the restricted solid-on-solid model with hopping
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We study the restricted solid-on-solid~RSOS! model with finite hopping distancel 0 , using both analytical
and numerical methods. Analytically, we use the hard-core bosonic field theory developed by the authors
@Phys. Rev. E62, 7642 ~2000!# and derive the Villain-Lai-Das Sarma~VLD ! equation for thel 05` case,
which corresponds to the conserved RSOS~CRSOS! model and the Kardar-Parisi-Zhang~KPZ! equation for
all finite values ofl 0 . Consequently, we find that the CRSOS model belongs to the VLD universality class and
that the RSOS models with any finite hopping distance belong to the KPZ universality class. There is no phase
transition at a certain finite hopping distance contrary to the previous result. We confirm the analytic results
using the Monte Carlo simulations for several values of the finite hopping distance.

DOI: 10.1103/PhysRevE.65.036108 PACS number~s!: 05.90.1m, 81.10.Aj
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I. INTRODUCTION

In recent years, the field of nonequilibrium surface grow
has been investigated using various discrete models and
tinuous equations@1#. The comprehension of nonequilibrium
surface growth plays an important role in understanding
controlling many interesting interface processes, such as
por deposition@2#, crystal growth@3#, molecular beam epi-
taxy ~MBE! @4#, and so on. During the MBE growth proces
the conserved growth condition is applied without defec
such as overhangs and vacancies. Various discrete cons
models for MBE, describing the kinetic properties of th
type of surface growth, have been proposed and studie
intensive numerical simulations.

The main purpose of studying discrete models is to m
sure scaling exponents for the kinetic roughening, which
termines the asymptotic behavior of surface growth on
large length scale in a long time limit. The important res
of the kinetic roughening studies is that a large variety
different discrete growth models can be divided into only
few universality classes. The surface widthW, which mea-
sures the root-mean-square fluctuation of the surface he
scales as

W~L,t !;La f ~ t/Lz!, ~1!

where the asymptotic behavior of the scaling functionf (x) is
constant forx@1 andxb for x!1 with b5a/z. The scaling
behavior of the growth is characterized by three expone
the roughness exponenta, the growth exponentb, and the
dynamical exponentz. These exponents determine the u
versality class.

In the coarse-grained picture, evolution of the growi
surface is usually described by a stochastic differential eq
tion ~SDE! for the height variableh(x,t) as a function of the
surface coordinate and time. For discrete models of M
growth, several SDEs were suggested and it was gene
believed that there is a correspondence between disc
growth models and continuum SDEs. The common way
establishing the link between discrete models and continu
1063-651X/2002/65~3!/036108~8!/$20.00 65 0361
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equations is a simple comparison of critical exponents de
mined from computer simulations of the discrete model w
exponents for the continuous equation.

There have also been attempts to establish the corres
dence in an explicit way. The systematic procedure for
tablishing a continuous equation corresponding to disc
models, starting from the master equation in discrete sp
was proposed by Vvedenskyet al. @5# and has been succes
fully applied to the derivation of growth equations for som
discrete models, including the solid-on-solid~SOS! model,
the restricted solid-on-solid~RSOS! model, as well as the
Wolf-Villain and Das Sarma-Tamborenea models@6–8#.
However, there are several difficulties with this procedure
particular, in converting from the equation system for a d
crete set of heights to an equation for a continuous func
h(x,t), the procedure requires the regularization step,
which the nonanalytic quantities are expanded and repla
with analytic quantities, i.e., the step function is appro
mated by an analytic shifted hyperbolic tangent function
panded in a Taylor series. However, the form of the regu
ized function is uncertain, and different choices of th
function lead to different results. Some forms of the regul
ized function have been suggested, but the problem o
proper choice of a regularization scheme has not been
cussed.

To overcome this kind of uncertainty, the authors pr
posed a new schematic formalism@9#, deriving the continu-
ous equations, such as the Edwards-Wilkinson~EW! @10#
and Kardar-Parisi-Zhang~KPZ! @11# equations, from the
body centered solid-on-solid model and the RSOS mode
this paper, we apply our formalism to a new kind of MB
growth model proposed by Kim, Park, and Kim@12#. This
model allows the deposited particle to relax to the nea
site where the RSOS condition on neighboring heights
satisfied and has the conserved growth condition constra
which means the deposited particles are possible to hop
an infinite distance until they eventually find the site with t
RSOS condition satisfied. Applying our formalism to th
above conserved RSOS~CRSOS! model, we not only derive
the Villain-Lai-Das Sarma~VLD ! equation @13# for the
©2002 The American Physical Society08-1
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model which belongs to a different universality class fro
the EW and KPZ equations, but also we are able to pre
the coefficients in the VLD equation, which was not possi
by other methods.

Observing that the RSOS model belongs to the KPZ c
and the CRSOS model belongs to the VLD class, we w
one step further to study the RSOS model with the fin
range hopping~RSOS/H!. In this RSOS/H model, it is pos
sible for the deposited particles to hop a finite distancel 0
until they find the site with the RSOS condition satisfied.
they fail to find the site with the RSOS condition satisfi
within the distancel 0 in both directions, the deposition pro
cess is rejected. The RSOS model corresponds to
RSOS/H model withl 050 and to the CRSOS model wit
l 05`. We apply our formalism to the RSOS/H model wi
l 0 finite and find that this model belongs to the KPZ cla
contrary to the previous report by Kim and Yook@14#, who
concluded that there is a phase transition between the
class to the VLD class along the parameterl 0 .

In Sec. II our formalism to derive the continuous equati
from the discrete model is briefly explained and the pro
dure of derivation is described. The detailed calculations
attached in the appendices. Extensive numerical simulat
are presented in Sec. III and the summary and discussion
given in Sec. IV.

II. DERIVATION OF THE STOCHASTIC EQUATION

In this section, we derive continuous equations for
one-dimensional RSOS/H model with a hopping distancel 0
and for the CRSOS model corresponding tol 05`. We re-
strict ourselves to the case wherein the height difference
tween two nearest neighbors is not larger than 1. For a
cinct description of the dynamics, we introduce t
nomenclature that if a sitem satisfies the conditionuhm11
2hm61u<1, this site is called ‘‘stable.’’ Following this no
menclature, the growth algorithm of the one-dimensio
RSOS/H model is as follows:~i! We choose a sitem ran-
domly. ~ii ! Sites fromm2 l 0 to m1 l 0 are examined to de
termine if they are stable sites.~iii ! If a stable site is found
within the interval fromm2 l 0 to m1 l 0 , a new particle is
deposited to the nearest stable site fromm ~m itself can be a
candidate for deposition!. However, if stable sites are none
istent in the examined interval, the particle drop is rejec
and the system remains unchanged. After this try, the tim
increased by 1/L, whereL is the system size. We assum
periodic boundary conditions.

Since the height difference between two nearest neigh
is restricted not to be larger than 1, the RSOS/H mode
mapped onto the reaction-diffusion system of hard-core p
ticles with two species. The step-up~-down! is mapped to an
A(B) particle. If two nearest neighbor sites have eq
height, a particle vacuum is located between these two s
The site where the particles reside is labeled by an inte
and the site for height by a half-integer. This mapping
depicted in Fig. 1. According to this mapping, the dynam
of the RSOS/H model can be described by the~imaginary
time! Schrödinger equation (]/]t)uC;t&52ĤuC;t& for the
state vectoruC;t&[(CP(C;t)uC&, where P(C;t) is the
03610
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probability with which the system is in stateC at timet, and
Ĥ, called a Hamiltonian, is an evolution operator

Ĥ5(
n

~ Î 2R̂n2Ân!L̂n , ~2!

where

L̂n5 Î 1
1

2 (
j 51

2l 0 S )
k51

j

R̂n1k1)
k51

j

R̂n2kD , ~3!

and

R̂n5ân
†ân1b̂n11

† b̂n112ân
†ânb̂n11

† b̂n11 ,

Ân5~ ân
†1b̂n!~ ân111b̂n11

† !. ~4!

The role of the rejection operatorR̂n is to check the stability
of siten1 1

2 , that is, if a configurationuC& has a stable site a
n1 1

2 , R̂nuC&50 and otherwiseR̂nuC&5uC&. The adsorption
operatorÂn describes the configuration change after a s
cessful deposition.ân(b̂n) is the annihilation operator of an
A(B) particle at siten and ân

†(b̂n
†) is the corresponding cre

ation operator, satisfying the mixed commutation relatio
presented in Ref.@9#,

ânân
†5b̂nb̂n

†5 Î 2ân
†ân2b̂n

†b̂n , ânb̂n5ân
†b̂n

†50. ~5!

All operators at different sites commute with each other.
To find the SDE for the RSOS/H model, we apply th

method recently introduced by the authors@9#. First we as-
sume the existence of the lattice version of the SDEs in te
of density. Those equations are supposed to take the for

] tan5Cn
A~$a%,$b%!1(

m
@gnm

AAjm
A~ t !1gnm

ABjm
B~ t !#, ~6!

] tbn5Cn
B~$a%,$b%!1(

m
@gnm

BAjm
A~ t !1gnm

BBjm
B~ t !#, ~7!

where] t[]/]t andjn
A , jn

B are white noises with correlation

FIG. 1. Relation of species to the height slope. We use
integer to indicate the location of particles and the half-integer
the height configuration. Hence the RSOS condition at siten1

1
2 is

determined by the situation at sitesn andn11.
8-2
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^jn
x~ t !jm

X8~ t8!&5dnmdX,X8d~ t2t8!

~X,X85either A or B!, ~8!

wherednm and dX,X8 are Kronecker deltas andd(t2t8) is
the Dirac delta function. The matrixg is related to the
Kramers-Moyal coefficient in such a way that

(
r ,X9

gnr
XX9gmr

X8X95Cnm
XX8~$a%,$b%!

~X,X8,X95either A or B!. ~9!

Here we are using the Itoˆ interpretation. The fielda(b) in the
curly bracket represents the density of speciesA(B) at all
sites. From here on, without a hat above itself a mathem
cal symbol is a pure number as opposed to an operatoan
should not be confused withân . The former is a density a
site n that runs over real numbers, while the latter is
annihilation operator. By requiring that the noise average
observables in Eqs.~6! and ~7! has the same behavior wit
the ensemble average of the number operator, we find@9#

^Cn
A& t5^@H,ân

†ân#& t ,

^Cn
B& t5^@H,b̂n

†b̂n#& t ,

^Cnm
AA& t5^†ân

†ân ,@Hiâm
† âm#‡& t , ~10!

^Cnm
AB& t5^Cmn

BA& t5^†ân
†ân ,@H,b̂m

† b̂m#‡& t ,

^Cnm
BB& t5^†b̂n

†b̂n ,@H,b̂m
† b̂m#‡& t ,

where thê ¯& t on the left hand side represents the avera
over noise at timet and that on the right hand side stands
the ensemble average. The arguments of the Kramers-M
coefficients are dropped for brevity.

As presented in Ref.@9#, the ensemble average of an
operator can be interpreted as an average of number op
tors due to the property of the projection state^•u, which is
defined as a sum over all possible microscopic configurat
and is itself a left eigenstate ofĤ with eigenvalue 0, and in
turn, the ensemble average of a number operator is map
to the noise average of density. This procedure leads u
find the Kramers-Moyal coefficientsCn

X , Cnm
XY , in terms of

the density fields. We call this procedurefigurization, which
means ‘‘expression in number.’’ To represent thefigurization,
we use the symbol° to the left of which is an operator~or
a product of operators! and to the right of which is the cor
responding density representation.

To complete the derivation, we perform the commutat
relations between the Hamiltonian and the density opera
and so forth;

@Ĥ,ân
†ân#5ân

†~ ân111b̂n11
† !L̂n2ân~ ân21

† 1b̂n21!L̂n21 ,
~11!

@Ĥ,b̂n
†b̂n#52b̂n~ ân111b̂n11

† !L̂n1b̂n
†~ ân21

† 1b̂n21!L̂n21 ,
~12!
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†âl
†âl ,@Ĥ,ân

†ân#‡

5d ln„ân
†~ ân111b̂n11

† !L̂n1ân~ ân21
† 1b̂n21!L̂n21…

2d l ,n11ân
†ân11L̂n2d l ,n21ânân21

† L̂n21 , ~13!

†b̂l
†b̂l ,@Ĥ,b̂n

†b̂n#‡

5d ln„b̂n~ ân111b̂n11
† !L̂n1b̂n

†~ ân21
† 1b̂n21!L̂n21…

2d l ,n11b̂nb̂n11
† L̂n2d l ,n21b̂n

†b̂n21L̂n21 , ~14!

†âl
†âl ,@Ĥ,b̂n

†b̂n#‡5d l ,n11b̂nân11L̂n1d l ,n21b̂n
†ân21

† L̂n21 ,

~15!

wherednl is a Kronecker delta. Following thefigurization,
we find the Kramers-Moyal coefficients. For a later purpo
we give some examples of the figurization. The figurizati
of R̂n is R̂n°Rn[an1bn112anbn11 , and the symbolic
representation of the figurization of the product ofR̂’s is

)
k51

j

R̂n1k°Rn
j , ~16!

where the superscriptj should not be confused with th
power. Whenj 51, Rn

1 is denoted asRn11 . Rn
j are given by

the following recursion relations:

Rn
j 5an11Rn11

j 21 1~12an11!)
k52

j 11

bn1k , ~17!

Rn2 j 22
j 5bn21Rn2 j 22

j 21 1~12bn21!)
k52

j 11

an2k , ~18!

where j >1 and we defineRn
0[1. The physical meaning o

Eqs.~17! and~18! is as follows: We divide the situation tha
prohibits the height increase at sitesn1 3

2 ,n1 5
2 ,...,n1 j

1 1
2 by the condition at siten11. If there is anA particle at

siten11, the height increase is suppressed at siten1 3
2 irre-

spective of the condition at siten12. Hence the first term of
Eq. ~17! follows. If there is noA particle at siten11, to
suppress the deposition at siten1 3

2 , there must exist aB
particle at siten12 and this should be continued until th
site n1 j 11, because at siten1k(2<k< j ) no A particle is
present; this condition is represented by the second term
comprehend Eq.~18!, we only have to perform the mirro
transformation relative to siten. By the mirror transforma-
tion relative to a siten, we mean the exchange ofa and b
(a↔b), followed by n1k↔n2k. Under this transforma-
tion, Rn1k

j changes intoRn2k2 j 22
j for an arbitraryk. The

mirror transformation of Eq.~17! is Eq. ~18!.
With these notions, we will find the SDE of the RSOS/

model. At first, the deterministic part of SDE is found. Sin
the main concern is not the respective dynamics of theA and
B particles, but it isDn[an2bn ~the local slope! and Sn
5an1bn ~the slope density!, we will write the SDE forD
andS rather than for theA, B particles. The Kramers-Moya
8-3
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coefficientCn
D is obtained by subtracting Eq.~12! from Eq.

~11! and Cn
S by adding Eq.~12! and ~11! followed by the

figurization.

Cn
D5 1

2 (
j 51

2l 0

@Rn22
j 22Rn21

j 1Rn
j 2~Rn2 j 22

j 22Rn2 j 21
j

1Rn2 j
j !#1 1

2 ~Rn22
2l 011

2Rn2 l
2l 011

1Rn22l 022
2l 011

2Rn22l 021
2l 011

!,

~19!

Cn
S5223~an1bn!2~bnan111anbn2123bnbn11

23anan21!1 1
2 (

j 51

2l 0

~Rn
j 2Rn22

j 2Rn2 j
j 1Rn2 j 22

j !

2bn~12Sn11!bn122an~12Sn21!an22

2 1
2 ~Rn21

2l 011
1Rn22l 021

2l 011
1Rn22

2l 011
1Rn22l 022

2l 011
!

2 (
j 51

2l 021 Fbnan11Rn11
j 1bn~12Sn11!)

k52

j 12

bn1k

1bn~12bn11!Rn2 j 22
j G2 (

j 51

2l 021 Fanbn21Rn2 j 23
j

1an~12Sn21!)
k52

j 12

an2k1an~12an21!Rn
j G . ~20!

As pointed out in Ref.@15#, the mass term in Eq.~20! makes
the step density saturate fast. As a result, the step densS
becomes a slave field of the slopeD takes the form

S52r~ l 0!1m0~ l 0!]D1u0~ l 0!D21¯ , ~21!

where 2r( l 0) is the ~mean-field! stationary step density an
m0 and u0 may depend onl 0 . Here ][]/]x . Since this
system has the mirror symmetry whose continuum versio
invariant under the transformationsD→2D and ]→2],
we do not expect the occurrence ofD in Eq. ~21!. The pa-
rametersr( l 0), m0( l 0), and u0( l 0) are determined by the
stationarity of Eq.~20!. In Appendix A, we obtainr, u0 , and
m0 as functions ofl 0 and show the approximate solutions
these parameters. We can now rewrite Eq.~19! in terms of
the height fieldh using Eq.~21! and

D5]h. ~22!

The last task is to determine the noise strength. This is
complished using Eqs.~6! and ~7!. After eliminating S in
favor of D, there is only one kind of noise with strength

Cnm5Cnm
AA1Cnm

BB2Cnm
AB2Cnm

BA . ~23!

Usingfigurizationof Eq. ~10! and keeping the most relevan
term, we find

Cnm52~12r!2L~dn,m1122dnm1dn,m21!1¯ ,
~24!
03610
is

c-

where

L5(
l 50

2l 0

r l~11 l 2r l !. ~25!

For finite l 0 we found

] lh5v`1n]2h1
l

2
~]h!21j~x,t !, ~26!

^j~x,t !j~x8,t8!&5Djjd~x2x8!d~ t2t8!,

where

v`512R~2l 011!.12r`
2l 0@ 1

2 1~&21!l 0#1O~r`
4l 0!,

n52m~2l 011!

.r`
2l 0~ l 011!~2l 011!S&6 l 01

32&

4 D1O~r`
4l 0!,

~27!

l522u~2l 011!

.2r`
2l 0~11 l 0!~112l 0!S 11

&11

3
l 0D1O~r`

4l 0!,

Djj.
2&21

2 F12r`
2l 0S 615&

28
1

19&222

14
l 0D G

1O~r`
4l 0!,

with r`5(22&)/2. The numerical values ofr( l 0), n( l 0),
and l( l 0) are given for several values ofl 0 in Table I. For
infinite l 0

] th5 v̄`2 ñ]4h1l̃]2~]h!21 j̃~x,t !, ~28!

^j̃~x,t !j̃~x8,t8!&5D̃jjd~x2x8!d~ t2t8!,

where

ṽ`51,

ñ5
21212&

2
,

l̃5
1023&

2
, ~29!

D̃jj5
2&21

2
.

Equation~26! directly shows that the RSOS/H model, fo
any finitel 0 , belongs to the KPZ class, and Eq.~28! suggests
that the CRSOS model is described by the VLD equati
However, the first line of Eq.~19! has the form
8-4
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TABLE I. Numerical values ofr( l 0), n( l 0), andl( l 0).

l 0 r( l 0) n( l 0) l( l 0)

0 1
3

1
3

25
6

1 0.299 027 750 50 3.388731021 29.570931021

2 0.293 696 759 81 9.731031022 22.920431021

3 0.292 988 255 45 1.956931022 26.052731022

4 0.292 903 676 47 3.265631023 21.028731022

5 0.292 894 314 95 4.829931024 21.540631023

6 0.292 893 329 94 6.567431025 22.114031024

7 0.292 893 229 81 8.396431026 22.721731025

8 0.292 893 219 88 1.024231026 23.338031026

9 0.292 893 218 92 1.203831027 23.940831027

10 0.292 893 218 82 1.373031028 24.511531028

] ] ] ]

` 0.292 893 218 81 0 0
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(
j 51

2l 0

@Rn22
j 22Rn21

j 1Rn
j

2$mirror terms of ~Rn22
j 22Rn21

j 1Rn
j !%#,

~30!

which has the following implications: If the continuum ve
sion ofRn22

j 22Rn21
j 1Rn

j has a nonvanishing coefficient o
]2(D2r 11) with a non-negative integerr, it is not certain that
Eq. ~30! is a lattice version of]3; consider the mirror trans
formation in the continuum limit. The occurrence
]2(D2r 11) in Eq. ~30! is directly related to the appearance
](]h)2r 11 in Eq. ~28!, which generates an EW term by th
dynamic renormalization group@16#. Appendix B shows that
this is not the case. The vanishing ofD2r 11 in the continuum
limit of Rn1k

j guarantees the vanishing of]2(D2r 11) in
Rn22

j 22Rn21
j 1Rn

j . In view of this, we conclude that th
continuum equation of the CRSOS model is the VLD eq
tion.

To confirm this conclusion, we have performed Mon
Carlo simulations as outlined in Sec. III.

III. NUMERICAL STUDY

Although the RSOS/H model was studied numerically
Kim and Yook @14#, their results are contradictory to ou
derivation. As a result, we need to perform extensive num
cal simulations to verify our results. In the derivation, w
found that the coefficients of the EW terms and the K
terms are vanishingly small, though finite, for largel 0 .
Hence, we may find a crossover of roughness expon
from VLD (avld.0.95) to KPZ (akpz50.5). We are preoc-
cupied with the numerical observation of this crossover.

In Fig. 2, we draw the saturated widthWsat as function of
the system sizeL for somel 0’s. The system sizes are 64, 9
128, 180, 256, 360, 512, 720, and 1024. For relatively sm
system sizes, the roughness exponents are near to the v
reported in Ref.@14#. As expected from our derivation, w
see a crossover for large system sizes.
03610
-
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ll
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To clarify the crossover behavior, a scaling plot is giv
in Fig. 3. The anticipated scaling form of the saturated wid
is

Wsat~ l 0 ,L !5Lavldg~ l 0
g/L !, ~31!

whereg is the crossover exponent. The asymptotic behav
of the scaling functiong is expected to be

g~x!;H const whenx→`,

xavld2akpz when x→0.
~32!

The best fit for the data set shown in Fig. 2 corresponds
avld50.9 andg52.0. The fitting parameteravld obtained is
somewhat smaller than the known value of the roughn

FIG. 2. Plots for the saturation width as a function of the syst
size for variousl 0 . We find the saturation width by a least-squar
fit and the error bars represent three times the standard devia
which includes 99% of the data. We fit the data as a function oL
and find two exponents. The exponents for the smaller system s
are written in the bottom left and those of the larger system size
the upper right. The lines show the fitting results. Up to 512
seems plausible to insist that the systems are in the scaling reg
but the data for 1024 show the clear discrepancy within an error
8-5
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exponent of the CRSOS model. This is most likely due to
smallness ofl 0 . For example, the data forl 0510 in Fig. 2
yield 0.86 rather than 0.95. The meaning ofg is as follows:
When the system size is sufficiently large, we expect
width of the characteristic mountain to be;Lakpz. Due to the
RSOS condition, the linear size of the mountain is also
pected to be;Lakpz. The smaller the system size, the less
rejection events occur due to the shrinking of the charac
istic mountain. Ifl 0 is comparable with the linear size of th
characteristic mountain (Lakpz), the system starts to behav
differently. Eventually, the system with small size,Lakpz

! l 0 , cannot feel the existence ofl 0 . Thus the crossove
lengthL* is expected to bel 0

1/akpz, that is,g51/akpz52.

IV. SUMMARY AND DISCUSSION

We studied the RSOS/H model using both analytical a
numerical methods. We derived the continuum equation
the microscopic discrete model analytically, and found co
ficients of the EW term]2h, the KPZ term (]h)2, as well as
the VLD term]2(]h)2. We observed that the coefficients
the EW and KPZ terms behave as;a0

2l 0l 0
3 for sufficiently

large l 0 , which is consistent with the previous numeric
study @14#. Accordingly, we concluded that the RSOS/
model for any finitel 0 eventually belongs to the KPZ clas
and the CRSOS model belongs to the VLD class. Num
cally, we reported the crossover from the VLD class to
KPZ one, which confirms our derivation. Moreover, w
found a crossover exponentg, which is argued to be 2.

Besides these studies, we can offer an~nonrigorous plau-
sible! argument to anticipate the universality class of t
RSOS/H model by employing the block spin concept
Kadanoff’s. Consider a system with linear sizeL and hop-
ping distancel 0 . Similar to the block spin in the Ising mode
we introduce a coarse-graining parameterb, which blocks
the b sites by one. Although the exact transformation
coarse-graining cannot be determined, we expect that
exists, l 0 may be renormalized as; l 0 /bg8. Hence, we ex-
pect that the stable fixed point corresponds tol 050, which is
the KK model@17# and the unstable fixed point correspon
to l 05`, which is the CRSOS model@18#.

FIG. 3. Scaling plot of saturated widths of the one-dimensio
RSOS/H model. The scaling variable isl 0

g/L. The values ofl 0 are
equal to those in Fig. 2. We also draw the linexavld2akpz5x0.4 as a
guide to the eye.
03610
e

e

-
e
r-

d
r

f-

l

i-
e

f

f
it

ACKNOWLEDGMENTS

We are grateful to Byungnam Kahng for helpful discu
sions. This work was supported by Grant No. 2000-2-112
002-3 from the BRP program of the KOSEF.

APPENDIX A: CONTINUUM LIMIT AND
DETERMINATION OF u0 AND µ0

In this appendix, we derive the continuum limit ofRn1k
l

where n is the reference point. One may obtain the co
tinuum limit directly from Eq.~17!, but we do not follow this
route. Rather, we make recursion relation about the par
eters that appear in front of the field~see below!. The use of
Eq. ~21! makes it possible to represent the continuum limit
terms of D, which is directly related to the height by Eq
~22!. We can find the correct coefficient that appears in E
~21! after we find the continuum limit ofRn1k

l .
The continuum limit ofRn1k

l takes the form

Rn1k
l 8R~ l !1g~ l ,k!D1u~ l ,k!D21m~ l ,k!]D1¯ ,

~A1!

where the implicit dependence onl 0 is assumed and the ar
gument of D is dropped for simplicity. The symbol ‘‘8’’
represents the continuum limit of a quantity. Equation~17!
allows us to find the recursion relations. Before going f
ther, the explicit form ofR( l ) in the case of no tilt boundary
condition is found. The recursion relation becomes

R~ l !5rR~ l 21!1~12r!r l ,

⇒r21R~ l !5r2~ l 21!R~ l 21!112r ~A2!

with an ~sort of! initial condition R(1)52r2r2. r is the
abbreviation ofr( l 0) in Eq. ~21!. It is trivial to find the
solution that reads

R~ l !5r l1r l~12r!l . ~A3!

To find the recursion relations, we need a continuum limit
Pl

k , which is defined as

Pl
k[~12an1k11! )

m52

l 11

bn1k1m5Pl 21
k bn1k1 l 11 . ~A4!

One may directly calculate the continuum limit ofPl
k , but

we follow another path. Let the continuum limit ofPl
k be

Pl
k8~12r!r l1g1~ l ,k!D1u1~ l ,k!D21m1~ l ,k!]D1¯ .

~A5!

From Eq.~A4!, we find the recursion relations (l>2)

g1~ l ,k!

r l 5
g1~ l 21,k!

r l 21 2
12r

2r
,

u1~ l ,k!

r l 5
u1~ l 21,k!

r l 21 2
g1~ l 21,k!

2p l 1u0

12r

2r
, ~A6!

m1~ l ,k!

r l 5
m1~ l 21,k!

r l 21 1~m02k2 l 21!
12r

2r
,

l

8-6
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with initial conditions

g1~1,k!52 1
2 ,

u1~1,k!5 1
4 ~112u024ru0!, ~A7!

m1~1,k!5 1
2 ~m02k2222rm01r!.

u0 andm0 are functions ofl 0 as shown in Eq.~21!, which are
to be determined by Eq.~20!. The solutions of Eq.~A6!
under the condition~A7! are (l>1)

g1~ l ,k!5r l 21Fg1~1,k!2
12r

2
~ l 21!G ,

u1~ l ,k!5r l 21Fu1~1,k!1S u02ru01
1

2r D l 21

2

1
12r

8r
~ l 21!~ l 22!G , ~A8!

m1~ l ,k!5r l 21Fm1~1,k!1
12r

2
~m02k22!~ l 21!

2
12r

4
l ~ l 21!G .

Now we can obtain the continuum limit ofRn1k
l . Using Eqs.

~17!, ~A5!, and ~A8!, we find the recursion relations of pa
rameters given in Eq.~A1!

g~ l ,k!5rg~ l 21,k11!,

u~ l ,k!5ru~ l 21,k11!1u1~ l ,k!1
u0

2
r l 2 i @ l 2r~ l 21!#,

m~ l ,k!5rm~ l 21,k11!1m1~ l ,k!

1
r l 21

2
~11k1m0!@ l 2r~ l 21!#,

with conditions

g~1,k!50,

u~1,k!5 1
4 1u0~12r!, ~A9!

m~1,k!5~12r!~m02 1
2 !.

We solve Eq.~A9! step by step. It is trivial to find tha
g( l ,k)50. As shown in Appendix B, the vanishing ofg is
not a coincidence. Sinceu1( l ,k) has nok dependence, we
expect thatu( l ,k) also has nok dependence. We find

u~ l !5 lr l 21F1

4
1u0~12r!1S 2u022r01

1

2r D l 21

4

1
12r

24r
~ l 21!~ l 22!G , ~A10!
03610
wherek is removed from the argument ofu due to the inde-
pendence.m( l ,k) seems to have an explicitk dependence,
but by insertingm1( l ,k) directly, we find the independenc
of m( l ,k) on k. The result reads~we drop k by the same
reason asu!

m~ l !5~12r!r l 21
l ~ l 11!

4 S 2m02
l

3
2

2

3D , ~A11!

By requiringCn
S50 at the stationary state, we can dete

mine r, u0 , andm0 as a function ofl 0 . To find r, u0 , and
m0 , we need the continuum limit of

)
k50

l

bn1k8r l 112
1

2
r l~ l 11!D1r l 21

l 11

8
~ l 14ru0!D2

1r l
l 11

4
~2m02 l !]D. ~A12!

We determiner( l 0) from Eq. ~20!. r is the solution of the
equation

2x224x112x2l 011@12x~512l 0!1x2~312l 0!#50,
~A13!

whose approximate solution is

r~ l 0!'r`@11 1
4 r`

2l 011
~2l 011!#1O~r`

4l 0!, ~A14!

with r`5(22&)/2, which is the solution for infinitel 0 . By
the same reasoning, we can findu0 andm0 , whose approxi-
mate solutions read

u0~ l 0!'
&

4 F11r`
2l 0S 625&

4
1

21217&

6
l 0

1
22&

2
l 0
21
&

3
l 0
3D G1O~r`

4l 0!,

m0~ l 0!'
423&

4 F11r`
2l 0S 2

3&

4
1

4217&

12
l 01

21&

2
l 0
2

1
212&

3
l 0
3D G1O~r`

4l 0!. ~A15!

For finite l 0 , the most relevant terms arise from the se
ond line of Eq.~19! and the resulting equation is the KP
one, with coefficients

n52m~2l 011!, l522u~2l 011!. ~A16!

We give the numerical values ofr, n, and l in the table.
These numbers are determined from the direct calculatio
r, u0 andm0 using Eq.~19!. Thesel’s should be compared
with the previous numerical results@14#. Note thatl in Ref.
@14# is one half ofl here.

For infinite l 0 , the second line of Eq.~19! vanishes, of
which the physical meaning is that a dropped particle ev
8-7
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tually finds a stable site. Hence the continuum equation
comes the VLD equation with coefficients

ñ52
1

2 (
j 51

`

j m~ j !, l̃5
1

2 (
j 51

`

j u~ j !. ~A17!

APPENDIX B: DISAPPEARANCE OF ODD POWERS
OF D IN R

This appendix proves that the first line of Eq.~19! does
not generate terms]2(]h)2i 11, where i is a non-negative
integer. To this end, consider a Taylor expansion ofRn1k

l and
set the lattice constant to be 0. We call this quantityTl

l 0(D),
and the corresponding quantity forS Sl 0

(D). One should not
confuse this procedure with the continuum limit. It is enou
to prove thatTl

l 0(2D)5Tl
l 0(D). It is clear thatTl

l 0(D) has
no k dependence because the lattice constant is set to 0.
fact enables us to write the recursion relation ofTl

l 0(D) in
the symmetric form
,

,

03610
e-

his

2Tl
l 0~D !5Sl 0

~D !Tl 21
l 0 ~D !1S 12

Sl 0
~D !1D

2
D

3S Sl 0
~D !2D

2
D l

1S 12
Sl 0

~D !2D

2
D

3S Sl 0
~D !1D

2
D l

. ~B1!

Hence we see that

2@Tl
l 0~D !2Tl

l 0~2D !#5Sl 0
~D !@Tl 21

l 0 ~D !2Tl 21
l 0 ~2D !#.

~B2!

The mirror symmetry of this system restricts the form ofSl 0

to be even inD, so Tl 21
l 0 (D)5Tl 21

l 0 (2D) implies Tl
l 0(D)

5Tl
l 0(2D). IndeedT1

l 0(D)5Sl 0
1(Sl 0

2 2D2)/4 and the logic
of the mathematical induction proves the disappearance
the odd powers ofD in Tl

l 0(D). The vanishingg( l ,k) in
Appendix A is a consequence of this property. As a result,
can safely affirm that the CRSOS model is described by
VLD equation.
er.
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