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We present a formalism to derive the stochastic differential equati®Bks for several solid-on-solid
growth models. Our formalism begins with a mapping of the microscopic dynamics of growth models onto the
particle systems with reactions and diffusion. We then write the master equations for these corresponding
particle systems and find the SDEs for the particle densities. Finally, by connecting the particle densities with
the growth heights, we derive the SDEs for the height variables. Applying this formalism to discrete growth
models, we find the Edwards-Wilkinson equation for the symmetric body-centered solid-ofBCE&DS
model, the Kardar-Parisi-Zhang equation for the asymmetric BCSOS model and the generalized restricted
solid-on-solid(RSOS model, and the Villain—Lai—Das Sarma equation for the conserved RSOS model. In
addition to the consistent forms of equations for growth models, we also obtain the coefficients associated with
the SDEs.
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In recent years, the study of nonequilibrium surfacescheme for the step function is ambiguous. Thus, the coeffi-
growth has attracted considerable interest in both analyticatients in the derived continuum stochastic equation cannot
and computational physid¢4]. A number of discrete growth be determined uniquely.
models and continuum stochastic equations have been pro- In this Rapid Communication, we present a method for
posed to describe the kinetic roughening properties of surderiving the continuum stochastic equations from the dis-
face growth[2—7]. By studying these models and equations,crete growth models. Our method can be applied to most of
we classify them into universality classes according to theithe models that are accessible via the method of Vvedensky
scaling behavior and associate the continuum stochastet al. In addition to the derivation of stochastic equations
equations with the given discrete growth models. consistent with the numerical solutions for the discrete mod-

In general, two methods have been widely used to estatgls, our method predicts the coefficients in the stochastic
lish the correspondence between a continuum growth equg&guations. Our method begins with mapping of the discrete
tion and a discrete growth model. One method is to usénodels onto reaction-diffusion systems with hard-core par-
Monte Carlo simulations to obtain the scaling exponentdicles and sets up the master equation of the microscopic
from the discrete model and compare them with those of théynamics in the form of the Schdinger equation. Next,
corresponding continuum equation. The other is to derive thgorrowing the method introduced in RéL4], we derive the
continuum equation analytically from a given discrete corresponding Fokker-Planck equation, and then the stochas-
model. Computational methodologies have contributed sigtic differential equation is obtained. We apply our method to
nificantly to our understanding of epitaxial growth over thethree discrete growth models: the body-centered solid-on-
past few years and continue to do so unabated. Analytic derbolid (BCSOS model, the generalized restricted solid-on-
vations include methods using the principle of symmégly  solid (RSOS model, and the conserved RSASRSO3
or reparametrization invariang®], and approaches starting model.
from the master equatidii0—13. In particular, a systematic ~ The BCSOS model is one of the simplest microscopic
method proposed by Vvedenskyal.[10] has been success- growth models. Consider a surface built from square bricks
fully applied to the derivation of the continuum growth equa-rotated by=/4, without defects such as overhangs and va-
tions directly from the growth rules of the discrete model forcancies. Each bond contains a stefs=+1. The growth
several solid-on-solid discrete modélkl—13. The deriva- dynamics is as follows: Choose one of the columns at ran-
tion procedure of Vvedenskgt al. consists of two steps. dom. If this column is at the bottom of a local vall€$; _;
First, the discrete stochastic equation is derived for the dis=—1 and S=+1), a particle adsorbs with probability
crete growth model beginning with the master-equation de¢tand nothing happens with probability-Ip). If it is at the
scription of the microscopic dynamics of the discrete modeltop of a local hill(S;_;=+1 andS=—1), a particle des-
Second, the discrete equation is transformed into a continwerbs with probabilityg (and nothing happens with probabil-
ous stochastic equation via regularization by expanding théy 1—q). If it is part of a local slope §_,=S;), nothing
nonanalytic quantities and replacing them with analytichappens. This model can be mapped onto the problem of the
quantities. In this regularization procedure, the step functiomsymmetric exclusion procesASEP. The process de-
is approximated by an analytic shifted hyperbolic tangeniscribes particles that hop independently with hard-core ex-
function, which is expanded in a Taylor series. As pointedclusion along a one-dimensional lattice with a bias that mim-
out by Pedota and Kotrld12], the choice of regularization ics an external driving force. By denoting the descending
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slope as the particléd) and the ascending slope as the va-Notice the absence of the caret on #ie From the coeffi-
cancy (0, the microscopic growth dynamics can be mappeccients C; and C;;, we write down the discrete stochastic
to a stochastic dynamical rule of the ASEP: the only transi-equation

tions allowed for the site with neighboring bonds-(1,i) are

ij

03,
AD—OA with probability p, —=Cité&, (6)

OA—AD with probability q. (1) where a; is the local density of the particle &t and
&(DE(t'))=C;;6(t—t"). Replacinga; by (1—Vh)/2 and
aking the continuum limit, we obtain the continuum stochas-

tic equation for the height variable for the BCSOS model

and equivalently for the ASBP

This model has been studied extensively in the literature b
Monte Carlo simulation§15] and more recently it was real-
ized that it can be solved exac{l§6]. Furthermore, Derrida (
and Mallick calculated the diffusion constant associated with
fluctuations of the current in the limit gi=q and derived Jh 1-x 1-x
the corresponding continuum stochastic equation with the - =
coefficients correct up to the lowest orddr7]. Krug et al.
found the coefficients for the totally asymmetric, thatds, yiih (E(rDE(r 1)) =4(1+X) p(1—p) S(r —r") S(t—t')
=0, case[18]. Here, we apply our method to the ASEP 10 (, is the stationary-state density, which is the same as the
derive the corresponding stochastic equation. For S|mp_I|C|tymitia| density. For the symmetric process£1), the cor-
we setp=1 andq=x (0<x=<1). Forx=1 the system is esponding equation is the Edwards-Wilkins@W\) equa-
symmetrlc, whereas for=0 it reduces to the totally asym- tion, whereas for the asymmetric process+(l) it is the
metric casg19)]. o _ . Kardar-Parisi-ZhangKPZ) equation.(Compare the coeffi-
Introducing the annihilation and creation operat@ss cients with those in Ref§17,18.)
andéf’s, respectively satisfying the mixed commutation re- Next we apply our method to the generalized RSOS
lations explained in Ref.14] and defining the state vector growth model that was introduced by Neergaard and den
|§;t)==cP(C;1)|C), the master equation can be written asNijs [21]. They studied this model using an elegant mean-

- + V2h—1_x(Vh)2+g(r-t) @
a2 2 2 R

a Schralinger-like equation: field type approach and derived the deterministic part of the
p KPZ equation. Our method is able to produce the stochastic
—|gity=—H|y;t) (2)  (noisg part of the KPZ equation as well as the same deter-
at'm’ e

ministic part as the method of Neergaard and den Nijs. The
. - . RSOS growth model describes the growth of simple cubic
where P(C;t) is the probability for the system to be in @ g taces in which only monatomic steps are allowed. The
given microscopic configuratio@ at timet, andH, called  heights at the nearest-neighbor columns can differ by only
the Hamiltonian, is an evolution operator expressed in termgh=0,+ 1 (the RSOS constraiptAfter choosing one of the

of &'s anda/’s. From now on, any operator will have a caret columns at random, one particle can be deposited at the site
(e.g.,a,b) and any symbol without a caret should not bei-+1/2 with a probability 1 according to the height differ-
confused with an operator. Occasionally, the same symbol ignces at andi + 1. Employing the same parameter as in Ref.
used to represent an operator and a density.,; anda;).  [21], we map this model onto the two-species hard-core par-
The Hamiltonian generating the time evolution of theticle system with the following processes:

BCSOS model is found to be
00—AB:p,, 00—BA.q,,

I

=—Ei (&4, +xafa;, ). () AB—00:q,, BA—00:p,,

Since the diagonal terms that malkestochastic have no role 0A—AD:ps, PB—BO:qs,

in our formalism, for simplicity, we omit these terms here
and throughout this Rapid Communication. By involving the

commutation refations between tAhTeA ﬁ&m|lton|an and SOMGhere a particle (B) stands for the ascendirigescending
relevant operators such asa; anda/,a/a;, and using the  hong and a vacuun @epresents the flat bond. The corre-
property of the projection state|(a/+a)=(-| [14], where  sponding Hamiltonian is found to be

(-|==c(C|, we find the Kramers-Moyal coefficien{0]
corresponding to the above Hamiltonian:

A@*)@Aqs, B@HQ)B psy

H=— EI [pnafbf,,+a,b/al, 1 +anaibi 1+ p,bidi o
Ci=aj1tai-1—2a—(1-x)

X[ajs1(1—a)—a(1—a;_;)], (4) +psa/a; s 1+ 0saia, 1 +asb! b1+ pbib] 4] (8)
Following the same steps as above, we obtain the Kramers-

Moyal coefficientsC{* and Cf}ﬁ (a, B indicate eitherA or B)
+lai 1 txa—(1-x)aa-1](5 ;= d_qj). (5  as follows:

Cij=—[atxa1—(1=x)aai11](5i 11— )
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A Phtq, Pr— 0, not behave as an independent dynamic variable. It follows
Cl=——%vilvisatvi-)+ =5 vi(vi1—vi-1) local fluctuations in the slope of the surface:
Ps+ Qs S=Sp+ 378D+ 7 S4(1— Sp) — 7hgSp]VD +-++.
~On@ibi =P bigai+ (At a1 28 (14)

Substituting Eq(14) for Sand identifyingD = Vh, the equa-

+a(b 1+b ) —bi(a,+a_
3(Bis1+bi-1) = bi(@is1+8i-1)] tion for the height variable becomes

Ps—ds
+—[(ajy1—a_1)(1—2a;)—(aj 1—a;_1)b; dh N
2 [( i+1 (| l( 1 ( i+1 i—1 I E:vm+yvzh+1jvzh+§(vh)2+§, (15)
—ai(bjy1—bi_1)], 9)
where
ph+qv Ph—0q,
{?A= 5 vi(Viy1tvi—1)+ 5 vi(Vi+1~Vi-1) vw=fg(1—SO)2+sd(1—So)SO+%hgsg,

V:zllTs[zsd(l_so)_thO][thO_4fg(1_SO)
+254(1-2Sp) ]+ 35m(1— So) + 58S,

Fa(0re 1t o)+ 0@ 8 ) A= =g radhgS -4ty So - 251280,
16

Si—{ps(1—ai—b)aiss and  (&(X,1)&(x",1"))=Dg8(x—x")8(t—t") with Dy,
=Cq(1— Sp) %+ SmSo(1— Sp) +asS3/4. This equation is the
+0sai(1—ai, 1~ b 1)}y —{as(1—a—bpa_; KPZ equation corresponding to the general RSOS model. To
compare these coefficients with numerical work, let us con-

pstq
+anaibis 1+ p,bioqai+ %[Ui(aﬁai—l)

+ai(vi-1=vi+1)]

Tpsai(l—aj_1—bj_1)}6 1, (100 sider the simple RSOS model introduced by Kim and Ko-
AB BA sterlitz (KK model) [4]. The KK model corresponds tp,
Cii =Ci = 0i+1j(Phvivi+ 1T Andibi+ 1) =p,=ps=1 andg,=q,=qs=0. We obtain the correspond-

ing coefficients v.,,=4/9, A=D,/(2v)=2/3, \=—5/6.
These values are consistent with the estimated values from a
numerical study by Krugt al.[18].

Recently, a different growth model with a RSOS condi-

+6i-1j(dpvivi—1 T Pyaibi 1), (11

wherev;=1—a;—b; andC? (C°) is obtained by the ex-

; ; ; A [ ~AA ;

changea—b followed byi+ke<i—=kin Ci" (Cjj"). By In- i, g heen proposed and studied by Kitral. [6,7]. In-
troducing the chal slopdDEaft.) gnd the step densit$ . stead of rejecting the particle when the RSOS condition is
=a+b, we derive the deterministic parts of the stochastic, o satisfied, this model allows the deposited particle to hop
equations for these two parameters: to the nearest site where the RSOS condition is satisfied.
JD Thus_, _this model has the constraint of a conserved growth
_:V[fq(1_3)2+ sq(1—S)S+ %hg(SZ—DZ)] cqndmon_anq is called the _consgrved RSOS model. The de-
ot tailed derivation of the Villain—Lai—Das Sarn@éLD) equa-

tion from the CRSOS model will be published elsewhere
[22]. Here we only sketch the procedure and report the result.
The procedure is similar to the one used to get the KPZ

+ 15,V?D+3(2s,—as)V[DVS—SVD], (12

ot

O o 9oc(1-5)2—1 2_D2)+ 1-S\D equatior_1 from the RSOS model except for some complipated
at (197~ 2a4(S )+8aVI(1=-9)D] calculation. After some algebra, we find the VLD equation
+3h[DVS—SVD]—c(1-S)V2S+35,V?S oh B
L ) ) — =—PV*H+AV4(Vh)2+ 9, (17)
—3a4 SV°S-DV-°D], (13 ot

where we have used the same notation for the parameters adere  7=(21—12v2)/2, X=(10-3v2)/2, and

in Ref. [21]; cs=pp+0,, as=P,+0n, Sm=PsT0s, fg  (n(x,)n(x',t"))=D,,8(x—x")5(t—t") with D, =(2v2
=ph—0d,, hg=p,—0an, andsy=ps—0qs. The equation for —1)/2. In deriving the above equation, we kept only the
the step density is the same as that of Neergaard and demost relevant terms, and found that neither the EW nor the
Nijs. As pointed out in Ref[21], the equation for the step KPZ term exists in the growth equation. It is known, how-
density contains a mass term and the step density reaches éger, that higher order terms of the forf(Vh)2"*1 (n
stationary valu&,=[1+ Jas/(4c.)] ! after a characteristic =1) generate the EW term by the dynamic renormalization
time 7s=(2ascs) 1. Thus, although there are two order group[23]. Hence we should investigate the possibility of
parameters, only the local slope fluctuates at time scalesccurrence of these terms. Indeed, we found that the danger-
larger thanrg. At larger time scales, the step density doesous term of the forn¥V(Vh)2"*! does not arise in the deri-
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vation of the VLD equation22]. Consequently, we con- confirmed our argument by carrying out a Monte Carlo simu-

cluded that the continuum equation of the CRSOS model igation with sufficiently large system size for severgl[22].

the VLD equation. In summary, we have presented a formalism for deriving
Although the VLD equation was derived by Huang andthe continuum stochastic differential equations correspond-

Gu[13] using the master-equation description with the reguing to discrete growth models. Applying the formalism to the

larization procedure proposed by Vvedenséyal, there  BCSOS model, we derived the EW equation for the symmet-

were some ambiguities in choosing the regularization of thgic process and the KPZ equation with exact coefficients for

step function and thus the coefficients could not be predicteq,q asymmetric process. The RSOS model was also studied

whereas, in our derivation, we are able to predict the coeffiy i the general probabilities for possible processes. We de-

cients for the VLD equation correspondlng to the CRSfos‘rived the KPZ equation with a fluctuating noise part as well
model. Unfortunately, howev-er, the~re IS np numgrlcalas the deterministic part, which is the same as the result of
method, to our knowledge, to firdand\ for a MICroscopic  Neergaard and den Nijs. For the special case withl and
model. Numerical studies up to now can argue only that =0 (the KK mode), our coefficients are consistent with the
may be positivg 7], which is consistent with our derivation. numerical results of Krugt al.[18]. Finally, we applied our

~ Inderiving the VLD equation, we recognized the interest-formalism to the conserved RSOS model. For the CRSOS
ing aspect of the RSOS model. When we allow hoppingmodel, we found that the VLD equation is the corresponding
processes only up to distants the stochastic equation for continyum stochastic differential equation. However, if we
the height variable eventually becomes the KPZ (22]. allow only finite hopping [;<%), the system belongs to the

This is contradictory to previously reported simulation re-kpz cjass eventually. We also predict the coefficients of the
sults [24]. Kim and Yook studied the RSOS model with \/ p equation for the CRSOS model.

finite-distance hopping by Monte Carlo simulation and con-

cluded that there is a phase transition at firigefrom the This work was supported by Grant No. 2000-2-11200-
KPZ class (;=0) to the VLD class [j=<«). However, this 002-3 from the BRP program of the KOSEF, and by the
conclusion seems to be a finite-size effect. In fact, we hav@rain Korea 21 Project at Seoul National University.
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