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Derivation of continuum stochastic equations for discrete growth models
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We present a formalism to derive the stochastic differential equations~SDEs! for several solid-on-solid
growth models. Our formalism begins with a mapping of the microscopic dynamics of growth models onto the
particle systems with reactions and diffusion. We then write the master equations for these corresponding
particle systems and find the SDEs for the particle densities. Finally, by connecting the particle densities with
the growth heights, we derive the SDEs for the height variables. Applying this formalism to discrete growth
models, we find the Edwards-Wilkinson equation for the symmetric body-centered solid-on-solid~BCSOS!
model, the Kardar-Parisi-Zhang equation for the asymmetric BCSOS model and the generalized restricted
solid-on-solid~RSOS! model, and the Villain–Lai–Das Sarma equation for the conserved RSOS model. In
addition to the consistent forms of equations for growth models, we also obtain the coefficients associated with
the SDEs.
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In recent years, the study of nonequilibrium surfa
growth has attracted considerable interest in both analy
and computational physics@1#. A number of discrete growth
models and continuum stochastic equations have been
posed to describe the kinetic roughening properties of
face growth@2–7#. By studying these models and equation
we classify them into universality classes according to th
scaling behavior and associate the continuum stocha
equations with the given discrete growth models.

In general, two methods have been widely used to es
lish the correspondence between a continuum growth e
tion and a discrete growth model. One method is to
Monte Carlo simulations to obtain the scaling expone
from the discrete model and compare them with those of
corresponding continuum equation. The other is to derive
continuum equation analytically from a given discre
model. Computational methodologies have contributed
nificantly to our understanding of epitaxial growth over t
past few years and continue to do so unabated. Analytic d
vations include methods using the principle of symmetry@8#
or reparametrization invariance@9#, and approaches startin
from the master equation@10–13#. In particular, a systematic
method proposed by Vvedenskyet al. @10# has been success
fully applied to the derivation of the continuum growth equ
tions directly from the growth rules of the discrete model
several solid-on-solid discrete models@11–13#. The deriva-
tion procedure of Vvedenskyet al. consists of two steps
First, the discrete stochastic equation is derived for the
crete growth model beginning with the master-equation
scription of the microscopic dynamics of the discrete mod
Second, the discrete equation is transformed into a cont
ous stochastic equation via regularization by expanding
nonanalytic quantities and replacing them with analy
quantities. In this regularization procedure, the step func
is approximated by an analytic shifted hyperbolic tang
function, which is expanded in a Taylor series. As poin
out by Předota and Kotrla@12#, the choice of regularization
1063-651X/2001/65~1!/015102~4!/$20.00 65 0151
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scheme for the step function is ambiguous. Thus, the co
cients in the derived continuum stochastic equation can
be determined uniquely.

In this Rapid Communication, we present a method
deriving the continuum stochastic equations from the d
crete growth models. Our method can be applied to mos
the models that are accessible via the method of Vveden
et al. In addition to the derivation of stochastic equatio
consistent with the numerical solutions for the discrete m
els, our method predicts the coefficients in the stocha
equations. Our method begins with mapping of the discr
models onto reaction-diffusion systems with hard-core p
ticles and sets up the master equation of the microsco
dynamics in the form of the Schro¨dinger equation. Next,
borrowing the method introduced in Ref.@14#, we derive the
corresponding Fokker-Planck equation, and then the stoc
tic differential equation is obtained. We apply our method
three discrete growth models: the body-centered solid-
solid ~BCSOS! model, the generalized restricted solid-o
solid ~RSOS! model, and the conserved RSOS~CRSOS!
model.

The BCSOS model is one of the simplest microsco
growth models. Consider a surface built from square bri
rotated byp/4, without defects such as overhangs and
cancies. Each bondi contains a stepSi561. The growth
dynamics is as follows: Choose one of the columns at r
dom. If this column is at the bottom of a local valley~Si 21
521 and Si511!, a particle adsorbs with probabilityp
~and nothing happens with probability 12p!. If it is at the
top of a local hill ~Si 21511 andSi521!, a particle des-
orbs with probabilityq ~and nothing happens with probabi
ity 12q!. If it is part of a local slope (Si 215Si), nothing
happens. This model can be mapped onto the problem o
asymmetric exclusion process~ASEP!. The process de-
scribes particles that hop independently with hard-core
clusion along a one-dimensional lattice with a bias that m
ics an external driving force. By denoting the descend
©2001 The American Physical Society02-1
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slope as the particle~A! and the ascending slope as the v
cancy (0” ), the microscopic growth dynamics can be mapp
to a stochastic dynamical rule of the ASEP: the only tran
tions allowed for the site with neighboring bonds (i 21,i ) are

A0”→0”A with probability p,

0”A→A0” with probability q. ~1!

This model has been studied extensively in the literature
Monte Carlo simulations@15# and more recently it was rea
ized that it can be solved exactly@16#. Furthermore, Derrida
and Mallick calculated the diffusion constant associated w
fluctuations of the current in the limit ofp.q and derived
the corresponding continuum stochastic equation with
coefficients correct up to the lowest order@17#. Krug et al.
found the coefficients for the totally asymmetric, that is,q
50, case@18#. Here, we apply our method to the ASEP
derive the corresponding stochastic equation. For simplic
we setp51 andq5x (0<x<1). For x51 the system is
symmetric, whereas forx50 it reduces to the totally asym
metric case@19#.

Introducing the annihilation and creation operators~âi ’s
andâi

†’s, respectively! satisfying the mixed commutation re
lations explained in Ref.@14# and defining the state vecto
uc;t&[(CP(C;t)uC&, the master equation can be written
a Schro¨dinger-like equation:

]

]t
uc;t&52Ĥuc;t&, ~2!

where P(C;t) is the probability for the system to be in
given microscopic configurationC at time t, and Ĥ, called
the Hamiltonian, is an evolution operator expressed in te
of âi ’s andâi

†’s. From now on, any operator will have a car

~e.g., â,b̂! and any symbol without a caret should not
confused with an operator. Occasionally, the same symb
used to represent an operator and a density~e.g.,âi andai!.
The Hamiltonian generating the time evolution of t
BCSOS model is found to be

Ĥ52(
i

~ âi âi 11
† 1xâi

†âi 11!. ~3!

Since the diagonal terms that makeĤ stochastic have no role
in our formalism, for simplicity, we omit these terms he
and throughout this Rapid Communication. By involving t
commutation relations between the Hamiltonian and so
relevant operators such asâi

†âi andâi
†âi â j

†â j , and using the
property of the projection statê•u(âi

†1âi)5^•u @14#, where
^•u[(C^Cu, we find the Kramers-Moyal coefficients@20#
corresponding to the above Hamiltonian:

Ci5ai 111ai 2122ai2~12x!

3@ai 11~12ai !2ai~12ai 21!#, ~4!

Ci j 52@ai1xai 112~12x!aiai 11#~d i 11,j2d i j !

1@ai 211xai2~12x!aiai 21#~d i , j2d i 21 j !. ~5!
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Notice the absence of the caret on thea’s. From the coeffi-
cients Ci and Ci j , we write down the discrete stochast
equation

]ai

]t
5Ci1j i , ~6!

where ai is the local density of the particle ati and
^j i(t)j j (t8)&5Ci j d(t2t8). Replacingai by (12¹h)/2 and
taking the continuum limit, we obtain the continuum stocha
tic equation for the height variableh for the BCSOS model
~and equivalently for the ASEP!:

]h

]t
5

12x

2
1

12x

2
¹2h2

12x

2
~¹h!21j~r ;t !, ~7!

with ^j(r ;t)j(r 8;t8)&54(11x)r(12r)d(r 2r 8)d(t2t8)
~r is the stationary-state density, which is the same as
initial density!. For the symmetric process (x51), the cor-
responding equation is the Edwards-Wilkinson~EW! equa-
tion, whereas for the asymmetric process (xÞ1) it is the
Kardar-Parisi-Zhang~KPZ! equation.~Compare the coeffi-
cients with those in Refs.@17,18#.!

Next we apply our method to the generalized RSO
growth model that was introduced by Neergaard and
Nijs @21#. They studied this model using an elegant mea
field type approach and derived the deterministic part of
KPZ equation. Our method is able to produce the stocha
~noise! part of the KPZ equation as well as the same de
ministic part as the method of Neergaard and den Nijs. T
RSOS growth model describes the growth of simple cu
surfaces in which only monatomic steps are allowed. T
heights at the nearest-neighbor columns can differ by o
Dh50,61 ~the RSOS constraint!. After choosing one of the
columns at random, one particle can be deposited at the
i 11/2 with a probability 1 according to the height diffe
ences ati andi 11. Employing the same parameter as in R
@21#, we map this model onto the two-species hard-core p
ticle system with the following processes:

0”0”→AB:ph , 0”0”→BA:qv ,

AB→0”0” :qh , BA→0”0” :pv ,

0”A→A0” :ps , 0”B→B0” :qs ,

A0”→0”A:qs , B0”→0”B:ps ,

where a particleA ~B! stands for the ascending~descending!
bond and a vacuum 0” represents the flat bond. The corr
sponding Hamiltonian is found to be

Ĥ52(
i

@phâi
†b̂i 11

† 1qvb̂i
†âi 11

† 1qhâi b̂i 111pvb̂i âi 11

1psai
†âi 111qsâi âi 11

† 1qsb̂i
†b̂i 111psb̂i b̂i 11

† #. ~8!

Following the same steps as above, we obtain the Kram
Moyal coefficientsCi

a andCi j
ab ~a, b indicate eitherA or B!

as follows:
2-2
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Ci
A5

ph1qv

2
v i~v i 111v i 21!1

ph2qv

2
v i~v i 112v i 21!

2qhaibi 112pvbi 21ai1
ps1qs

2
@ai 111ai 2122ai

1ai~bi 111bi 21!2bi~ai 111ai 21!#

1
ps2qs

2
@~ai 112ai 21!~122ai !2~ai 112ai 21!bi

2ai~bi 112bi 21!#, ~9!

Ci j
AA5H ph1qv

2
v i~v i 111v i 21!1

ph2qv

2
v i~v i 112v i 21!

1qhaibi 111pvbi 21ai1
ps1qs

2
@v i~ai1ai 21!

1ai~v i 111v i 21!#1
ps2qs

2
@v i~ai 112ai 21!

1ai~v i 212v i 11!#J d i j 2$ps~12ai2bi !ai 11

1qsai~12ai 112bi 11!%d i 11,j2$qs~12ai2bi !ai 21

1psai~12ai 212bi 21!%d i 21,j , ~10!

Ci j
AB5Cji

BA5d i 11,j~phv iv i 111qhaibi 11!

1d i 21,j~qvv iv i 211pvaibi 21!, ~11!

wherev i512ai2bi and Ci
B (Ci j

BB) is obtained by the ex-
changea↔b followed by i 1k↔ i 2k in Ci

A (Ci j
AA). By in-

troducing the local slopeD[a2b and the step densityS
[a1b, we derive the deterministic parts of the stochas
equations for these two parameters:

]D

]t
5¹@ f q~12S!21sd~12S!S1 1

4 hg~S22D2!#

1 1
2 sm¹2D1 1

4 ~2sm2as!¹@D¹S2S¹D#, ~12!

]t

]t
52c~12S!22 1

2 as~S22D2!1sd¹@~12S!D#

1 1
2 hg@D¹S2S¹D#2cs~12S!¹2S1 1

2 sm¹2S

2 1
4 as@S¹2S2D¹2D#, ~13!

where we have used the same notation for the paramete
in Ref. @21#; cs5ph1qv , as5pv1qh , sm5ps1qs , f g
5ph2qv , hg5pv2qh , and sd5ps2qs . The equation for
the step densityS is the same as that of Neergaard and d
Nijs. As pointed out in Ref.@21#, the equation for the step
density contains a mass term and the step density reach
stationary valueS05@11Aas /(4cs)#21 after a characteristic
time ts5(2Aascs)

21. Thus, although there are two ord
parameters, only the local slope fluctuates at time sc
larger thants . At larger time scales, the step density do
01510
c

as

n

its

es
s

not behave as an independent dynamic variable. It follo
local fluctuations in the slope of the surface:

S5S01 1
2 tsasD

21ts@sd~12S0!2 1
2 hgS0#¹D1¯ .

~14!

Substituting Eq.~14! for Sand identifyingD5¹h, the equa-
tion for the height variable becomes

]h

]t
5v`1n¹2h1n¹2h1

l

2
~¹h!21j, ~15!

where

v`5 f g~12S0!21sd~12S0!S01 1
4 hgS0

2,

n5 1
4 ts@2sd~12S0!2hgS0#@hgS024 f g~12S0!

12sd~122S0!#1 1
2 sm~12S0!1 1

4 asS0 ,

l52 1
2 hg1 1

2 tsas@hgS024 f g~12S0!12sd~122S0!#,
~16!

and ^j(x,t)j(x8,t8)&5Djjd(x2x8)d(t2t8) with Djj

5cs(12S0)21smS0(12S0)1asS0
2/4. This equation is the

KPZ equation corresponding to the general RSOS model
compare these coefficients with numerical work, let us c
sider the simple RSOS model introduced by Kim and K
sterlitz ~KK model! @4#. The KK model corresponds toph
5pv5ps51 andqh5qv5qs50. We obtain the correspond
ing coefficients v`54/9, A[Djj /(2n)52/3, l525/6.
These values are consistent with the estimated values fro
numerical study by Kruget al. @18#.

Recently, a different growth model with a RSOS cond
tion has been proposed and studied by Kimet al. @6,7#. In-
stead of rejecting the particle when the RSOS condition
not satisfied, this model allows the deposited particle to h
to the nearest site where the RSOS condition is satisfi
Thus, this model has the constraint of a conserved gro
condition and is called the conserved RSOS model. The
tailed derivation of the Villain–Lai–Das Sarma~VLD ! equa-
tion from the CRSOS model will be published elsewhe
@22#. Here we only sketch the procedure and report the res
The procedure is similar to the one used to get the K
equation from the RSOS model except for some complica
calculation. After some algebra, we find the VLD equatio

]h

]t
52 ñ¹4h1l̃¹2~¹h!21h, ~17!

where ñ5(21212&)/2, l̃5(1023&)/2, and
^h(x,t)h(x8,t8)&5Dhhd(x2x8)d(t2t8) with Dhh5(2&
21)/2. In deriving the above equation, we kept only t
most relevant terms, and found that neither the EW nor
KPZ term exists in the growth equation. It is known, how
ever, that higher order terms of the form¹(¹h)2n11 (n
>1) generate the EW term by the dynamic renormalizat
group @23#. Hence we should investigate the possibility
occurrence of these terms. Indeed, we found that the dan
ous term of the form¹(¹h)2n11 does not arise in the deri
2-3



-
l

nd
gu

th
te
ffi

OS
a

t
.
st
in
r

e
h
n

av

u-

ing
nd-
he
et-
for
died
de-
ell
lt of

e

OS
ing
e

e
the

0-
he

RAPID COMMUNICATIONS

SU-CHAN PARK, DOOCHUL KIM, AND JEONG-MAN PARK PHYSICAL REVIEW E65 015102~R!
vation of the VLD equation@22#. Consequently, we con
cluded that the continuum equation of the CRSOS mode
the VLD equation.

Although the VLD equation was derived by Huang a
Gu @13# using the master-equation description with the re
larization procedure proposed by Vvedenskyet al., there
were some ambiguities in choosing the regularization of
step function and thus the coefficients could not be predic
whereas, in our derivation, we are able to predict the coe
cients for the VLD equation corresponding to the CRS
model. Unfortunately, however, there is no numeric
method, to our knowledge, to findñ andl̃ for a microscopic
model. Numerical studies up to now can argue only thal̃
may be positive@7#, which is consistent with our derivation

In deriving the VLD equation, we recognized the intere
ing aspect of the RSOS model. When we allow hopp
processes only up to distancel 0 , the stochastic equation fo
the height variable eventually becomes the KPZ one@22#.
This is contradictory to previously reported simulation r
sults @24#. Kim and Yook studied the RSOS model wit
finite-distance hopping by Monte Carlo simulation and co
cluded that there is a phase transition at finitel 0 from the
KPZ class (l 050) to the VLD class (l 05`). However, this
conclusion seems to be a finite-size effect. In fact, we h
,

e

,

d.

,
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confirmed our argument by carrying out a Monte Carlo sim
lation with sufficiently large system size for severall 0 @22#.

In summary, we have presented a formalism for deriv
the continuum stochastic differential equations correspo
ing to discrete growth models. Applying the formalism to t
BCSOS model, we derived the EW equation for the symm
ric process and the KPZ equation with exact coefficients
the asymmetric process. The RSOS model was also stu
with the general probabilities for possible processes. We
rived the KPZ equation with a fluctuating noise part as w
as the deterministic part, which is the same as the resu
Neergaard and den Nijs. For the special case withp51 and
q50 ~the KK model!, our coefficients are consistent with th
numerical results of Kruget al. @18#. Finally, we applied our
formalism to the conserved RSOS model. For the CRS
model, we found that the VLD equation is the correspond
continuum stochastic differential equation. However, if w
allow only finite hopping (l 0,`), the system belongs to th
KPZ class eventually. We also predict the coefficients of
VLD equation for the CRSOS model.
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