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Macroscopic traffic models from microscopic car-following models
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We present a method to derive macroscopic fluid-dynamic models from microscopic car-following models
via a coarse-graining procedure. The method is first demonstrated for the optimal velocity model. The derived
macroscopic model consists of a conservation equation and a momentum equation, and the latter contains a
relaxation term, an anticipation term, and a diffusion term. Properties of the resulting macroscopic model are
compared with those of the optimal velocity model through numerical simulations, and reasonable agreement
is found although there are deviations in the quantitative level. The derivation is also extended to general
car-following models.
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[. INTRODUCTION shown that both the density gradient term and the diffusion
For more than 50 years, traffic flow has been a subject oferm arise from alirectedinfluence due to the breakdown of
intense research effol]. While earlier studies were mostly the balanced action-reaction. This is contrary to heuristic
conducted by traffic engineers, in the last decade the traffigerivations[4], in which the density gradient term is attrib-
flow problem has received great attention from the physicéited to the velocity variance. It also provides an origin of the
community as well, largely due to the seminal wofRs-4]  diffusion term assumed in many fluid-dynamic models. In
in the early 90s, which demonstrated that traffic flow can be>€c. IV, the derivation is extended to general car-following-
regarded as a driven nonequilibrium system. There are enfyP€ models. In Sec. V, the macroscopic model derived from
pirical indications of multiple dynamic phases in the traffic the microscopic optimal velocity model is examined numeri-
flow and dynamic phase transitio[ﬁ_g]_ Several theoreti- Ca”y in Comparison with the Optlmal VelOCity model. Section
cal explanation$10—15 for the empirical results were sug- VI concludes the paper. Some technical details are presented

gested. Also physical phenomena such as self-organizéfl Appendixes A, B, and C.
criticality and hysteresif16] were revealed. We remark that a different scheme to construct macro-

Numerous traffic models have been investigatede Scopic models from microscopic car-following models was
Refs. [17-19 for recent reviewsin relation to empirical Proposed recentl{23]. The macroscopic fields andv are
data, and considerable progress has been achieved toward @gfined via an interpolation procedure instead of a coarse-
understanding of various traffic phenomena observed empir@raining procedure. The resulting momentum equation is
cally. Depending on the mathematical formulation used, trafnonlocal while our momentum equation is local. Alpoand
fic models may be categorized into one of the followingv defined in such a way do not strictly satisfy continuity
types: car-following models, particle-hopping models, equation(3), while the continuity equation is an exact iden-
coupled-map lattice models, gas-kinetic models, and fluidiity in the coarse-graining-based scheme.
dynamic models. The first three types use a microscopic ap-
proach while the last type uses a macroscopic one. The ap- Il. GENERAL FORMULATION

proach used in the gas-kinetic models is intermediate and : . , . .
may be called mesoscopic In order to derive macroscopic traffic equations from mi-

Recently it was suggestd@0,21] that different types of croscopic 0|.1es,. we first introduce t.wo Amicroscopic field vari-
traffic models may belong to the same “universality” class ables, density fielgh(x,t) and flux fieldg(x,t),
in the sense that they share qualitatively similar properties.
More recently, a nonlocal fluid-dynamic model was derived p(x,1)=>, 8(y,(t)—x),
from a gas-kinetic mod¢R2]. These reports motivate further n
studies on mutual relationship between different types of
traffic models. A ‘

In this paper, we address the relationship between micro- q(x,t)—; Yn(1) 80/n(t) =), @
scopic car-following models and macroscopic fluid-dynamic
models. Specifically we use a coarse-graining procedurherey,(t) is the coordinate of theth vehicle at time with
(Sec. ) to derive a macroscopic modébec. Ill) from the  y<y,<- <Y _1<Yp<Yn+1<---. When traffic dynam-
microscopic optimal velocity model, a particular case of theics does not depend on third or higher order time derivatives
car-following-type model. The resulting macroscopic modelof y,(t), these two fields specify the status of traffic flow
consists of a continuity equatidiEq. (3)] and a momentum completely.
equation[Eq. (25)]. The momentum equation contains a re- A natural way to obtain macroscopic description is to
laxation term, a density gradient term, and a diffusion termgcoarse grain these fields. We introduce a coarse graining en-
similar to the fluid-dynamic model proposed in Ref]. Itis  velope function ¢(x,t) which is non-negative valued,
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peaked atX,t) =(0,0), and normalized afdxdt¢(x,t)=1.
The coarse grained densip(x,t) and flux g(x,t) can be
defined as

p(x,t)zf dx'dt’ ¢p(x—x',t—t")p(x’',t"),

q(x,t)zfdx'dt'¢(x—x',t—t')a(x',t’). 2

These two coarse grained fields specify thacroscopicsta-
tus of traffic flow.

Next we derive equations that govern the time evolution

of p(x,t) andq(x,t). For the evolution op(x,t), one finds

J Jd
EP(“H&Q(XJ):O, 3
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2 ()
U(X,t) = -
21
n
where the primed summation runs over the vehicles in the
range &— X/2x+X/2) at timet. The denominator is equal
to the total number of vehicles within the range and thus
v(x,t) represents tharithmetic mean velocityFor the tem-

poral coarse graining, on the other hand, it can be verified
that

L 2’ [Yn(ta(x))]7*

v(X,t) E, 1

n

where the primed summation now runs over the vehicles that

which describes the local conservation of vehicles in thereach the poin within the time interval {(—T/2t+T/2),
coarse-grained description. This equation can be verifiednd t,(x) represents the time at which thath vehicle

from Eq. (2) using integration by parts and change of vari-reaches the positiox. Here y,(t)=0 is assumed. Thus

ables.
Derivation of the dynamic equation fay(x,t) is less
straightforward. After some algebra, one obtains

Jd .. Jd .
EQ(X,U =p(XOYn(t" )y~ 5[P(X,t)<)’§(t')>(x,t)],
(4)

where the bracketed average of a quan@tyx’,t’) is de-
fined as follows:

1

(OnX" D= Ty

fdx’dt’qb(x—x’,t—t’)

xg On(X' 1) 8(ya(t)—x"). (5

v(x,t) represents théarmonic mean velocityneasured at
local detectors.

It is straightforward to rewrite Eq3) in terms ofp andv
instead ofp andg. Also expressing Eg4) in terms ofp and
v, one obtains

Jv Jv .o 0
Plortvox =p(Yn(t ))‘5(139), 7)
where

O(x,1)=(y2(t")) —v3(x,t)

measures the degree of microscopic velocity variation. Note
that the left-hand side of E(.7) corresponds to the total
derivative Dv/Dt=dv/dt+vdv/dx. Thus the two terms on
the right-hand side can be interpreted as macroscopic force
densities. The first term corresponds to the coarse-grained

Note thatx’, t’, andn inside the brackets are dummy vari- average of microscopic “forces” that act on each vehicle.
ables, while the labelxt) in the subscript of the bracket The second term, on the other hand, arises from the coarse
notation represents a spatiotemporal position where the a@graining itself. In equilibrium systems} is proportional to
erage is evaluated. This label will be omitted in the rest ofthe local temperature, and the second term represents the

the paper when its omission does not cause confusion.

force due to thermal gradient.

Here it is useful to introduce another macroscopic field The remaining job is to express the force terms in terms

v(x,t),

v (X, =(ya(X", ")) =a(x,0)/p(x,1), (6)

of p andv. However, it is well known that a rigorous treat-
ment of the force terms generates an infinite sequence of
dynamic equations. Thus we instead develop approximations
of the force terms in Sec. Ill, so that E48) and(7) form a
closed set of equations. This scheme is partly motivated by

which represents some kind of macroscopic velocity, whosehe absence of empirical indication that the dynamics of the
precise meaning depends @{x,t). Two particular coarse forces is important.

graining schemes are good for illustration: spatial coarse A procedure to derive a macroscopic model is illustrated
graining ¢(x,t) = 8(t)®(X/2—|x|)/X and temporal coarse for the optimal velocity model in Sec. Il and for general

graining ¢(x,t)=48(x)0(T/2—|t])/T, where O(x) is the
step function which is one fax>0 and zero fox<<0. For
the spatial coarse graining(x,t) becomes

car-following models in Sec. IV. In both sections, traffic
states are assumed to be almost homogeneous. In this linear
regime, products of differentiated quantities such as
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Hm:l(almom/axlm) become progressively smaller &sin- roscopic descriptions should contain information about the
directionality, while a naive approximation fails to capture
p this information.
To take the directionality into account, an intuitive pre-
r§cripti0n was propose[®6] without a rigorous justification,

creases, wherg, are integers an@®,, are arbitrary functions
of p andv. Therefore, it is sufficient to retain terms wit
M =0 or 1 only, which simplifies the construction of a mac-
roscopic description considerably. In this sense, terms wit
M_—O orl can be _calledinearly relevantter_ms,_and te_rms <AYn>(x,t)“P_l(X+ 120(x,1),1), (11)
with M =2 linearly irrelevantterms. Properties in the linear
regime such as the dispersion relation for small amplitudgyhich amounts to evaluating the density at the midpoint be-
waves depend on linearly relevant terms only. Effects of thgyeen two vehicles and n+1. For the above unphysical
linearly irrelevant terms wittM =2 are discussed in Appen- model, this prescription results in an expression which is
dix A. similar to Eq.(11) but has a negative sign in front of 1/2.
Thus this prescription contains information about the direc-
Ill. OPTIMAL VELOCITY MODEL tionality.

In the linear regime, we find that a controlled approxima-
tion of (Ay,,) can be obtained in a rigorous wésee Appen-
dix C). The result is

We first study the optimal velocity modg24]

Ya(H) =M Vo Ayn(t) = Ya(t)], ®)
-1
where the constank represents a driver's sensitivity and (Ay)y=p 1+ i op +3, (12)
Ay,=VY,:1—Yn is the coordinate difference between the ve- 2p X

hicle n and its preceding vehicle+ 1. V,(Ay) is the opti-
mal velocity to which drivers want to adjust their speed.
example isV,(Ay) =tanh(Ay—2)+tanh 2 used by Bandet
al. [24]. Here we will assume neither a particular functional
form for V,,(Ay) nor a particular value fok [25].

The coarse graining of E8) leads to

AnwhereE represents the sum of all terms with second or
higher order derivatives. Note that Ed.2) agrees with the
Taylor expansion of the heuristic approximatideq. (11)],

up to the first order derivative correction po 1. The devia-
tion occurs in the second order derivative. While the second
order derivative in the Taylor expansion of HE4.1) comes

con _ with the coefficient 1/8, a rigorous calculation leads to the
{Yn) =M(Vor Ayn)) 0] © coefficient 1/6(see Appendix €

1 #2p 1 . #Bp 1
6p° gx2 o3 |

The expansion ofVy(Ay,)) with respect to(Ay,,) gives

» (13
1

<Vop(AYn)>:mE=0 vap«Ayn))((Ayn_<Ayn>)m>

Thus the leading term in E¢10) can be expanded as

A _ 1 L 1 8p_l
Vop(< Yn>)_vop(p )+V0p(p ) Z X
where |, is the term that is proportional td(Ay, (14
—(Ayn))™. Herel, is absent sincg(Ay,—(Ay,)))=0.
Note that the leading correctidp compensates for the dif-
ference(Vq,(Ayn)) — Vo((Ayn)), which is positive(nega-
tive) whenV,, is a convex(concavg function. In the linear
regime, however, all correctiorlg, (m=2) can be ignored. — by —
Moreover it can be shown that the second term on the right- ot 28
hand side of Eq(7) is also negligible in the linear regime
(see Appendix B Therefore, the derivation of a macroscopic
description in the linear regime is reduced to developing
proper approximation ofAy,).

Evop(<Ayn>>+m2:2 I, (10)

+2}+2iry

where 3, denotes the sum of linearly irrelevant terms. By
combining Eqgs(7), (9), (10), and(14), one obtains

-1

dv dv ap

oX

-1 A 4 -1
:)\[Vop(p )_U]+Zvop(P )
+A Vo (pHE. (15

Note that the second term proportional to the density gradi-
ent arises from the directed influence, while conventional
derivations of fluid-dynamic model[g}] attribute the density
A. Directed influence gradient term to the velocity variance term in Hg). We

A naive approximation ofAy,) . iS p X(x,t). How- yviII call the second term the anticipation term. The first term
ever, this seemingly reasonable approximation has a serioi often called the relaxation term.
problem. For illustration, it is useful to introduce an unphysi- It is interesting to compare the dispersion relations of mi-
cal model by replacing\y,,(t) in Eq. (8) with Ay,_4(t), so  croscopic and macroscopic models. In a microscopic descrip-
that each vehicle responds to the vehladindit rather than ~ tion, small perturbations with respect to the homogeneous
the vehicleaheadof it. This unphysical model, which differs State can be written as
from the physical one only by the directionality of the influ- . i
ence, has qualitatively different properties. Thus proper mac- Ya()=vpt+pp "N+ oy explixn+ ), (16)

056126-3



H. K. LEE, H.-W. LEE, AND D. KIM PHYSICAL REVIEW E64 056126

wherev,=Vq(py, 1. By linearizing Eq.(8), one obtains the In contrast, naive macroscopic models give different re-
dispersion relation sults. WhenX, is ignored completely, Eq919) and (20)
result in a linear instability criterionx/c’,p(pgl)>>\/2 for
A \/ 4V(’,p e modek. Note that this inequality does not cont&nThus as
Y==5| 1y 1+ T(e -] (17 soon asp, satisfies this inequality, fluctuations afl wave-

lengths become unstable simultaneously, different from the
On the other hand, small perturbations in the macroscopibehavior in the microscopic description. On the other hand,

description can be written as when the leading contribution t& in Eq. (13) is retained,
_ Egs. (19 and (21) result in Vip, )>(\/2)[1
p(X,t)=pnt p explikx+ wt), —(kpp, 1)?/6] 2. Note that the right-hand side vanishes as

kpgl—mo and thus the homogeneous statalisaysunstable

with respect to fluctuations with small wavelengths. Téuis

tificial instability cannot be cured by merely using higher
rder approximations of. For example, if we assume that

v(X,t)=vu+ Sv exp(ikx+ wt), (18

wherekpg1 is the macroscopic counterpart efsince both
represent the phase difference between two successive o ) =
hicles, andw+iku}, is the macroscopic counterpart pf To ﬁ_ ?}eXt order cor?trlbutlon @ is ((11/4'6!‘93)(‘93” l/‘éxs.)’

see the origin of the additional terikuy,, note thaty is the ~ WNICh generates the correct next order (v()llone obtains
frequency measured in theovingreference frame with the e J|1n§ar mstabﬂ[ty{ , cgtenqn Volpn )= (M2)[1
velocity vy, while o is the frequency measured in the sta- — (Kpn ) /12}/[1—(kpy ) “/6]%, which again shows an arti-

tionary frame. By linearizing Eq€3) and(15), one finds ficial instability for the short wavelength components.
To find the origin of the failure, it is useful to analyze the

AV . microscopic dispersion relatidieq. (17)] since the approxi-
—1x 1+ ——Ake )|, (199  mations of3 are equivalent to truncating the serig§—1
=ik+(ik)22+ (k)31 + (ik)*41+ - - - at a certain order.
where It can be verified that when the series is truncated fatite
order, highest order terms dominate the physics for large
(ix)? and generate the artificial instability for large (>1)
2 (20) modes, while such instabilities are absent when the series is
summed up to thénfinite order. Thus it is clear that trunca-
when the last term in Eq15) proportional to3 is ignored tion at afinite order is responsible for the artificial instability.

. A
wi+|kvh=§

A(X)=ix+

and In this subsection, we aim to develop an approximation of
BT >, which is compact but still _cap_tures important f(_eaturles of

AX) = ix+ (ix) N (ix) 21) the exactS. A key observation is that modes wikp,
2 6 ’ >1 areunphysicakince fluctuations on length scales shorter

than the vehicle spacing are not defined in the original mi-
when the leading contribution @ in Eq. (13) is included.  croscopic model. Motivated by this observation, we trans-
Note thatA(x) agrees with the Taylor expansion of the fac- form the leading order term & in Eq. (13) in such a way
tor (e'“—1) in Eq.(17). Thus it is clear that the macroscopic that it preserves the same long wavelength behavior but sup-
momentum equatior(15), combined with the continuity presses fluctuations in short wavelength components kvith
equation(3), gives a correct description of the long wave- >p, . To implement this idea, one first notes that E8).
length behavior of the microscopic modétqg. (8)] in the relates small fluctuations g¢f andv as follows:
linear regime.

Ikph

- m ov. (23

So=
B. Effective diffusion p

Despite the excellent agreement of the long wavelengtityg then exploits the correspondence betweeriku;, and
components, It is premat.ure tp accept EIp) as a macro- v, and between kpgl and «. From the result y,
scopic momentum equation since naive treatments af- V' (o= Dix for small k. one obtains
troduce an artificial instability, which is absent in the micro- oplPn )i o
scopic mode[Eq. (8)]. For demonstration, we examine the 1
linear instability criteria. In the microscopic model, from Eq. Sp I~ ————ov.

(17) one obtains that small fluctuations of the madée- V(’,p(pgl)
come linearly unstable when
In this derivation, they_ mode is ignored since it always

decays with time. Note that the resulting relation amounts to
a variational form ofv:VOp(p‘l) that can be regarded as
the zeroth order approximation whekm),jl<1. Its first or
Note that thex=0 mode shows the strongest instability and higher order corrections will be ignored since they introduce
at the critical density where the instability first sets in, onlythird or higher order derivatives to the new approximation of
an infinite wavelength mode becomes unstable. 3, [Eqg. (24)]. This way, we construct an approximation

Voo pn 1> (22

1+cosk’
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V(’)p(pil)zmvcl)p(pil)epz aXZ

The momentum equation becomes
N v

6p2 9x2
(25

Note that our approximation & results in adiffusionterm,

Jv Jdv
ot X

AVp dp

= -1y _ —
Voo™ —01=5 25

PHYSICAL REVIEWG&E 056126

dv dv Ap1dp™t Agpid?pt
4ty —=A -1 + P, + P,
ot oG Aelp 00)E 5 E o 6p%  Ix>
Agp2 v Agp o d?v
op,2_+ op,2 (30)

p X 2p? X2

Note that the dependence 8f,, on Ay, gives rise to an
explicit diffusion term.

Despite the explicit diffusion term, the artificial instability
at short wavelength components may still arise whgg), is

which tends to suppress short wavelength fluctuations. Insyfficiently large since the term proportional #p %/ 9x?

deed, the linear instability criterion from Eq&) and (25)
becomesV;(p, 1) >\ (1+k?6pf)?/2, which confirms the
suppression of modes wik® p,,. In addition, it can be veri-

fied that the macroscopic and microscopic dispersion rela-

tions agree up to ordee. Thus we conclude that E5) is

a satisfactory macroscopic momentum equation in the linear

regime.

Finally, we remark for completeness that Eg5) cannot
be used to studypackwardtime evolution. This restriction
arises from the neglect of thg_ mode, whose magnitude
doesgrow in the backward time evolution.

IV. GENERAL CAR-FOLLOWING MODELS

In this section, we extend the derivation in Sec. Il to
general car-following models. When third or higher order

time derivatives do not appear in microscopic traffic equa-

tions, a general car-following equation with the Galilean in-
variance can be written as

.yn:Aop(AYn iAyn ayn)- (26)
Coarse graining leads to
Jv .
E"'U &onp«AYn)&AYn)vv)a (27)

where(Ay,) can be approximated by Eq4.2) and(13), and

. lov 1 é%
(AYn)(x,t)“; el 22 (28

See Appendix C for a derivation of E¢28). We further
expandAgy(- - ) as

1 0p 1t 1 ¢%p?

Aol - - )onp(Pil:Ovv) +Aop,

2p ox = 6p° gx2
A 1(3’U+ 1 9% -
op. p IX 2p2 Ix2)’ (29

where Aop,iEaZiAop(zl,22,z3)|(21,22,23):(p71'0y). In real
traffic systemsA,,1 and A, are expected to be positive

while A, 5 is expected to be negative. Cross-terms propor-

tional to A, Aqp 2 @re ignored since they are linearly irrel-

evant. The macroscopic momentum equation then becomes

tends to generate the artificial instability, as demonstrated in
Sec. lll. Thus we follow the procedure in Sec. Il B to obtain

(31)

which is a generalization of E¢24). The resulting momen-

tum equation is

Ju Ju AO 1 (Qp_l AO 2 Ju
— v —=Ag(p L,00) + =2 + Rt
gt TV ax = Aelp 00t 5 e T X
3Agp o~ Agp 3 30
+ op,2 op,3 (32)

6p> x>’
Note that the factor By, ,—Agp 3 in front of the diffusion
term is manifestly positive. This equation is free from the
artificial instability.

To elucidate the relation with Eq25), it is useful to
define an effective optimal velocityop,eﬁ(p‘l) in an im-
plicit way as a solution of

Aoplp 1101Vop,eff) =0. (33
WhenA,, s<0 for all v, the solution is unique and there is
no ambiguity inVOp,eﬁ(pfl). One also defines

Aop(PilyorU)

_—, 34
Vop,eﬁ(P_l)_U 39

)\eff(pilvv)z

which is positive for allp andv if Ay, 3<0 always. Thus the
first term in Eq.(32) can be interpreted as a generalized
relaxation term:
Aop(P_:L,O-U):)\eﬁ(P_lvv)[Vop,eﬁ(P_l)_U]- (35

In certain situations, the third term in E¢B2) can be
transformed into a familiar form. One applies the procedure
in Sec. llIB to the term, and uses the relation ~
—(Aop1/Agpdik(1+Bik), where B=1/2—Aq,7/Aqp3
—Agp1/As, 5. Thus we obtain

(36)
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where third or higher order derivatives are neglected. On the
other hand, the second order derivative should be kept sinc
it renormalizes the diffusion term. The macroscopic equation-

(b)

89.6

of motion then becomes £ £
dv dv VAgp1dp  MAgp3 3%v
— 40— =Nef Vopef— V]~ — 2 ——— —= — 88.4
at X Eﬁ[ op.eff ] 2p3 X 6p2 (9_)(2- 0 location(km) 2.33 0 location(km) 2.33
(37) © ()
89.6 T T T T 806 T T T T
where  v=1-2Aq,,/Aq3 and  u=1-3Aq;-/Agp3

89.2 89.2

- 6IBAop,2/Aop,3: 1-6 (Aop,Z/Aop,?) (l - Aop,Z/Aop,3_ Aop,ll

Agplg. Note that three force density terms in E87) are in
one-to-one correspondence with those in &%). Moreover
the corresponding terms in the two equations usually have ss.4 S 88.4
the same sign since is positive andA,, 3 is negative. How- 0 location(km)  2.33 0
ever Wheng n ECI- (_36) IS a ngf'c'emly large negative num- FIG. 1. The velocity profiles foN=72. The initial condition in
ber, u in the diffusion term in Eq(37) becomes negative, Egq (38) is used withA=1.165 m.(a) t~10 min, (b) t~30 min,
and an artificial instability at short wavelength componentsc) t~1 h, and(d) t~4 h. The solid(dashed line shows the mi-

vel.(km/h)
vel.(km/h)

88.8 - 88.8 -

location(km) 2.33

arises. Thus Eq(37) can be used only whep is positive
while Eq. (32) can be used in general situations.

V. MICRO VS MACRO

In this section, we numerically compare the properties of

the microscopic optimal velocity mod¢Eq. (8)] and the
macroscopic moddlEgs. (3) and (25)] derived from it. For
definiteness, we use

tanl'( 2

With U pa=33.6 M/S, Xpeutra= 25.0 M, Xyigin=23.3 m,
Cphia==0.913, andh =2 sec ! as in Ref[27]. A system size
L=2.33 km is simulated witiN vehicles p,=N/L), and
the following microscopic initial conditions are used:

1%
Vop(Ay) = %x

A Y~ Xneutral
+ Chias|»
Xwidth

yn(0)=np, '+ Asin(6mnp, Y/L), 1=n<N/3,

yn(0)=np,t, N/3=n=2N/3, (39

Yn(0)=Vo,(Aya(0)) forall n.

croscopic(macroscopik velocity profile in each plot. The vertical
scale is magnified for clarity.

\/<[Umacrc(x-t) _Umicro(xat)]2>space

d, ()= <Umicro(X,t)>space ,

where (---)space represents the spatial average. Here
Umacrd X, 1) is calculated from the macroscopic model, while
Umicro(X,t) IS obtained by coarse graining the microscopic
configuration at the timé

When the initial perturbation from homogeneous flow is
small, sayA=1.165 m, we find that,(t) is negligible for
all density outside the linearly unstable density range. A
typical velocity profile is shown in Fig. 1. Note that the
macroscopic profiles are almost indistinguishable from the
microscopic ones. Even whad=72 (131), which corre-
sponds to a density slightly belof@@bove the lower(uppe)
critical densitypy c2)~73 (130)/2.33 km(numerically ob-
tained critical densities are nearly the same as analytic)ones
d,(t) remains~2x10~* during several hours of simulation
time.

The accuracy in the linearly unstable density range is also
examined forA=1.165 m and\N= 73, which is the smallest
N that demonstrates the linear instability. The microscopic

The corresponding macroscopic initial condition is preparedsimulation shows that the initially smooth profile becomes

by coarse graining the microscopic initial conditim®e Eqgs.

“rough” as short wavelength fluctuations develop. An al-

(2) and (6)] with the spatial coarse graining function most identical roughening is found in the macroscopic simu-

d(x,t)=(27a?) ~ Y%exp(—x%20?) 5(t), where we choose

lation, andd,(t) is almost negligible initially[Fig. 2(a)].

=46.4 m. The periodic boundary condition is imposed forHowever, the growth rate of the short wavelength fluctua-

both the microscopic and macroscopic systems.
We first verify that the density rangp:.,<p<pgp, in

tions is faster in the microscopic simulation compared to the
macroscopic simulation. This difference is responsible for

which the homogeneous traffic state becomes unstable witthe rapid growth ofd,(t) neart~55 min. The growth of

respect to infinitesimal perturbations, is essentially identicall,(t) occurs at an earlier time for the density with stronger

for the microscopic and macroscopic models. This impliedinear instability. Both in microscopic and macroscopic

that, in the linear regime, the macroscopic model describesimulations, after a sufficient time intervak@20 min) all

the long wavelength behavior of the microscopic model veryshort wavelength fluctuations merge into a single large traffic

accurately. jam, which moves backward at a constant speed without fur-
To quantify the accuracy of the macroscopic model, wether evolution in its shape. Thus this jam corresponds to the

introduce the space-averaged relative deviatigft), which  final steady state. Figurgl® compares the velocity profiles

is defined by of the jams from the microscopic and macroscopic simula-
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FIG. 4. (@) The relative deviations of the macroscopic lower

FIG. 2. () The time evolution of the space-averaged relative (diamond$ and upper(circles critical densities with respect to the
deviation of velocity forA=1.165 m andN=73. (b) vero (SOlid  microscopic counterparts for the initial conditipEq. (38)] with
line) VS vmacro (dashed ling near 115 minfmarked by the arrow  A=7456 m. Note that the relative deviations shrink Xasin-

in (@]

creases(b) The ratio;;g”“C/ngac as a function ofx for the macro-
scopic mode[Egs. (3) and (25)] (diamond$ and for the modified
tions. The velocity of the jam propagation speed is differentnacroscopic moddIEgs.(3) and(A8)] (circles takes into account
and the locations of the jams coincide periodically in time,the effects of some linearly irrelevant terms.
resulting in the periodic dips in Fig.(@.

Next we chooseA=74.56 m in Eq.(38), and examine 1 387 forn=2 sec .. Figure 4a) shows the relative devia-
the performance of the macroscopic model for large perturgong of the macroscopic critical densities with respect to the
bations. Figure @) shows the initial density profile. After a - ieoscopic ones. For the lower critical density, the macro-

sufficiently long time, the initial condition may evolve to a scopic result is in good agreement with the microscopic one
homogeneous state or to a congested state. The evolution tIo — " .
or general\. For the upper critical density, on the other

a congested state is realized fors6N=<156 when the mi- o i )
Croscopic mode| iS used and forﬁms 147 When the mac- hand, the d@”a“on of about 6% }t=1.387 Sh“nks VV_|th the
roscopic model is used. Thus the lower critical density is inincrease ofA and good agreement is achieved n&at2.
good agreement while the upper critical density shows abouthus the difference between the microscopic and macro-
a 6% deviation. The comparison with the linear critical den-scopic metastable regions in Figb3 shrinks as\—2.

sities shows that both microscopic and macroscopic models The velocity — v of a backward propagating traffic jam
exhibit metastablllty which |mp||eS the hyStereSiS phenom- (.:|uster @g>o) is also investigated_ Sm@% is almost inde-

ena in the metastable density range. The phase diagram gendent oiN, we fix N=100 (p,~42.9 km 1) for simplic-

Fig. 3b) summarizes the_result. Note that the m|croscop|clty' and examines, as a function ofx. Figure 4b) (dia-
metastable regions are wider. -

We also investigate the dependence of the critical densit)zln odndt?] shows the ratio beitwgaecn tEetmlfr:otsc%%c n\’;”‘f@‘f
on \ for fixed A=74.56 m. It is convenient to introduce a 2N M€ MACTOSCOpIC valligs . Note thalvg Tvg =

dimensionless parametgrf(x sin/vma)\, Which is about when\ is close to 2 This agreement is notable considering
it ma that the macroscopic model does not have any free parameter

which can be varied to enhance the agreement. The agree-
ment, however, becomes less satisfactory \adbecomes
------ ' ' ' smaller.

] N A crude understanding for the good agreement near
— B =2 can be achieved via the linear analysis, although the
given initial condition is not in the linear regime. For the

density
f=—>m
>
©
!
o
=

0 location(km) 2.33

general optimal \@Iocity model, the linear instability_devel-
(b) ops when Vg, >\/(1+cosk); here we introduceV,
0 — p = (Xyidih/Vmax) Vop- This inequality sets an upper limit;,
pm1 pcl ch pm2 . op*. -
[ metastable(mac.) < above which the instability does not appear. Note that
~ < S shrinks to zero as\/2 approaches ma)l()p), which is 1.
[ stable Y wnstable SNy stable | Thus the characteristic length scale of the instability be-
metastable(mic.) comes longer as— 2. This may explain the excellent agree-

FIG. 3. (a) The density profile for the initial condition in Eq. Ment neai =2, since the macroscopic model becomes more
(38). 8p depends onA and p,. For A=7456 m andN precise as the characteristic length scale grows.
=100, Sp=1.5p;,. (b) Schematic phase diagrams for the micro- ~From these comparisons, we conclude that the macro-
scopic and macroscopic models. scopic model[Egs. (3) and (25)] is quite accurate in the
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linear regime, and provides a reasonable description of fullyative approach: terms without derivatives constitute the ze-
developed jam clusters in the nonlinear regime, althoughoth order contributions, and terms with the first order de-
there are deviations in the quantitative level. But when shortivative the first order contributions. Thus the relaxation and
length scale dynamics plays an important role, for exampleanticipation terms are the zeroth and first order contributions,
when the avalanchelike growth of many small clusters octespectively. All zeroth and first order contributions are al-
curs, the macroscopic model is not satisfactory. ready included correctly in Eq$25) and (32). As for the

To construct more accurate macroscopic models, onsecond order contributions, however, only part of them are
needs to take into account effects of various terms ignored iincluded since terms proportional tau/9x)2, (dp~/dx)?,
the macroscopic momentum equation derivation. As a firsbr (9p ™~/ 9x)(dv/9x) are of the same order as the diffusion
trial, we extend the derivation to the nonlinear regime byterm. Below we demonstrate a procedure to obtain the miss-
including effects of all terms proportional to ing second order contributions for the general microscopic
(avlax)?, (ap~Yax)?, and Ep~ Y ax)(dvlox) (see Appen- model[Eq. (26)].
dix A). The resulting equatiotA8) for the same optimal In the general expressidi), the last term proportional to
velocity model is examined. As expected, the linearly un-d(p6)/dx is irrelevant for our discussion since it generates
stable density region is identical to that by E85). How-  third or higher order contributions onlgsee Appendix B
ever, the ratia|"%v "*° deviates further from ongeircles in ~ We expand the first term to obtain
Fig. 4b)]. Thus it appears that naive inclusion of linearly

; ; . . A
irrelevant terms does not improve the accuracy. (Va(t))~ Ao (AY ) (AYn), ) + (;),H«Ayn_(Ayn»Z)
VI. SUMMARY Aoz, R ;
A local macroscopic fluid-dynamic model is derived from + Ay = (Ay) I+ ——{(Ya—0)%)
a microscopic car-following model, which establishes the ) )
link between the two types of traffic models. It is emphasized + Aop 1K (AYn—(Ayn) (Ayn—(Ayn)))
that the directed influence due to the breakdown of the bal- i . )
anced action-reaction is an important ingredient. For the op- +Aop 24 (AY,—(AYR))(Yn—v))
timal velocity model, the corresponding macroscopic mo- .
mentum equation consists of a relaxation term, an +Aop 1L (AYn— (AYn))(Yn—0)), (A1)

anticipation termproportional to the density gradignaind a S o
diffusion term. Thus it has a structure similar to the ﬂuid—V_VhICh is a generalization of Eq¢9) and (10). Here Aqy,
dynamic model in Ref[4]. However, the density gradient :aziaZjA?F’(zl’22’2.3)|(21v22'23):(9’1,0’v)' In Secs. 1l and V.
term is found to arise from the directed influence rather tharthe last six terms in E{A1) have been ignored. For a spatial
the velocity variance. It is demonstrated that the diffusioncoarse graining functiorp(x,t) = ¢x(x) 5(t), we find

term also arises from the directed influence. The derivation

2 -1\2

provides an unambiguous way to determine the coefficients L’“((Ay —(Ay >)2)~L°Pv“ P )

of the anticipation term and the diffusion term. The macro- 2 " " 2 ax |’

scopic model derived from the optimal velocity model is 5 5

examined numerically, and its properties are found to be in Aop3s, - a9 Aop,33[ v

reasonable agreement with those of the microscopic model 2 ((yn=0)%)=~ 2 E

although there are deviations in the quantitative level. (A2)

: v dp~t

ACKNOWLEDGMENTS Aop,la«Aynyn_ <Ayn>v)>% O'ZAop,lB& g_X’

We acknowledge helpful discussions with H. Y. Lee, who

participated in the early stage work of this paper. H. K. L.\yhere o2=[dx'x’2¢y(x’). Note that these second order
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higher order contributions onlisee Appendix B
APPENDIX A: EFFECTS OF LINEARLY IRRELEVANT The first term on the right-hand side of EGAl) also
TERMS generates the second order contributions. The second order

While the derivation in Secs. Il and IV assumes a ”nearexpansmn of its arguments results(see Appendix £

regime, interesting traffic phenomena often occur in the non-

19p7 1 %t 1 (19p1>2

linear regime. In this appendix, we aim to develop a macro- (Ay)y~p 1+ — +— 4+

scopic momentum equation, which is applicable to nonlinear 2p dx  6p° gx>  6pl Ix

traffic phenomena when the characteristic length scale is suf-

ficiently long. For traffic phenomena with a long character- : Lov 1 v vlap *\?

istic length scalet, each derivatived/dx can be formally <Ayn>”;3_x+ 52(97+ 2\ Tox (A3)

regarded as a small expansion parameter since it effectively
introduces the small factor &/ Then we can take a pertur- Thus one finds
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. . . 1 gpt
Aop(<Ayn>v<Ayn>1<yn>)~Aop(P 1OvU)+Aop, Za_x

1 {92p—1+ 1 ap—l 2
6p2 ox2  6p

dx
A lav 1 3%
+ T
P23 p 9x  2p? 9x?
v apM\? Acparfdp 2
2\ dx 8p? | X
" Aop 22 (9_U 2 Aop 12 &P du
2p? 2p? ToX ox’
(A4)

PHYSICAL REVIEWG&E 056126

length components despite the presence of the diffusion
term. It turns out that the artificial instability can be cured by
applying the prescription&(o‘llﬁx)w(1N(’)p)((9v/ax). Thus

the resulting momentum equation for the optimal velocity
model reads

W AVep —1+ N d
ot U [ opp ) v]+ p X 6p2 X2
(Yo Yo V()
(Vc,)p)z 6p  24p? 2 IX
(A8)

APPENDIX B: IRRELEVANT TERMS IN THE LINEAR
REGIME

Note that the second order contributions from the expansion [n this appendix, we assume the spatial coarse graining
of Ag({AYn),(AYn).(Yn)) do not depend on the coarse- b(x,t)=¢x(x)5(t) for definiteness.

graining function. Next we apply the prescription

aapt d [ Agpz v
ax\ ax X\ Agp IX]’

(A5)

which is the extension of Eq31) to second order. The re-

sulting macroscopic momentum equation is

Jv Ju A,
R J’_ —_—
gt TV ax Pelp

Aop 1 (9p Aop,z (9_1)

H0w )+ X 2 X

3A0p 2~ Aop 3 (9 U

6p?
¥ ) :
ox

Aop,&Aop,lB o Aop 33)
6PZAop,l 2

Aopl UAop,Z Aop,ll

6p 2 8p?

2
g Aop,ll
2

Aop22 Aopas
2p>  6p°

v )
+
X

2
Aop 13| 7 5y

Aop,12

+
2p?

ap~* L ov
X X’

(AB)

_ Aop,13 Aop,:?a‘op,ll
6p2 6PZAOp,l

For the optimal velocity modgIEq. (8)], this reduces to

c?v+ v N +)\V(/)p(9p_1+ N dv
ot TV ax = MValp vl 5 ot 502 ax2
V/ V// O_ZV// 9 —1\ 2
on| —opy Yo @ Top (P_
6p  8p? 2 X
N Vi dp~tov
—ﬁg——. (A7)
PV OdX X

From numerical simulations we find that the last two
terms give rise to the artificial instability for short wave-

(i) 6=((y,— (yn>)2) After some algebra, it can be writ-
ten as follows:

1
B(x,1) = f X 8 x—X (x5 S [0

—Yn(D) 128y m(t) —X") 8y (1) —X").

When the characteristic length of the variations is much
larger than the coarse-graining scate;-n can be formally
regarded as small numbers. To obtain the leading contribu-
tion, we may then use the formal approximation

Jv
Ym() = Yn(t)~ —

| D0 =ya(V],

(x.t)

which leads to

oc0=| 2] Tty

Note that the second factor on the right-hand side is propor-
tional to the square of the spatial extension of the coarse-
graining function. When there are many vehicles within the
coarse-graining scale,

(Y —(yn)?=0?,
whereo?= [dx'x'?¢y(x’). Thus we obtain

ox )~ o2 v\ ?

(X,t)y~o x|

(i) {((Ay,—(Ay,))?): The procedure is very similar:
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2 1 ' 1" ’
((Ay,—(Ayp)) >(x,t)252 dx'dX" dx(Xx—X") px(x

—x">m2n [AYm(t) = Ay, (1)]?

X 8(Ym(t) =x") 6(yn(t) —X").
Using the formal approximation

-1

d
AYm(t) = Ayn(t)~ 2

IX [ym(t) _yn(t)]y

one finds

apfl 2
((Ayn_<AYn>)2>“02( X ) .
(i) {(Ayn—(Ayn))2):
. . 1
(=89 e =5.2 [ ax e ux-x) gt

—x~>m2n [AYm(t) = Aya(1)]2

X O(Ym(t) —Xx") (yn(t) —x").

Since (Ay,)~(1/p)(dv/ax) in the leading approximation
(see Appendix ¢ we use the formal approximation

. . d (1 dv
Ayp(t)— Ayn(t)ma_x(; é’_X) [Ym(D)—yn(D],

and obtain

2

d(1dv
ax\ p ax

(iV) <(AYn_ <AYn>) (Ayn_ (Ayn»)

<(Ayn_<Ayn>)2>~0'2

. . ap L alla
((Ayn_<Ayn>)(AYn_<AYn>)>~02 ZX 5 ;%)
(v) ((Ayn_<Ayn>)(yn_U)>:

. . . d (1 dv\dv
«Ayn_<Ayn>)(yn_U)>%0'2&<;& e
(Vi) {(AYn—(AY) (Yn—0)):
. o"pfl dv
<(AYn_<Ayn>)(Yn_U)>%0'2 ox 07_X

APPENDIX C: MACROSCOPIC EXPRESSIONS FOR THE
DIFFERENCES

This appendix presents derivations of Ed), (13), and
(28).
(i) (Ay,): One begins with the definition giAy,,):

PHYSICAL REVIEW E64 056126

P(AYn>:J dX’dt'd)(X—X',t—t'); [Yn+a(t")
—Yn(t) ] yn(t") =x"). (Cy

The following identity is useful:

J
En: [yn+1(t)_yn(t)]a()/n(t)_x):5yr(x,t)(t)r (CZ)

wherer (x,t) is the vehicle number right in front ofat time

t. For example, whery,(t)<x<yms1(t), r(x,t)=m+1.

Note that each side of the equation vanishes unless there is a
vehicle atx, and that thex integration of each side from
Ym(t)—€ to yp(t)+e results inyqy,1(t) —ym(t), which
proves the identity. Using the identity, E@C1) can be sim-
plified to

Jd
<Ayn>=P71+P71&[A1(th)+A2(Xat)]a (Cg)
where

Ai(x,t)= f dx'dt’ p(x—x",t—t")

yr(x’,t’)(t,)_Yr(x’,t’)fl(t’)
X > ,

As(X,t)= f dx'dt’ p(x—x",t—t")

’ ’ t, + ! ry — t’
><[yr(x )+ Yty —a( )—x’ . (Ca)

2

To obtain Eq.(C3), the integration by parts is used. Below
@(x,t) is assumed to be eveninln the homogeneous state,
yr(x’,t’)(t,) _yr(x’,t’)fl(t,) :P_l and A;(x,t)=1/2p(x,t)
sincer(x’,t")—1 is the vehicle number right behind the po-
sition x” at timet’. It can also be shown that,(x,t)=0 in
the homogeneous state. Thus the first two leading terms in
Eqg. (12 can be obtained by replacingy; +A, in Eq. (C3)
with 1/2p.

To obtain the leading contribution © in Eq. (13), we
calculate A1+ A,—1/2p, which is expected to be propor-
tional to 9p~/9x. However, the ternA; does not give such
a contribution. For illustration, it is useful to introduce a new
coordinatex= —x and redefine all quantities in terms of the
new space variable. Under this transformatipnand A,
have even parityf p(x,t)=p(—x,t), A (X,1)=A(—x,1)],
while the density gradient has the odd pardigp Y/ ox=
—dp~Yax]. SinceA; anddp~ Y/ ax have different parities,
A; should not give a correction proportional @p~/9x.

On the other handj, gives a correction proportional to
dp~19x. One uses the identity

J
AZ(Xit):a_X[Bl(X’t)_BZ(th)]v (C5)
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where

1
Bi(x,)=5 J dX'dt’ (X=X t =t )[Yrer(t')

_yr(x’,t/)—l(t’)]zy

1
B,(x,t)= ff dx'dt’ p(x—x'",t—t")

2

yr(x’,t’)(t’) + yr(x',t’)fl(t,) —x’

X
2

(C6)

In the homogeneous sta; = 1/802 andB,=1/24p°. Thus
one obtains

1 -2 , -1 , -1 ,
Az(x,t)%_r?p (X0 _p (X1 dp a>(<Xt)'

12 oXx 6 (€7

From Egs.(C3) and(C7), one then finds

~————— + —
2 6p° gx2 6p| Ix

PHYSICAL REVIEWG& 056126

(i) (Ay,): For derivation, it is convenient to relate
(Ay,) to (Ay,). Using integration by parts, one can verify

. d d :
p(AYn)=—[p(AYn) 1+ = [p(yndyn)].  (C)

Here(y,Ay,) can be approximated hy(Ay,). Their differ-
ence is proportional tody/dx) (dp 1/ 9x) (see Appendix B

and thus we ignored{ 9x)[ p(ynAy,) — pv(Ay,)]. One then
uses Eq(3) to obtain

1%

. d
(Ayp)~ E+U&)<Ayn>- (CY

By using expansiori12) and the continuity equatiof8) to
convert temporal derivatives into spatial derivatives, one ob-
tains

AL 1ﬁv+ 1 (?Zv+v ap~ 1 2
<y”>~p ax  2p® ax? 2\ ox
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