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Macroscopic traffic models from microscopic car-following models
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We present a method to derive macroscopic fluid-dynamic models from microscopic car-following models
via a coarse-graining procedure. The method is first demonstrated for the optimal velocity model. The derived
macroscopic model consists of a conservation equation and a momentum equation, and the latter contains a
relaxation term, an anticipation term, and a diffusion term. Properties of the resulting macroscopic model are
compared with those of the optimal velocity model through numerical simulations, and reasonable agreement
is found although there are deviations in the quantitative level. The derivation is also extended to general
car-following models.
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I. INTRODUCTION

For more than 50 years, traffic flow has been a subjec
intense research effort@1#. While earlier studies were mostl
conducted by traffic engineers, in the last decade the tra
flow problem has received great attention from the phys
community as well, largely due to the seminal works@2–4#
in the early 90s, which demonstrated that traffic flow can
regarded as a driven nonequilibrium system. There are
pirical indications of multiple dynamic phases in the traf
flow and dynamic phase transitions@5–9#. Several theoreti-
cal explanations@10–15# for the empirical results were sug
gested. Also physical phenomena such as self-organ
criticality and hysteresis@16# were revealed.

Numerous traffic models have been investigated~see
Refs. @17–19# for recent reviews! in relation to empirical
data, and considerable progress has been achieved towa
understanding of various traffic phenomena observed em
cally. Depending on the mathematical formulation used, t
fic models may be categorized into one of the followi
types: car-following models, particle-hopping mode
coupled-map lattice models, gas-kinetic models, and flu
dynamic models. The first three types use a microscopic
proach while the last type uses a macroscopic one. The
proach used in the gas-kinetic models is intermediate
may be called mesoscopic.

Recently it was suggested@20,21# that different types of
traffic models may belong to the same ‘‘universality’’ cla
in the sense that they share qualitatively similar propert
More recently, a nonlocal fluid-dynamic model was deriv
from a gas-kinetic model@22#. These reports motivate furthe
studies on mutual relationship between different types
traffic models.

In this paper, we address the relationship between mi
scopic car-following models and macroscopic fluid-dynam
models. Specifically we use a coarse-graining proced
~Sec. II! to derive a macroscopic model~Sec. III! from the
microscopic optimal velocity model, a particular case of t
car-following-type model. The resulting macroscopic mod
consists of a continuity equation@Eq. ~3!# and a momentum
equation@Eq. ~25!#. The momentum equation contains a r
laxation term, a density gradient term, and a diffusion te
similar to the fluid-dynamic model proposed in Ref.@4#. It is
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shown that both the density gradient term and the diffus
term arise from adirectedinfluence due to the breakdown o
the balanced action-reaction. This is contrary to heuris
derivations@4#, in which the density gradient term is attrib
uted to the velocity variance. It also provides an origin of t
diffusion term assumed in many fluid-dynamic models.
Sec. IV, the derivation is extended to general car-followin
type models. In Sec. V, the macroscopic model derived fr
the microscopic optimal velocity model is examined nume
cally in comparison with the optimal velocity model. Sectio
VI concludes the paper. Some technical details are prese
in Appendixes A, B, and C.

We remark that a different scheme to construct mac
scopic models from microscopic car-following models w
proposed recently@23#. The macroscopic fieldsr andv are
defined via an interpolation procedure instead of a coa
graining procedure. The resulting momentum equation
nonlocal, while our momentum equation is local. Alsor and
v defined in such a way do not strictly satisfy continui
equation~3!, while the continuity equation is an exact ide
tity in the coarse-graining-based scheme.

II. GENERAL FORMULATION

In order to derive macroscopic traffic equations from m
croscopic ones, we first introduce two microscopic field va
ables, density fieldr̂(x,t) and flux fieldq̂(x,t),

r̂~x,t ![(
n

d„yn~ t !2x…,

q̂~x,t ![(
n

ẏn~ t !d„yn~ t !2x…, ~1!

whereyn(t) is the coordinate of thenth vehicle at timet with
y1,y2,•••,yn21,yn,yn11,••• . When traffic dynam-
ics does not depend on third or higher order time derivati
of yn(t), these two fields specify the status of traffic flo
completely.

A natural way to obtain macroscopic description is
coarse grain these fields. We introduce a coarse graining
velope function f(x,t) which is non-negative valued
©2001 The American Physical Society26-1
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peaked at (x,t)5(0,0), and normalized as*dxdtf(x,t)51.
The coarse grained densityr(x,t) and flux q(x,t) can be
defined as

r~x,t ![E dx8dt8f~x2x8,t2t8!r̂~x8,t8!,

q~x,t ![E dx8dt8f~x2x8,t2t8!q̂~x8,t8!. ~2!

These two coarse grained fields specify themacroscopicsta-
tus of traffic flow.

Next we derive equations that govern the time evolut
of r(x,t) andq(x,t). For the evolution ofr(x,t), one finds

]

]t
r~x,t !1

]

]x
q~x,t !50, ~3!

which describes the local conservation of vehicles in
coarse-grained description. This equation can be veri
from Eq. ~2! using integration by parts and change of va
ables.

Derivation of the dynamic equation forq(x,t) is less
straightforward. After some algebra, one obtains

]

]t
q~x,t !5r~x,t !^ ÿn~ t8!& (x,t)2

]

]x
@r~x,t !^ ẏn

2~ t8!& (x,t)#,

~4!

where the bracketed average of a quantityOn(x8,t8) is de-
fined as follows:

^On~x8,t8!& (x,t)[
1

r~x,t !E dx8dt8f~x2x8,t2t8!

3(
n

On~x8,t8!d„yn~ t8!2x8…. ~5!

Note thatx8, t8, andn inside the brackets are dummy var
ables, while the label (x,t) in the subscript of the bracke
notation represents a spatiotemporal position where the
erage is evaluated. This label will be omitted in the rest
the paper when its omission does not cause confusion.

Here it is useful to introduce another macroscopic fi
v(x,t),

v~x,t ![^ ẏn~x8,t8!&5q~x,t !/r~x,t !, ~6!

which represents some kind of macroscopic velocity, wh
precise meaning depends onf(x,t). Two particular coarse
graining schemes are good for illustration: spatial coa
graining f(x,t)5d(t)Q(X/22uxu)/X and temporal coarse
graining f(x,t)5d(x)Q(T/22utu)/T, where Q(x) is the
step function which is one forx.0 and zero forx,0. For
the spatial coarse graining,v(x,t) becomes
05612
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v~x,t !5

(
n

8 ẏn~ t !

(
n

8 1

,

where the primed summation runs over the vehicles in
range (x2X/2,x1X/2) at time t. The denominator is equa
to the total number of vehicles within the range and th
v(x,t) represents thearithmetic mean velocity. For the tem-
poral coarse graining, on the other hand, it can be veri
that

1

v~x,t !
5

(
n

8 @ ẏn~ tn~x!!#21

(
n

8 1

,

where the primed summation now runs over the vehicles
reach the pointx within the time interval (t2T/2,t1T/2),
and tn(x) represents the time at which thenth vehicle
reaches the positionx. Here ẏn(t)>0 is assumed. Thus
v(x,t) represents theharmonic mean velocitymeasured at
local detectors.

It is straightforward to rewrite Eq.~3! in terms ofr andv
instead ofr andq. Also expressing Eq.~4! in terms ofr and
v, one obtains

rS ]v
]t

1v
]v
]xD5r^ ÿn~ t8!&2

]

]x
~ru!, ~7!

where

u~x,t ![^ ẏn
2~ t8!&2v2~x,t !

measures the degree of microscopic velocity variation. N
that the left-hand side of Eq.~7! corresponds to the tota
derivativeDv/Dt[]v/]t1v]v/]x. Thus the two terms on
the right-hand side can be interpreted as macroscopic f
densities. The first term corresponds to the coarse-gra
average of microscopic ‘‘forces’’ that act on each vehic
The second term, on the other hand, arises from the co
graining itself. In equilibrium systems,u is proportional to
the local temperature, and the second term represents
force due to thermal gradient.

The remaining job is to express the force terms in ter
of r andv. However, it is well known that a rigorous trea
ment of the force terms generates an infinite sequence
dynamic equations. Thus we instead develop approximat
of the force terms in Sec. III, so that Eqs.~3! and~7! form a
closed set of equations. This scheme is partly motivated
the absence of empirical indication that the dynamics of
forces is important.

A procedure to derive a macroscopic model is illustra
for the optimal velocity model in Sec. III and for gener
car-following models in Sec. IV. In both sections, traffi
states are assumed to be almost homogeneous. In this l
regime, products of differentiated quantities such
6-2
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)m51
M (] l mOm /]xl m) become progressively smaller asM in-

creases, wherel m are integers andOm are arbitrary functions
of r and v. Therefore, it is sufficient to retain terms wit
M50 or 1 only, which simplifies the construction of a ma
roscopic description considerably. In this sense, terms w
M50 or 1 can be calledlinearly relevantterms, and terms
with M>2 linearly irrelevant terms. Properties in the linea
regime such as the dispersion relation for small amplitu
waves depend on linearly relevant terms only. Effects of
linearly irrelevant terms withM52 are discussed in Appen
dix A.

III. OPTIMAL VELOCITY MODEL

We first study the optimal velocity model@24#

ÿn~ t !5l@Vop„Dyn~ t !…2 ẏn~ t !#, ~8!

where the constantl represents a driver’s sensitivity an
Dyn[yn112yn is the coordinate difference between the v
hicle n and its preceding vehiclen11. Vop(Dy) is the opti-
mal velocity to which drivers want to adjust their speed. A
example isVop(Dy)5tanh(Dy22)1tanh 2 used by Bandoet
al. @24#. Here we will assume neither a particular function
form for Vop(Dy) nor a particular value forl @25#.

The coarse graining of Eq.~8! leads to

^ ÿn&5l@^Vop~Dyn!&2v#. ~9!

The expansion of̂Vop(Dyn)& with respect tô Dyn& gives

^Vop~Dyn!&5 (
m50

`
1

m!
Vop

(m)~^Dyn&!Š~Dyn2^Dyn&!m
‹

[Vop~^Dyn&!1 (
m52

`

I m , ~10!

where I m is the term that is proportional toŠ(Dyn
2^Dyn&)

m
‹. Here I 1 is absent sinceŠ(Dyn2^Dyn&)‹50.

Note that the leading correctionI 2 compensates for the dif
ference^Vop(Dyn)&2Vop(^Dyn&), which is positive~nega-
tive! whenVop is a convex~concave! function. In the linear
regime, however, all correctionsI m (m>2) can be ignored.
Moreover it can be shown that the second term on the rig
hand side of Eq.~7! is also negligible in the linear regim
~see Appendix B!. Therefore, the derivation of a macroscop
description in the linear regime is reduced to developin
proper approximation of̂Dyn&.

A. Directed influence

A naive approximation of̂ Dyn& (x,t) is r21(x,t). How-
ever, this seemingly reasonable approximation has a ser
problem. For illustration, it is useful to introduce an unphy
cal model by replacingDyn(t) in Eq. ~8! with Dyn21(t), so
that each vehicle responds to the vehiclebehindit rather than
the vehicleaheadof it. This unphysical model, which differs
from the physical one only by the directionality of the infl
ence, has qualitatively different properties. Thus proper m
05612
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roscopic descriptions should contain information about
directionality, while a naive approximation fails to captu
this information.

To take the directionality into account, an intuitive pr
scription was proposed@26# without a rigorous justification,

^Dyn& (x,t)'r21
„x11/2r~x,t !,t…, ~11!

which amounts to evaluating the density at the midpoint
tween two vehiclesn and n11. For the above unphysica
model, this prescription results in an expression which
similar to Eq.~11! but has a negative sign in front of 1/2
Thus this prescription contains information about the dir
tionality.

In the linear regime, we find that a controlled approxim
tion of ^Dyn& can be obtained in a rigorous way~see Appen-
dix C!. The result is

^Dyn&5r211
1

2r

]r21

]x
1S, ~12!

where S represents the sum of all terms with second
higher order derivatives. Note that Eq.~12! agrees with the
Taylor expansion of the heuristic approximation@Eq. ~11!#,
up to the first order derivative correction tor21. The devia-
tion occurs in the second order derivative. While the seco
order derivative in the Taylor expansion of Eq.~11! comes
with the coefficient 1/8, a rigorous calculation leads to t
coefficient 1/6~see Appendix C!:

S5
1

6r2

]2r21

]x2
1OS ]3r21

]x3 D . ~13!

Thus the leading term in Eq.~10! can be expanded as

Vop~^Dyn&!5Vop~r21!1Vop8 ~r21!F 1

2r

]r21

]x
1SG1S ir ,

~14!

whereS ir denotes the sum of linearly irrelevant terms. B
combining Eqs.~7!, ~9!, ~10!, and~14!, one obtains

]v
]t

1v
]v
]x

5l@Vop~r21!2v#1
l

2r
Vop8 ~r21!

]r21

]x

1lVop8 ~r21!S. ~15!

Note that the second term proportional to the density gra
ent arises from the directed influence, while conventio
derivations of fluid-dynamic models@4# attribute the density
gradient term to the velocity variance term in Eq.~7!. We
will call the second term the anticipation term. The first te
is often called the relaxation term.

It is interesting to compare the dispersion relations of m
croscopic and macroscopic models. In a microscopic desc
tion, small perturbations with respect to the homogene
state can be written as

yn~ t !5vht1rh
21n1dy exp~ ikn1gt !, ~16!
6-3
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wherevh5Vop(rh
21). By linearizing Eq.~8!, one obtains the

dispersion relation

g65
l

2 F216A11
4Vop8

l
~eik21!G . ~17!

On the other hand, small perturbations in the macrosco
description can be written as

r~x,t !5rh1dr exp~ ikx1vt !,

v~x,t !5vh1dv exp~ ikx1vt !, ~18!

wherekrh
21 is the macroscopic counterpart ofk since both

represent the phase difference between two successive
hicles, andv1 ikvh is the macroscopic counterpart ofg. To
see the origin of the additional termikvh , note thatg is the
frequency measured in themovingreference frame with the
velocity vh , while v is the frequency measured in the st
tionary frame. By linearizing Eqs.~3! and ~15!, one finds

v61 ikvh5
l

2F216A11
4Vop8

l
A~krh

21!G , ~19!

where

A~x!5 ix1
~ ix !2

2
, ~20!

when the last term in Eq.~15! proportional toS is ignored
and

A~x!5 ix1
~ ix !2

2
1

~ ix !3

6
, ~21!

when the leading contribution toS in Eq. ~13! is included.
Note thatA(x) agrees with the Taylor expansion of the fa
tor (eik21) in Eq.~17!. Thus it is clear that the macroscop
momentum equation~15!, combined with the continuity
equation~3!, gives a correct description of the long wav
length behavior of the microscopic model@Eq. ~8!# in the
linear regime.

B. Effective diffusion

Despite the excellent agreement of the long wavelen
components, it is premature to accept Eq.~15! as a macro-
scopic momentum equation since naive treatments ofS in-
troduce an artificial instability, which is absent in the micr
scopic model@Eq. ~8!#. For demonstration, we examine th
linear instability criteria. In the microscopic model, from E
~17! one obtains that small fluctuations of the modek be-
come linearly unstable when

Vop8 ~rh
21!.

l

11cosk
. ~22!

Note that thek50 mode shows the strongest instability a
at the critical density where the instability first sets in, on
an infinite wavelength mode becomes unstable.
05612
ic
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In contrast, naive macroscopic models give different
sults. WhenS is ignored completely, Eqs.~19! and ~20!
result in a linear instability criterionVop8 (rh

21).l/2 for
modek. Note that this inequality does not containk. Thus as
soon asrh satisfies this inequality, fluctuations ofall wave-
lengths become unstable simultaneously, different from
behavior in the microscopic description. On the other ha
when the leading contribution toS in Eq. ~13! is retained,
Eqs. ~19! and ~21! result in Vop8 (rh

21).(l/2)@1
2(krh

21)2/6#22. Note that the right-hand side vanishes
krh

21→` and thus the homogeneous state isalwaysunstable
with respect to fluctuations with small wavelengths. Thisar-
tificial instability cannot be cured by merely using high
order approximations ofS. For example, if we assume tha
the next order contribution toS is (1/4!r3)(]3r21/]x3),
which generates the correct next order inA(x), one obtains
the linear instability criterion Vop8 (rh

21).(l/2)@1
2(krh

21)2/12#/@12(krh
21)2/6#2, which again shows an arti

ficial instability for the short wavelength components.
To find the origin of the failure, it is useful to analyze th

microscopic dispersion relation@Eq. ~17!# since the approxi-
mations ofS are equivalent to truncating the serieseik21
5 ik1( ik)2/21( ik)3/3!1( ik)4/4!1••• at a certain order.
It can be verified that when the series is truncated at afinite
order, highest order terms dominate the physics for largk
and generate the artificial instability for largek (@1)
modes, while such instabilities are absent when the serie
summed up to theinfinite order. Thus it is clear that trunca
tion at afinite order is responsible for the artificial instability

In this subsection, we aim to develop an approximation
S, which is compact but still captures important features
the exactS. A key observation is that modes withkrh

21

@1 areunphysicalsince fluctuations on length scales shor
than the vehicle spacing are not defined in the original
croscopic model. Motivated by this observation, we tra
form the leading order term ofS in Eq. ~13! in such a way
that it preserves the same long wavelength behavior but
presses fluctuations in short wavelength components wik
@rh . To implement this idea, one first notes that Eq.~3!
relates small fluctuations ofr andv as follows:

dr52
ikrh

v1 ikvh
dv. ~23!

One then exploits the correspondence betweenv1 ikvh and
g, and between krh

21 and k. From the result g1

'Vop8 (rh
21) ik for small k, one obtains

dr21'
1

Vop8 ~rh
21!

dv.

In this derivation, theg2 mode is ignored since it alway
decays with time. Note that the resulting relation amounts
a variational form ofv5Vop(r

21) that can be regarded a
the zeroth order approximation whenkrh

21!1. Its first or
higher order corrections will be ignored since they introdu
third or higher order derivatives to the new approximation
S @Eq. ~24!#. This way, we construct an approximation
6-4
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Vop8 ~r21!S'Vop8 ~r21!
1

6r2

]2r21

]x2
'

1

6r2

]2v
]x2 . ~24!

The momentum equation becomes

]v
]t

1v
]v
]x

5l@Vop~r21!2v#2
lVop8

2r3

]r

]x
1

l

6r2

]2v
]x2 .

~25!

Note that our approximation ofS results in adiffusionterm,
which tends to suppress short wavelength fluctuations.
deed, the linear instability criterion from Eqs.~3! and ~25!
becomesVop8 (rh

21).l(11k2/6rh
2)2/2, which confirms the

suppression of modes withk@rh . In addition, it can be veri-
fied that the macroscopic and microscopic dispersion r
tions agree up to orderk3. Thus we conclude that Eq.~25! is
a satisfactory macroscopic momentum equation in the lin
regime.

Finally, we remark for completeness that Eq.~25! cannot
be used to studybackwardtime evolution. This restriction
arises from the neglect of theg2 mode, whose magnitud
doesgrow in the backward time evolution.

IV. GENERAL CAR-FOLLOWING MODELS

In this section, we extend the derivation in Sec. III
general car-following models. When third or higher ord
time derivatives do not appear in microscopic traffic eq
tions, a general car-following equation with the Galilean
variance can be written as

ÿn5Aop~Dyn ,D ẏn ,ẏn!. ~26!

Coarse graining leads to

]v
]t

1v
]v
]x

'Aop~^Dyn&,^D ẏn&,v !, ~27!

where^Dyn& can be approximated by Eqs.~12! and~13!, and

^D ẏn& (x,t)'
1

r

]v
]x

1
1

2r2

]2v
]x2 . ~28!

See Appendix C for a derivation of Eq.~28!. We further
expandAop(•••) as

Aop~••• !'Aop~r21,0,v !1Aop,1S 1

2r

]r21

]x
1

1

6r2

]2r21

]x2 D
1Aop,2S 1

r

]v
]x

1
1

2r2

]2v
]x2D , ~29!

where Aop,i[]zi
Aop(z1 ,z2 ,z3)u(z1 ,z2 ,z3)5(r21,0,v) . In real

traffic systems,Aop,1 and Aop,2 are expected to be positiv
while Aop,3 is expected to be negative. Cross-terms prop
tional to Aop,1Aop,2 are ignored since they are linearly irre
evant. The macroscopic momentum equation then becom
05612
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]v
]t

1v
]v
]x

5Aop~r21,0,v !1
Aop,1

2r

]r21

]x
1

Aop,1

6r2

]2r21

]x2

1
Aop,2

r

]v
]x

1
Aop,2

2r2

]2v
]x2 . ~30!

Note that the dependence ofAop on D ẏn gives rise to an
explicit diffusion term.

Despite the explicit diffusion term, the artificial instabilit
at short wavelength components may still arise whenAop,1 is
sufficiently large since the term proportional to]2r21/]x2

tends to generate the artificial instability, as demonstrate
Sec. III. Thus we follow the procedure in Sec. III B to obta

]2r21

]x2
'2

Aop,3

Aop,1

]2v
]x2 , ~31!

which is a generalization of Eq.~24!. The resulting momen-
tum equation is

]v
]t

1v
]v
]x

5Aop~r21,0,v !1
Aop,1

2r

]r21

]x
1

Aop,2

r

]v
]x

1
3Aop,22Aop,3

6r2

]2v
]x2 . ~32!

Note that the factor 3Aop,22Aop,3 in front of the diffusion
term is manifestly positive. This equation is free from t
artificial instability.

To elucidate the relation with Eq.~25!, it is useful to
define an effective optimal velocityVop,eff(r

21) in an im-
plicit way as a solution of

Aop~r21,0,Vop,eff!50. ~33!

WhenAop,3,0 for all v, the solution is unique and there
no ambiguity inVop,eff(r

21). One also defines

leff~r21,v ![
Aop~r21,0,v !

Vop,eff~r21!2v
, ~34!

which is positive for allr andv if Aop,3,0 always. Thus the
first term in Eq. ~32! can be interpreted as a generaliz
relaxation term:

Aop~r21,0,v !5leff~r21,v !@Vop,eff~r21!2v#. ~35!

In certain situations, the third term in Eq.~32! can be
transformed into a familiar form. One applies the proced
in Sec. III B to the term, and uses the relationg1'
2(Aop,1/Aop,3) ik(11b ik), where b[1/22Aop,2/Aop,3

2Aop,1/Aop,3
2 . Thus we obtain

]v
]x

'2
Aop,1

Aop,3

]r21

]x
1

b

r

]2v
]x2 , ~36!
6-5
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where third or higher order derivatives are neglected. On
other hand, the second order derivative should be kept s
it renormalizes the diffusion term. The macroscopic equat
of motion then becomes

]v
]t

1v
]v
]x

5leff@Vop,eff2v#2
nAop,1

2r3

]r

]x
2

mAop,3

6r2

]2v
]x2 ,

~37!

where n[122Aop,2/Aop,3 and m[123Aop,2/Aop,3
26bAop,2/Aop,35126(Aop,2/Aop,3)(12Aop,2/Aop,32Aop,1/
Aop,3

2 ). Note that three force density terms in Eq.~37! are in
one-to-one correspondence with those in Eq.~25!. Moreover
the corresponding terms in the two equations usually h
the same sign sincen is positive andAop,3 is negative. How-
ever whenb in Eq. ~36! is a sufficiently large negative num
ber, m in the diffusion term in Eq.~37! becomes negative
and an artificial instability at short wavelength compone
arises. Thus Eq.~37! can be used only whenm is positive
while Eq. ~32! can be used in general situations.

V. MICRO VS MACRO

In this section, we numerically compare the properties
the microscopic optimal velocity model@Eq. ~8!# and the
macroscopic model@Eqs. ~3! and ~25!# derived from it. For
definiteness, we use

Vop~Dy!5
vmax

2 F tanhS 2
Dy2xneutral

xwidth
D1cbiasG ,

with vmax533.6 m/s, xneutral525.0 m, xwidth523.3 m,
cbias50.913, andl52 sec21 as in Ref.@27#. A system size
L52.33 km is simulated withN vehicles (rh[N/L), and
the following microscopic initial conditions are used:

yn~0!5nrh
211A sin~6pnrh

21/L !, 1<n,N/3,

yn~0!5nrh
21 , N/3<n<2N/3, ~38!

ẏn~0!5Vop„Dyn~0!… for all n.

The corresponding macroscopic initial condition is prepa
by coarse graining the microscopic initial condition@see Eqs.
~2! and ~6!# with the spatial coarse graining functio
f(x,t)5(2ps2)21/2exp(2x2/2s2)d(t), where we chooses
546.4 m. The periodic boundary condition is imposed
both the microscopic and macroscopic systems.

We first verify that the density rangerc1,r,rc2, in
which the homogeneous traffic state becomes unstable
respect to infinitesimal perturbations, is essentially ident
for the microscopic and macroscopic models. This impl
that, in the linear regime, the macroscopic model descr
the long wavelength behavior of the microscopic model v
accurately.

To quantify the accuracy of the macroscopic model,
introduce the space-averaged relative deviationdv(t), which
is defined by
05612
e
ce
n

e

s

f

d

r

ith
l

s
s

y

e

dv~ t ![
A^@vmacro~x,t !2vmicro~x,t !#2&space

^vmicro~x,t !&space
,

where ^•••&space represents the spatial average. He
vmacro(x,t) is calculated from the macroscopic model, wh
vmicro(x,t) is obtained by coarse graining the microscop
configuration at the timet.

When the initial perturbation from homogeneous flow
small, sayA51.165 m, we find thatdv(t) is negligible for
all density outside the linearly unstable density range.
typical velocity profile is shown in Fig. 1. Note that th
macroscopic profiles are almost indistinguishable from
microscopic ones. Even whenN572 (131), which corre-
sponds to a density slightly below~above! the lower~upper!
critical densityrc1(c2)'73 (130)/2.33 km~numerically ob-
tained critical densities are nearly the same as analytic on!,
dv(t) remains;231024 during several hours of simulatio
time.

The accuracy in the linearly unstable density range is a
examined forA51.165 m andN573, which is the smalles
N that demonstrates the linear instability. The microsco
simulation shows that the initially smooth profile becom
‘‘rough’’ as short wavelength fluctuations develop. An a
most identical roughening is found in the macroscopic sim
lation, anddv(t) is almost negligible initially@Fig. 2~a!#.
However, the growth rate of the short wavelength fluctu
tions is faster in the microscopic simulation compared to
macroscopic simulation. This difference is responsible
the rapid growth ofdv(t) near t'55 min. The growth of
dv(t) occurs at an earlier time for the density with strong
linear instability. Both in microscopic and macroscop
simulations, after a sufficient time interval (&120 min) all
short wavelength fluctuations merge into a single large tra
jam, which moves backward at a constant speed without
ther evolution in its shape. Thus this jam corresponds to
final steady state. Figure 2~b! compares the velocity profile
of the jams from the microscopic and macroscopic simu

FIG. 1. The velocity profiles forN572. The initial condition in
Eq. ~38! is used withA51.165 m.~a! t'10 min, ~b! t'30 min,
~c! t'1 h, and~d! t'4 h. The solid~dashed! line shows the mi-
croscopic~macroscopic! velocity profile in each plot. The vertica
scale is magnified for clarity.
6-6
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tions. The velocity of the jam propagation speed is differ
and the locations of the jams coincide periodically in tim
resulting in the periodic dips in Fig. 2~a!.

Next we chooseA574.56 m in Eq.~38!, and examine
the performance of the macroscopic model for large per
bations. Figure 3~a! shows the initial density profile. After a
sufficiently long time, the initial condition may evolve to
homogeneous state or to a congested state. The evolutio
a congested state is realized for 65&N&156 when the mi-
croscopic model is used and for 66&N&147 when the mac-
roscopic model is used. Thus the lower critical density is
good agreement while the upper critical density shows ab
a 6% deviation. The comparison with the linear critical de
sities shows that both microscopic and macroscopic mo
exhibit metastability, which implies the hysteresis phenom
ena in the metastable density range. The phase diagra
Fig. 3~b! summarizes the result. Note that the microsco
metastable regions are wider.

We also investigate the dependence of the critical den
on l for fixed A574.56 m. It is convenient to introduce
dimensionless parameterl̄[(xwidth /vmax)l, which is about

FIG. 2. ~a! The time evolution of the space-averaged relat
deviation of velocity forA51.165 m andN573. ~b! vmicro ~solid
line! vs vmacro ~dashed line! near 115 min@marked by the arrow
in ~a!#.

FIG. 3. ~a! The density profile for the initial condition in Eq
~38!. dr depends onA and rh . For A574.56 m and N
5100, dr.1.5rh . ~b! Schematic phase diagrams for the micr
scopic and macroscopic models.
05612
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1.387 forl52 sec21. Figure 4~a! shows the relative devia
tions of the macroscopic critical densities with respect to
microscopic ones. For the lower critical density, the mac
scopic result is in good agreement with the microscopic o
for generall̄. For the upper critical density, on the oth
hand, the deviation of about 6% atl̄'1.387 shrinks with the
increase ofl̄ and good agreement is achieved nearl̄52.
Thus the difference between the microscopic and mac
scopic metastable regions in Fig. 3~b! shrinks asl̄→2.

The velocity2vg of a backward propagating traffic jam
cluster (vg.0) is also investigated. Sincevg is almost inde-
pendent ofN, we fix N5100 (rh'42.9 km21) for simplic-
ity, and examinevg as a function ofl̄. Figure 4~b! ~dia-
monds! shows the ratio between the microscopic valuevg

mic

and the macroscopic valuevg
mac. Note that vg

mic/vg
mac'1

when l̄ is close to 2. This agreement is notable consider
that the macroscopic model does not have any free param
which can be varied to enhance the agreement. The ag
ment, however, becomes less satisfactory asl̄ becomes
smaller.

A crude understanding for the good agreement neal̄
52 can be achieved via the linear analysis, although
given initial condition is not in the linear regime. For th
general optimal velocity model, the linear instability deve
ops when V̄op8 .l̄/(11cosk); here we introduce V̄op8
[(xwidth /vmax)Vop8 . This inequality sets an upper limitkc ,
above which the instability does not appear. Note thatkc

shrinks to zero asl̄/2 approaches max(V̄op8 ), which is 1.
Thus the characteristic length scale of the instability b
comes longer asl̄→2. This may explain the excellent agre
ment nearl̄52, since the macroscopic model becomes m
precise as the characteristic length scale grows.

From these comparisons, we conclude that the ma
scopic model@Eqs. ~3! and ~25!# is quite accurate in the

FIG. 4. ~a! The relative deviations of the macroscopic low
~diamonds! and upper~circles! critical densities with respect to th
microscopic counterparts for the initial condition@Eq. ~38!# with

A574.56 m. Note that the relative deviations shrink asl̄ in-

creases.~b! The ratiovg
mic/vg

mac as a function ofl̄ for the macro-
scopic model@Eqs. ~3! and ~25!# ~diamonds! and for the modified
macroscopic model@Eqs.~3! and~A8!# ~circles! takes into account
the effects of some linearly irrelevant terms.
6-7
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linear regime, and provides a reasonable description of f
developed jam clusters in the nonlinear regime, althou
there are deviations in the quantitative level. But when sh
length scale dynamics plays an important role, for exam
when the avalanchelike growth of many small clusters
curs, the macroscopic model is not satisfactory.

To construct more accurate macroscopic models,
needs to take into account effects of various terms ignore
the macroscopic momentum equation derivation. As a fi
trial, we extend the derivation to the nonlinear regime
including effects of all terms proportional t
(]v/]x)2, (]r21/]x)2, and (]r21/]x)(]v/]x) ~see Appen-
dix A!. The resulting equation~A8! for the same optima
velocity model is examined. As expected, the linearly u
stable density region is identical to that by Eq.~25!. How-
ever, the ratiovg

mic/vg
mac deviates further from one@circles in

Fig. 4~b!#. Thus it appears that naive inclusion of linear
irrelevant terms does not improve the accuracy.

VI. SUMMARY

A local macroscopic fluid-dynamic model is derived fro
a microscopic car-following model, which establishes t
link between the two types of traffic models. It is emphasiz
that the directed influence due to the breakdown of the
anced action-reaction is an important ingredient. For the
timal velocity model, the corresponding macroscopic m
mentum equation consists of a relaxation term,
anticipation term~proportional to the density gradient!, and a
diffusion term. Thus it has a structure similar to the flui
dynamic model in Ref.@4#. However, the density gradien
term is found to arise from the directed influence rather th
the velocity variance. It is demonstrated that the diffus
term also arises from the directed influence. The deriva
provides an unambiguous way to determine the coefficie
of the anticipation term and the diffusion term. The mac
scopic model derived from the optimal velocity model
examined numerically, and its properties are found to be
reasonable agreement with those of the microscopic m
although there are deviations in the quantitative level.
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APPENDIX A: EFFECTS OF LINEARLY IRRELEVANT
TERMS

While the derivation in Secs. III and IV assumes a line
regime, interesting traffic phenomena often occur in the n
linear regime. In this appendix, we aim to develop a mac
scopic momentum equation, which is applicable to nonlin
traffic phenomena when the characteristic length scale is
ficiently long. For traffic phenomena with a long charact
istic length scalej, each derivative]/]x can be formally
regarded as a small expansion parameter since it effecti
introduces the small factor 1/j. Then we can take a pertur
05612
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bative approach: terms without derivatives constitute the
roth order contributions, and terms with the first order d
rivative the first order contributions. Thus the relaxation a
anticipation terms are the zeroth and first order contributio
respectively. All zeroth and first order contributions are
ready included correctly in Eqs.~25! and ~32!. As for the
second order contributions, however, only part of them
included since terms proportional to (]v/]x)2, (]r21/]x)2,
or (]r21/]x)(]v/]x) are of the same order as the diffusio
term. Below we demonstrate a procedure to obtain the m
ing second order contributions for the general microsco
model @Eq. ~26!#.

In the general expression~7!, the last term proportional to
](ru)/]x is irrelevant for our discussion since it generat
third or higher order contributions only~see Appendix B!.
We expand the first term to obtain

^ ÿn~ t8!&'Aop~^Dyn&,^D ẏn&,ẏn!1
Aop,11

2
Š~Dyn2^Dyn&!2

‹

1
Aop,22

2
Š~D ẏn2^D ẏn&!2

‹1
Aop,33

2
Š~ ẏn2v !2

‹

1Aop,12Š~Dyn2^Dyn&!~D ẏn2^D ẏn&!‹

1Aop,23Š~D ẏn2^D ẏn&!~ ẏn2v !‹

1Aop,13Š~Dyn2^Dyn&!~ ẏn2v !‹, ~A1!

which is a generalization of Eqs.~9! and ~10!. Here Aop,i j
[]zi

]zj
Aop(z1 ,z2 ,z3)u(z1 ,z2 ,z3)5(r21,0,v) . In Secs. III and IV,

the last six terms in Eq.~A1! have been ignored. For a spati
coarse graining functionf(x,t)5fX(x)d(t), we find

Aop,11

2
Š~Dyn2^Dyn&!2

‹'
s2Aop,11

2 S ]r21

]x D 2

,

Aop,33

2
^~ ẏn2v !2&'

s2Aop,33

2 S ]v
]xD 2

,

~A2!

Aop,13Š~Dynẏn2^Dyn&v !‹'s2Aop,13

]v
]x

]r21

]x
,

where s2[*dx8x82fX(x8). Note that these second orde
contributions depend on the coarse-graining function exp
itly. The other three nonlinear terms in Eq.~A1! give third or
higher order contributions only~see Appendix B!.

The first term on the right-hand side of Eq.~A1! also
generates the second order contributions. The second o
expansion of its arguments results in~see Appendix C!

^Dyn&'r211
1

2r

]r21

]x
1

1

6r2

]2r21

]x2
1

1

6r S ]r21

]x D 2

,

^D ẏn&'
1

r

]v
]x

1
1

2r2

]2v
]x21

v
2 S ]r21

]x D 2

. ~A3!

Thus one finds
6-8
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Aop~^Dyn&,^D ẏn&,^ ẏn&!'Aop~r21,0,v !1Aop,1F 1

2r

]r21

]x

1
1

6r2

]2r21

]x2
1

1

6r S ]r21

]x D 2G
1Aop,2F1

r

]v
]x

1
1

2r2

]2v
]x2

1
v
2 S ]r21

]x D 2G1
Aop,11

8r2 S ]r21

]x D 2

1
Aop,22

2r2 S ]v
]xD 2

1
Aop,12

2r2

]r21

]x

]v
]x

.

~A4!

Note that the second order contributions from the expans
of Aop(^Dyn&,^D ẏn&,^ ẏn&) do not depend on the coars
graining function. Next we apply the prescription

]

]xS ]r21

]x D52
]

]xS Aop,3

Aop,1

]v
]xD , ~A5!

which is the extension of Eq.~31! to second order. The re
sulting macroscopic momentum equation is

]v
]t

1v
]v
]x

5Aop~r21,0,v !1
Aop,1

2r

]r21

]x
1

Aop,2

2

]v
]x

1
3Aop,22Aop,3

6r2

]2v
]x21S Aop,1

6r
1

vAop,2

2
1

Aop,11

8r2

1
s2Aop,11

2 D S ]r21

]x D 2

1S Aop,22

2r2
2

Aop,33

6r2

1
Aop,3Aop,13

6r2Aop,1

1
s2Aop,33

2 D S ]v
]xD 2

1S Aop,12

2r2

2
Aop,13

6r2
1

Aop,3Aop,11

6r2Aop,1

1s2Aop,13D ]r21

]x

]v
]x

.

~A6!

For the optimal velocity model@Eq. ~8!#, this reduces to

]v
]t

1v
]v
]x

5l@Vop~r21!2v#1
lVop8

2r

]r21

]x
1

l

6r2

]2v
]x2

1lS Vop8

6r
1

Vop9

8r2
1

s2Vop9

2 D S ]r21

]x D 2

2
l

6r2

Vop9

Vop8

]r21

]x

]v
]x

. ~A7!

From numerical simulations we find that the last tw
terms give rise to the artificial instability for short wav
05612
n

length components despite the presence of the diffus
term. It turns out that the artificial instability can be cured
applying the prescription (]r21/]x)'(1/Vop8 )(]v/]x). Thus
the resulting momentum equation for the optimal veloc
model reads

]v
]t

1v
]v
]x

5l@Vop~r21!2v#1
lVop8

2r

]r21

]x
1

l

6r2

]2v
]x2

1
l

~Vop8 !2 S Vop8

6r
2

Vop9

24r2
1

s2Vop9

2 D S ]v
]xD 2

.

~A8!

APPENDIX B: IRRELEVANT TERMS IN THE LINEAR
REGIME

In this appendix, we assume the spatial coarse grain
f(x,t)5fX(x)d(t) for definiteness.

~i! u5Š( ẏn2^ ẏn&)
2
‹: After some algebra, it can be writ

ten as follows:

u~x,t !5
1

2r2E dx8dx9fX~x2x8!fX~x2x9!(
m,n

@ ẏm~ t !

2 ẏn~ t !#2d~ym~ t !2x8!d~yn~ t !2x9!.

When the characteristic length of the variations is mu
larger than the coarse-graining scale,m2n can be formally
regarded as small numbers. To obtain the leading contr
tion, we may then use the formal approximation

ẏm~ t !2 ẏn~ t !'
]v
]x U

(x,t)

@ym~ t !2yn~ t !#,

which leads to

u~x,t !'S ]v
]xD 2

@^yn
2&2^yn&

2#.

Note that the second factor on the right-hand side is prop
tional to the square of the spatial extension of the coa
graining function. When there are many vehicles within t
coarse-graining scale,

^yn
2&2^yn&

2's2,

wheres2[*dx8x82fX(x8). Thus we obtain

u~x,t !'s2S ]v
]xD 2

.

~ii ! Š(Dyn2^Dyn&)
2
‹: The procedure is very similar:
6-9
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Š~Dyn2^Dyn&!2
‹(x,t)5

1

2r2E dx8dx9fX~x2x8!fX~x

2x9!(
m,n

@Dym~ t !2Dyn~ t !#2

3d~ym~ t !2x8!d~yn~ t !2x9!.

Using the formal approximation

Dym~ t !2Dyn~ t !'
]r21

]x
@ym~ t !2yn~ t !#,

one finds

Š~Dyn2^Dyn&!2
‹'s2S ]r21

]x D 2

.

~iii ! Š(D ẏn2^D ẏn&)
2
‹:

Š~D ẏn2^D ẏn&!2
‹(x,t)5

1

2r2E dx8dx9fX~x2x8!fX~x

2x9!(
m,n

@D ẏm~ t !2D ẏn~ t !#2

3d~ym~ t !2x8!d~yn~ t !2x9!.

Since ^D ẏn&'(1/r)(]v/]x) in the leading approximation
~see Appendix C!, we use the formal approximation

D ẏm~ t !2D ẏn~ t !'
]

]xS 1

r

]v
]xD @ym~ t !2yn~ t !#,

and obtain

Š~D ẏn2^D ẏn&!2
‹'s2F ]

]xS 1

r

]v
]xD G2

.

~iv! Š(Dyn2^Dyn&)(D ẏn2^D ẏn&)‹:

Š~Dyn2^Dyn&!~D ẏn2^D ẏn&!‹'s2
]r21

]x

]

]xS 1

r

]v
]xD .

~v! Š(D ẏn2^D ẏn&)( ẏn2v)‹:

Š~D ẏn2^D ẏn&!~ ẏn2v !‹'s2
]

]xS 1

r

]v
]xD ]v

]x
.

~vi! Š(Dyn2^Dyn&)( ẏn2v)‹:

Š~Dyn2^Dyn&!~ ẏn2v !‹'s2
]r21

]x

]v
]x

.

APPENDIX C: MACROSCOPIC EXPRESSIONS FOR THE
DIFFERENCES

This appendix presents derivations of Eqs.~12!, ~13!, and
~28!.

~i! ^Dyn&: One begins with the definition of̂Dyn&:
05612
r^Dyn&5E dx8dt8f~x2x8,t2t8!(
n

@yn11~ t8!

2yn~ t8!#d~yn~ t8!2x8!. ~C1!

The following identity is useful:

(
n

@yn11~ t !2yn~ t !#d„yn~ t !2x…5
]

]x
yr (x,t)~ t !, ~C2!

wherer (x,t) is the vehicle number right in front ofx at time
t. For example, whenym(t),x,ym11(t), r (x,t)5m11.
Note that each side of the equation vanishes unless there
vehicle atx, and that thex integration of each side from
ym(t)2e to ym(t)1e results in ym11(t)2ym(t), which
proves the identity. Using the identity, Eq.~C1! can be sim-
plified to

^Dyn&5r211r21
]

]x
@A1~x,t !1A2~x,t !#, ~C3!

where

A1~x,t !5E dx8dt8f~x2x8,t2t8!

3
yr (x8,t8)~ t8!2yr (x8,t8)21~ t8!

2
,

A2~x,t !5E dx8dt8f~x2x8,t2t8!

3Fyr (x8,t8)~ t8!1yr (x8,t8)21~ t8!

2
2x8G . ~C4!

To obtain Eq.~C3!, the integration by parts is used. Belo
f(x,t) is assumed to be even inx. In the homogeneous state
yr (x8,t8)(t8)2yr (x8,t8)21(t8)5r21 and A1(x,t)51/2r(x,t)
sincer (x8,t8)21 is the vehicle number right behind the p
sition x8 at time t8. It can also be shown thatA2(x,t)50 in
the homogeneous state. Thus the first two leading term
Eq. ~12! can be obtained by replacingA11A2 in Eq. ~C3!
with 1/2r.

To obtain the leading contribution toS in Eq. ~13!, we
calculateA11A221/2r, which is expected to be propor
tional to]r21/]x. However, the termA1 does not give such
a contribution. For illustration, it is useful to introduce a ne
coordinatex̃[2x and redefine all quantities in terms of th
new space variable. Under this transformation,r and A1

have even parity@ r̃( x̃,t)5r(2x,t), Ã1( x̃,t)5A1(2x,t)],
while the density gradient has the odd parity@]r̃21/] x̃5
2]r21/]x#. SinceA1 and ]r21/]x have different parities,
A1 should not give a correction proportional to]r21/]x.

On the other hand,A2 gives a correction proportional to
]r21/]x. One uses the identity

A2~x,t !5
]

]x
@B1~x,t !2B2~x,t !#, ~C5!
6-10
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where

B1~x,t !5
1

8E dx8dt8f~x2x8,t2t8!@yr (x8,t8)~ t8!

2yr (x8,t8)21~ t8!#2,

B2~x,t !5
1

2E dx8dt8f~x2x8,t2t8!

3Fyr (x8,t8)~ t8!1yr (x8,t8)21~ t8!

2
2x8G2

. ~C6!

In the homogeneous state,B151/8r2 andB251/24r2. Thus
one obtains

A2~x,t !'
1

12

]r22~x,t !

]x
5

r21~x,t !

6

]r21~x,t !

]x
. ~C7!

From Eqs.~C3! and ~C7!, one then finds

S'
1

6r2

]2r21

]x2
1

1

6r S ]r21

]x D 2

.

-

-

e

05612
~ii ! ^D ẏn&: For derivation, it is convenient to relat

^D ẏn& to ^Dyn&. Using integration by parts, one can verify

r^D ẏn&5
]

]t
@r^Dyn&#1

]

]x
@r^ ẏnDyn&#. ~C8!

Here^ ẏnDyn& can be approximated byv^Dyn&. Their differ-
ence is proportional to (]v/]x)(]r21/]x) ~see Appendix B!,
and thus we ignore (]/]x)@r^ ẏnDyn&2rv^Dyn&#. One then
uses Eq.~3! to obtain

^D ẏn&'S ]

]t
1v

]

]xD ^Dyn&. ~C9!

By using expansion~12! and the continuity equation~3! to
convert temporal derivatives into spatial derivatives, one
tains

^D ẏn&'
1

r

]v
]x

1
1

2r2

]2v
]x21

v
2 S ]r21

]x D 2

.

ep.

No.

th.
.
ug-

e
he
@1# See, for instance, R. Herman and K. Gardels, Sci. Am.209, 35
~1963!; D. C. Gazis, Science157, 273~1967!; I. Prigogine and
R. Herman,Kinetic Theory of Vehicular Traffic~Elsevier, Am-
sterdam, 1971!.

@2# K. Nagel and M. Schreckenberg, J. Phys. I2, 2221~1992!.
@3# O. Biham, A. A. Middleton, and D. Levine, Phys. Rev. A46,

R6124~1992!.
@4# B. S. Kerner and P. Konha¨user, Phys. Rev. E48, R2335

~1993!.
@5# I. Treiterer and J. A. Myers, inProceedings of the 6th Inter

national Symposium on Transportation and Traffic Theory, ed-
ited by D. J. Buckley~Elsevier, New York, 1974!; M. Koshi,
M. Iwasaki, and I. Ohkura, inProceedings of the Eighth Inter
national Symposium on Transportation and Traffic Flow, ed-
ited by V. F. Hurdle, E. Hauer, and G. N. Stewart~University
of Toronto Press, Toronto, 1983!.

@6# B. S. Kerner and H. Rehborn, Phys. Rev. E53, R4275~1996!;
Phys. Rev. Lett.79, 4030~1997!; B. S. Kerner,ibid. 81, 1130
~1998!; J. Phys. A33, L221 ~2000!.

@7# L. Neubert, L. Santen, A. Schadschneider, and M. Schreck
berg, Phys. Rev. E60, 6480~1999!.

@8# M. Treiber, A. Hennecke, and D. Helbing, Phys. Rev. E62,
1805 ~2000!.

@9# H. Y. Lee, H.-W. Lee, and D. Kim, Phys. Rev. E62, 4737
~2000!.

@10# T. Nagatani, J. Phys. Soc. Jpn.66, 1928~1997!.
@11# H. Y. Lee, H.-W. Lee, and D. Kim, Phys. Rev. Lett.81, 1130

~1998!; Phys. Rev. E59, 5101~1999!.
@12# D. Helbing and M. Treiber, Phys. Rev. Lett.81, 3042~1998!;

D. Helbing, A. Hennecke, and M. Treiber,ibid. 82, 4360
~1999!.
n-

@13# N. Mitarai and H. Nakanishi, J. Phys. Soc. Jpn.68, 2475
~1999!; Phys. Rev. Lett.85, 1766~2000!.

@14# E. Tomer, L. Safonov, and S. Havlin, Phys. Rev. Lett.84, 382
~2000!.

@15# P. Nelson, Phys. Rev. E61, R6052~2000!.
@16# D. E. Wolf, M. Schreckenberg, and A. Bachem,Traffic and

Granular Flow ~World Scientific, Singapore, 1996!; M.
Schreckenberg and D. E. Wolf, inTraffic and Granular Flow
’97 ~World Scientific, Singapore, 1996!; D. Helbing, H. J. Her-
mann, M. Schreckenberg, and D. E. Wolf,Traffic and Granu-
lar Flow ’99 ~Springer, Berlin, 2000!.

@17# K. Nagel, J. Esser, and M. Rickert, inAnnual Review Com-
puter Physics, edited by D. Stauffer~World Scientific, Sin-
gapore, 1999!.

@18# D. Chowdhury, L. Santen, and A. Schadschneider, Phys. R
329, 199 ~2000!.

@19# D. Helbing, Rev. Mod. Phys.~to be published!, e-print
cond-mat/0012229.

@20# M. Hermann and B. S. Kerner, Physica A255, 163 ~1998!.
@21# H. Hayakawa and K. Nakanishi, Prog. Theor. Phys. Suppl.

130, 57~1998!.
@22# M. Treiber, A. Hennecke, and D. Helbing, Phys. Rev. E59,

239 ~1999!.
@23# D. Helbing, A. Hennecke, V. Shvetsov, and M. Treiber, Ma

Comput. Model.~to be published!, e-print cond-mat/0003269
@24# M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. S

iyama, Phys. Rev. E51, 1035~1995!.
@25# For a special value ofl and a special vehicle density, th

traffic dynamics becomes critical. Near this critical point, t
method of T.S. Komatsu and S.-i. Sasa@Phys. Rev. E52, 5574
6-11



th
e-
ly
ic

J.

H. K. LEE, H.-W. LEE, AND D. KIM PHYSICAL REVIEW E64 056126
~1995!# can be used to derive a continuum equation for
inverse density field. In this method, the velocity field is r
garded as a function of the density field, which is valid on
for t5`. In contrast, both fields are independent dynam
05612
e fields in our derivation.
@26# Section 3.3 in D. Helbing, e-print cond-mat/9806171.
@27# S.-I. Tadaki, M. Kikuchi, Y. Sugiyama, and S. Yukawa,

Phys. Soc. Jpn.67, 2270~1998!.
6-12


