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Two-point correlation functions of the diffusion-limited annihilation in one dimension
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Two-point density-density correlation functions for the diffusive binary reaction systemA1A→B are
obtained in one dimension via Monte Carlo simulation. The long-time behavior of these correlation functions
clearly deviates from that of a recent analytical prediction of Bares and Mobilia@Phys. Rev. Lett.83, 5214
~1999!#. An alternative expression for the asymptotic behavior is conjectured from numerical data.
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I. INTRODUCTION

Nonequilibrium systems have been studied extensiv
during the past decades. Reaction-diffusion systems e
cially have attracted much interest due to their relevance
many areas of physics, biology, economics, and so on@1,2#.
A commonly used description of the dynamics of reactio
diffusion systems is the master equation. The master e
tion for the probability distribution of a many-body system
a linear equation, and can be written as an imaginary t
Schrödinger equation with a~generally non-Hermitian!
Hamiltonian acting on a many-particle Fock space@3#. The
energy spectrum of the Hamiltonian contains all the inform
tion about the system. It is, in general, difficult to diagonal
the Hamiltonian, and many methods to treat the syste
have been developed: the mean field rate equation, the
ing arguments@4#, and the renormalization group~RG! tech-
nique @5,6# to name only a few.

In simple situations, it is possible to find exact solutio
of the model systems. A prototype of such models is
one-dimensional diffusion-limited pair annihilation and/
creation of hard core particles. The model can be sol
exactly only in the so-called free-fermion limit@7–9#. As
implied in the work of Spouge@10#, the free fermion limit,
for example, of the pair annihilation model can be reduced
a one-dimensional diffusion problem of a noninteracti
‘‘free’’ particle. Any exact results for models beyond th
free-fermion case would add much to our understanding
the reaction-diffusion systems of hard core particles.

In this context, a recent work by Bares and Mobilia@11# is
of interest. Studying the model mentioned above in the g
eral parameter space, Bares and Mobilia suggested a me
to find an exact solution of a general one-dimensio
reaction-diffusion system applicable to the non-free-ferm
case. The method relies on an analog of the Wick theor
The present authors, however, pointed out that the W
theorem does not hold except for the free-fermion case@12#.
According to Ref.@12#, the method of Bares and Mobili
relies on a neglect of the higher order correlations, so
result of Ref.@11# can at best be regarded as a Hartree-Fo
type approximation.

What is unknown is the validity of the approximation.
particular, the long-time behavior of the density and the c
relation reported in Ref.@11# could be correct in merely a
fortuitous way. To check this possibility, we performed
1063-651X/2001/63~5!/057102~4!/$20.00 63 0571
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extensive Monte Carlo simulation on the system~with no
bias!, and compared the numerical results with the analyti
predictions of Ref.@11#. We find that the numerical resu
and the analytical prediction of Ref.@11# for the density are
consistent with each other in the long-time limit, while tho
for the two-point density-density correlation function
clearly deviate from one another. We conjecture from
data that the two-point density-density correlation functi
Mr(t), defined below, contains an extra term with a simp
analytic structure, and we estimate its coefficient. We a
provide a heuristic argument as to why the density beha
is not modified in the Hartree-Fock-type approximation.

II. MODEL

In this Brief Report, we study the standard reactio
diffusion systemA1A→B with symmetric hopping on a
one-dimensional lattice of sizeL with periodic boundary
conditions. Each site is either occupied by a hard core p
ticle or is vacant. We restrict ourselves to the dynamic ru

AB→BA with rate
1

2
,

BA→AB with rate
1

2
, ~1!

AA→BB with rate p,

where, in what follows,p is limited to be smaller than o
equal to 1. To implement the above dynamics on simulati
we use the following algorithm: At timet, we choose one of
the occupied sites randomly, and select one of the nea
neighbors of the chosen site with equal probability1/2. If
the selected nearest neighbor is empty, the chosen par
hops to that site. Otherwise, the two particles are annihila
with a probability p, and with a probability 12p nothing
happens. After an attempt, the time is increased by 1/N(t),
where N(t) is the total particle number at a timet. The
corresponding master equation of this algorithm can be w
ten as] tuC;t&52HuC;t&, with the Hamiltonian
©2001 The American Physical Society02-1
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H52 (
m51

L F1

2
sm11

1 sm
21

1

2
sm11

2 sm
11psm

2sm11
2 2sm

1sm
2

2gsm
1sm

2sm11
1 sm11

2 G , ~2!

where g[p21, andsm
6 represent the Pauli matrices. W

regard the spin-down~-up! state as a vacuum~particle! state.
uC;t& is defined asuC;t&[(hP(h,t)uh&, where h is the
representation of a possible microscopic configuration,
P(h,t) is the probability with which the system is in stateh
at time t @3#. The free-fermion limit corresponds to theg
50 ~or p51) case. The above Hamiltonian, with a ful
occupied initial condition, was studied in Ref.@11#, and it
was reported that the asymptotic behavior of density
correlation functions up to the subleading order become~we
are using our notation!

rBM~ t !.
1

A4pt
1

12p

ppt
, ~3!

C r
BM~ t !.2

1

4pt
1H pr 18

p21

p J 1

~4pt !3/2
, ~4!

respectively, wherer(t) is the density at timet, Cr(t) is the
two-point ~connected! correlation function, and the supe
script BM stands for ‘‘the result of Bares and Mobilia.’’

In the following, we concentrate our attention on the tw
point density-density correlation function, which is defin
as

Mr~ t !5
1

L (
m

^nmnm1r&~ t !5Cr~ t !1r~ t !2, ~5!

wherenm[sm
1sm

2 , and^•••&(t) represents the ensemble a
erage at timet. The reason for studyingMr(t) rather than
Cr(t) is twofold: First, the subleading order of the connect
correlation function is the same as the leading order ofMr(t)
@see Eqs.~9! and~10!# and, in general, the study of the lea
ing order is more reliable than that of a subleading ord
Second,M1(t) is an order parameter of the pair contact p
cess with diffusion~PCPD! model@13#, and it is known@14#
that the PCPD model in the absorbing phase shares fea
with the annihilation model studied here. From Eqs.~3! and
~4!, the leading behavior ofMr(t) is meant to be

Mr
BM~ t !.

pr

~4pt !3/2
. ~6!

To see how good Eqs.~3! and ~6! are, we present the nu
merical results in Sec. III.

III. NUMERICAL RESULTS

We performed the Monte Carlo simulations for seve
p’s (p51, 3/4, 1/2, and 1/4), with a system sizeL
510 000. The initial conditions for all cases are fully occ
pied states, as in Ref.@11#. For eachp, we realize 106
05710
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samples. We monitored the simulation up to 105 Monte
Carlo time steps.

At first, we compare the density obtained by numer
with Eq. ~3! in Fig. 1. This figure clearly shows that Eq.~3!
is in excellent agreement with the numerical results up
subleading orders. This result also implies that a system
of 10 000 is large enough not to show the finite size effect
to 105 time steps.

Next we compare the numerical results of the dens
density correlation functions with Eq.~6!. For this purpose,
in Fig. 2 we drawMr(t)/Mr

BM(t) as a function of time rathe
thanMr(t) itself. If Eq. ~6! is correct, all data are expected
converge to the constant value of 1 in the long-time limit, b
no such convergence is observed except forp51, i.e., the

FIG. 1. Time dependence of the density in a log-log plot. T
time is measured in units of Monte Carlo steps~MCS!, and the
lattice constant is set to 1. The values ofp for the solid lines are
1, 0.75, 0.5, and 0.25 from the bottom. The broken line is the
ticipated leading behavior 1/A4pt. Inset: time dependence ofr(t)
21/A4pt for variousp’s (p50.75, 0.5, and 0.25 from the bottom!.
The broken lines are (12p)/(ppt), and show excellent agreemen
with the numerical results.

FIG. 2. Plots oft vs Mr(t)/Mr
BM(t) for variousp’s. If Eq. ~6! is

correct, all data must converge to 1 ast goes to infinity. However,
except forp51 ~that isg50), the data show a clear discrepanc
In this figure, we present the simulation results forr 52 (L), 5
(n), 8 (,), and 50 (s).
2-2
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free-fermion case and for larger. Figure 2 clearly shows
deviations from that anticipated by Eq.~6!. Hence the correc
asymptotic behavior of the density-density correlation fu
tion may take the form

Mr~ t !.
pr

~4pt !3/2
D~r ,p!. ~7!

One expectsD(r ,p51)51 for all r. We estimateD(r ,p)
from the data by the least squares fits, and show them in
3 as functions of 1/r for variousp’s. It appears thatD(r ,p)
has a very simple dependence on 1/r :

D~r ,p!5
l~p!

r
11. ~8!

Interestingly,l(p) also seems to have a simple mathemati
structure, i.e.,l(p)}(12p)/p; see the inset of Fig. 3. Com
bining the results, we conjecture the forms ofMr(t) and
Cr(t) to be

Mr~ t !.
1

~4pt !3/2 S pr 1c
12p

p D , ~9!

Cr~ t !.2
1

A4pt
1H pr 1~82c!

p21

p J 1

~4pt !3/2
~10!

with c53.460.2 in case of the fully occupied initial cond
tion.

In the long-time limit and at large length scales, all thep
dependence is suppressed in the density and correlation
tions. This observation is evidence of the irrelevance ofg in
the RG sense. In Sec. IV, we use this irrelevance argume
present a possible explanation for the partial success of
@11#.

FIG. 3. Estimated values ofD(r ,p) as a function of 1/r for p
50.25 (s), 0.5 ~d!, 0.75 ~n!, and 1.0~,!. Error bars stand for
standard deviations of the least squares fits of Fig. 2. As in Fig
the lattice constant is set to 1. Each data set for the samep seems to
lie on a straight line. The fitted lines are also shown. Inset: we d
the slopes of the fitted lines as a function ofp. These slope values
also fall on a straight line~solid line!, whose slope is 1.0860.03.
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IV. DISCUSSION AND SUMMARY

This section discusses the success and failure of
method given in Ref.@11#, and summarizes our work. Firs
of all, the incorrect result ofMr(t) is ascribed to the non
Gaussian form of the generating function~GF! @12#. The
relation between the Gaussian form of the GF and the W
factorization is explicitly shown in Appendix A. Further
more, Appendix B explicitly shows that Wick factorization
not always possible, even though the probability conser
tion is satisfied. From this point of view, the method of Bar
and Mobilia may be regarded as an approximation sche
where quartic terms are neglected. As long as only the de
exponent ofMr(t) is concerned, Eq.~6! is good enough. The
irrelevance ofg in the RG sense makes it possible for one
obtain the correct decay exponents of density and correla
functions from the exactly solvableg50 limit.

We also resort to the irrelevance argument to explain
correct subleading behavior of the density. First note that
quartic coupling in the generating function, sayW, contrib-
utes toMr for nonzerog, but this contribution should be
O(t23/2), becauseW is generated by the irrelevant operatorg
and Mr;O(t23/2). Thus we expect that the implicit contri
bution of W to the density is at mostO(t23/2), which hap-
pens to be smaller than the subleading order of the den
decay. The Wick factorization, which neglectsW, then gives
a correct time dependence of the density up to the sublea
order. We also believe that the method in Ref.@11# would be
partially successful only if the nonquadratic terms in t
Hamiltonian are irrelevant in the RG sense.

For completeness, we address the question of why
Wick factorization may yield the correct steady state dens
in the presence of pair creation. When the pair creation
is not zero, the mean field rate equation for the density
be written as

dr

dt
522e8r212e~12r!2, ~11!

with e8 the annihilation rate ande the pair creation rate
using the same notation as in Ref.@11#. Its stationary state
solution is rs51/(11Ae8/e), which interestingly is the
same as the exact solution@15#. This result implies that the
exact steady-state solution displays the characteristics o
mean field solution. Hence an exact result for the steady-s
density from the Wick factorization is not surprising.

In summary, we have extensively simulated the diffusio
limited annihilation model, and have shown numerically th
the long-time behavior of the correlation functions given
Ref. @11# is not correct, although the behavior of density
In addition, an analytical form of the asymptotic behavior
the correlation functions is conjectured.
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APPENDIX A: GENERATING FUNCTION AND
WICK THEOREM

This appendix proves that the Gaussian form of the g
erating function~GF! is a sufficient and necessary conditio
for Wick factorization. We restrict ourselves to the even s
tor of the Hilbert space as in Ref.@11#. In the following, we
adopt the notation of Ref.@12#. First let us assume that th
GF, discussed in Refs.@12# and @16#, takes the Gaussia
form

Z@j#5expF (
q1,q2

jq1
jq2

f ~q1 ,q2!G , ~A1!

with jq the Grassmann numbers. Proving the Wick factori
tion for this GF is a simple combinatoric problem. One c
easily check that the Wick theorem can be applied; hence
prove that the Gaussian form of the GF yields Wick fact
ization.

Next we consider the following question: Does the Wi
factorization imply a Gaussian form of the GF? To answ
this, we adopt thereductio ad absurdum. Let us assume tha
the GF does not take a Gaussian form, but is instead of
form

Z@j#5expF (
q1,q2

jq1
jq2

f ~q1 ,q2!

1 (
q1,q2,q3,q4

jq1
jq2

jq3
jq4

W~q1 ,q2 ,q3 ,q4!1•••G ,
~A2!

where W(q1 ,q2 ,q3 ,q4) is the quartic coupling, and•••
stands for higher order terms. One can calculate the
operator correlation functions simply by differentiation, a
find

^aq1
aq2

aq3
aq4

&5^aq1
aq2

&^aq3
aq4

&2^aq1
aq3

&^aq2
aq4

&

1^aq1
aq4

&^aq2
aq3

&1W~q1 ,q2 ,q3 ,q4!

~A3!
e,

s
e,
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for q1,q2,q3,q4. The presence ofW prohibits the factor-
ization. Since this result stems from the assumption o
non-Gaussian form of the GF, we proved that the Wick fa
torization implies a Gaussian form of the GF. Hence t
Gaussian form of the GF is a sufficient and necessary c
dition of the Wick factorization.

APPENDIX B: FOUR-PARTICLE ANNIHILATION MODEL

In this appendix, we introduce a simple toy model, call
the four-particle annihilation model~FPAM!, defined in one
space dimension, and analyze it to show that the probab
conservation does not imply Wick factorization. The dyna
ics occurs only when four particles form a cluster. If a fou
particle cluster exists, it annihilates with a ratel. Hopping
events are not allowed. The Hamiltonian of the FPAM is

HFPAM52l(
n

@sn
2sn11

2 sn12
2 sn13

2

2sn
1sn

2sn11
1 sn11

2 sn12
1 sn12

2 sn13
1 sn13

2 #,

~B1!

where the periodic boundary condition is assumed. For s
plicity, let us consider a fully occupied initial condition wit
a system size 4, that is,uC;0&5) i 51

4 s i
1uB&, whereuB& is

the particle vacuum state anduC;t& is the state vector as
usual. In the momentum spaceuC;0&5)q.0aq

†a2q
† uB&,

where possible values ofq’s are p/4 and 3p/4. The state
vector at timet is uC;t&5e24ltuC;0&1(12e24lt)uB&. The
nonvanishing two-operator correlation functions a
^a2p/4ap/4&(t) and ^a23p/4a3p/4&(t) with the values
e24lt tan(p/8) and e24lt cot(p/8), respectively. The four-
operator correlation function at time t is
^a23p/4a3p/4a2p/4ap/4&(t)5e24lt which is different from
^a2p/4ap/4&(t)^a23p/4a3p/4&(t) by e24lt2e28lt. Hence, we
see a failure of the Wick theorem under the condition
probability conservation. In other words, probability cons
vation has nothing to do with Wick factorization.
.
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