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Path-integral formulation of stochastic processes for exclusive particle systems
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We present a systematic formalism to derive a path-integral formulation for hard-core particle systems far
from equilibrium. Writing the master equation for a stochastic process of the system in terms of the annihila-
tion and creation operators with mixed commutation relations, we find the Kramers-Moyal coefficients for the
corresponding Fokker-Planck equation~FPE!, and the stochastic differential equation~SDE! is derived by
connecting these coefficients in the FPE to those in the SDE. Finally, the SDE is mapped onto field theory
using the path integral, giving the field-theoretic action, which may be analyzed by the renormalization group
method. We apply this formalism to a two-species reaction-diffusion system with drift, finding a universal
decay exponent for the long-time behavior of the average concentration of particles in arbitrary dimension.

PACS number~s!: 82.20.Db, 05.40.2a, 05.70.Ln, 82.20.Mj
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In recent years, nonequilibrium phenomena such as n
equilibrium phase transitions, bifurcations, and synerge
have attracted much attention@1#, not only because of thei
connections to a variety of important physical problems~pat-
tern formation, morphogenesis, self-organization, etc.!, but
also because of the analytic challenge due to lack of a g
eral formalism for nonequilibrium systems, in contrast
equilibrium statistical mechanics, which has well-establish
concepts and tools. In pursuit of a general formalism, sta
tical physicists have investigated nonequilibrium phase tr
sitions in lattice models over the last decade@2#. As lattice
models have played a central role in equilibrium statisti
mechanics, they will also be important in nonequilibriu
statistical mechanics. In particular, theoretical analysis
reaction-diffusion systems where both diffusion and react
take place on the lattice is relevant to the understanding
wide class of nonequilibrium phenomena in nature@3#. It has
long been recognized that the mean-field rate equations
not applicable to reaction-diffusion systems in low dime
sions. After Doi, Grassberger and Scheunert, and Peliti in
duced the field-theoretic method using the bosonic cohe
state path integral@4#. Lee and Cardy, using the renormaliz
tion group ~RG! approach, have improved on this meth
@5,6# in the description of the anomalous kinetics in the
systems. Assuming the systems are in the low density
gime, Lee and Cardy rewrite the master equation for
Markov process as the bosonicHamiltonian. The Hamil-
tonian in turn can be mapped onto field theory and analy
by the renormalization group method in arbitrary dime
sions. For simple models such asA1A→0” and A1B→0” ,
this bosonic field-theoretic method provided the correct ti
dependence for the density decay in low dimensions@5–8#.

Despite the successes achieved by the bosonic field th
for reaction-diffusion systems, there are still many op
problems. Driven reaction-diffusion systems@9,10#, multi-
species adsorption models@11#, and epidemic models ar
some examples to which the bosonic field theory canno
applied since the steady states of these systems cann
assumed to be in a low density regime. In these systems
PRE 621063-651X/2000/62~6!/7642~4!/$15.00
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hard-core property of the particles is important and
bosonic approach fails. In response to these challenges,
have been many attempts to take the hard-core property
account. Brunelet al. @12# and Bares and Mobilia@13# for-
mulated fermionic field theories for a single-species reacti
diffusion process confined to one space dimension. Howe
these fermionic field theories are very hard to extend in pr
tice to higher spatial dimensions or to multispecies p
cesses.

We have focused on extending field theory to multisp
cies processes and to higher spatial dimensions including
hard-core exclusion property of particles. In this paper,
present a systematic formalism to derive the field theory
hard-core particles and apply this method to a two-spe
driven reaction-diffusion~DRD! system in arbitrary spatia
dimension. In the two-species DRD system, each part
attempts moves to the right and to the left with differe
hopping rates, and the attempt is successful only if the p
ticle lands on an unoccupied site. If the particle lands o
site occupied by a same-species particle, the hopping atte
is rejected, but if it lands on a site occupied by an oppos
species particle, theA1B→0” reaction occurs and both pa
ticles disappear. For this system, one might expect the lo
time kinetics to be the same as that ofA1B→0” with
isotropic diffusion, by a Galilean transformation, and t
density should decay in time ast2d/4 for d<4 and ast21 for
d>4. However, some extensive numerical simulations
Janowsky@9# and Ispolatovet al. @10# indicate that the den-
sity decays ast21/3 asymptotically in one dimension, an
others by ben-Avrahamet al. @14# are inconclusive concern
ing the exponent of the density decay. Consequently,
study this system analytically, the hard-core property of
particles should be incorporated properly into the fie
theory. Our general formalism provides a systematic met
to derive the field theory for this system and with the app
cation of the renormalization group derives the long-tim
behavior as predicted by Janowsky and Ispolatovet al. for
density decay ast21/3 in one dimension.
7642 ©2000 The American Physical Society



tio
n

ro
le

tin
n-
-

tio

il-

a

-

o

s,

ra

e

ber

o-

n-

les.
if-
is

en-

e
ns

the

te
n-
ld
ap-
he
we
ro-

s-
ym-

vo-

PRE 62 7643PATH-INTEGRAL FORMULATION OF STOCHASTIC . . .
In general, the dynamics of a stochastic particle system
described by a master equation governing the time evolu
of the probability P(C;t) for the system to be in a give
microscopic configurationC at time t. For a multispecies
reaction-diffusion system with hard-core particles, the mic
scopic configurationC is represented by the set of the partic
numbers of each species at each lattice site;C5$ni

a% where
the greek indexa stands for the particle species, the la
index i runs over all lattice sites in arbitrary spatial dime
sion, andni

a is restricted to 0 or 1. Introducing the annihila
tion and creation operators satisfying the mixed commuta
relations

$ai
a ,ai

a†%512 (
gÞa

ai
g†ai

g , ai
aai

b5ai
a†ai

b†50, ~1!

@ai
a ,aj

b†#5@ai
a ,aj

b#5@ai
a† ,aj

b†#50 for iÞ j , ~2!

and defining the state vectoruC;t&[(CP(C;t)uC&, the master
equation can be written as a Schro¨dinger-like equation@15#,

]

]t
uC;t&52HuC;t&, ~3!

where H is an evolution operator, often called a Ham
tonian, expressed in terms ofa’s anda†’s. The formal solu-
tion for the initial condition uC;0& is, straightforwardly,
uC;t&5e2HtuC;0&, and the average of any quantityf may be
expressed as

^ f ~ t !&[(
$ni

a%

f ~$ni
a%!P~$ni

a%;t !5^•u f̂ e2HtuC;0&, ~4!

where ^•u is the projection state defined as the sum of
possible microscopic states, i.e.,^•u[($ni

a%^$ni
a%u. For a

given observablef ($ni
a%), we find the corresponding opera

tor f̂ by replacing the variablesni
a by the operatorai

a† ai
a . In

what follows, we shall be mainly interested in averages
particle numbers (f̂ 5ai

a† ai
a) at site i and their two-point

correlation functions (f̂ 5ai
a† ai

aaj
b†aj

b). The time derivative
of Eq. ~4! is formally found to be

d

dt
^ f ~ t !&52^•u f̂HuC& t5^@H, f̂ #&, ~5!

where we used the probability conservation condition^•uH
50. Since the Hamiltonian describes a stochastic proces
generalH is not Hermitian. Thus,@H, f̂ # will have creation
and annihilation operators that do not form number ope
tors. However, the projection statê•u acting on @H, f̂ #
makes it possible to express the right-hand side of Eq.~5!
only with number operators. Using the identity from th
property of the projection state@16#

^•uS ai
b†1(

a
ai

aD 5^•u ~6!
is
n

-

n

ll

f

in

-

for any b, we eliminate all the creation operators in Eq.~5!,
and any annihilation operator can be interpreted as a num
operator becausê•uai

b† ai
b5^•u(12(a ai

a)ai
b5^•uai

b .
Since the Kramers-Moyal coefficientsCi

a , Ci j
ab in the

Fokker-Planck equation

]P

]t
52

]

]r i
a

@Ci
a~$r%!P#1

1

2

]2

]r i
a]r j

b
@Ci j

ab ~$r%!P# ~7!

are related to the time evolution of the one-point and tw
point correlation functions of the number operator

d

dt
^r i

a&5^Ci
a&,

d

dt
^r i

ar j
b&5^r i

aCj
b1r j

bCi
a1Ci j

ab&,

~8!

we find the Kramers-Moyal coefficients in terms of the a
nihilation and creation operators@16#

^Ci
a&5^@H,ai

a†ai
a#&, ^Ci j

ab&5^†ai
a†ai

a ,@H,aj
†baj

b#‡&,
~9!

by interpreting the number operator as a density of partic
Next we consider how we write down the stochastic d

ferential equation when the Fokker-Planck equation
known. Recalling the reverse problem, a stochastic differ
tial equation

ṙ i
a5hi

a~$r%!1gi j
ab~$r%!j j

b ~ t ! ~10!

with ^j i
a(t)j j

b(t8)&5dabd i j d(t2t8) can be connected to th
Fokker-Planck equation with the coefficient functio
Ci

a($r%)5hi
a and Ci j

ab($r%)5gik
aggjk

bg in the Itô interpreta-
tion @17#.

Representing the stochastic differential equation in
path-integral formulation, the generating functionalZ of cor-
relation functions can be written asZ5* DrDr̃e2S with the
action @18#

S5E dtS r̃ i~ t !„] tr i~ t !2Ci…2
1

2
r̃ i~ t !r̃ j~ t !Ci j D . ~11!

The response fieldr̃ has been introduced as the conjuga
field to the Langevin force. After performing a suitable co
tinuum limit for the action, we obtain the continuum fie
description for microscopic discrete models. Thus, by m
ping the stochastic differential equation derived from t
Fokker-Planck equation into the path-integral formalism,
obtain a field-theoretic action describing the stochastic p
cess, which in turn may be examined by RG analysis.

Now we apply our formalism to reaction-diffusion sy
tems. As the paradigmatic example, we consider the as
metric diffusion process with A1B→0” reaction in
d-dimensional space. The diffusion constant for anA(B)
particle is DA(DB) and along the direction of the driving
force ~say, the ‘‘parallel’’ direction! the diffusion is asym-
metric with the drift ratevA/2 (vB/2) for an A(B) particle.
The reaction occurs with ratel/2d when two different spe-
cies occupy the nearest neighbor sites in ad-dimensional
hypercubic lattice. The Hamiltonian generating the time e
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lution of the system is found to beH5(nW @H nW
dif

1H nW
dr

1H nW
re

# with (eW i is the unit vector along the directioni )

H nW
dif

52(
i 51

d

@DA ~anWanW 1eW i

†
1anW

†
anW 1eW i

!

1DB ~bnWbnW 1eW i

†
1bnW

†
bnW 1eW i

!#,

H nW
dr

52
vA

2
~anWanW 1eW i

†
2anW

†
anW 1eW i

!2
vB

2
~bnWbnW 1eW i

†
2bnW

†
bnW 1eW i

!,

H nW
re

52
l

2d (
i 51

d

~anWbnW 1eW i
1bnWanW 1eW i

!, ~12!

where we left out the diagonal terms because they give
contribution to the commutation relations. Following th
steps given above, we find the field-theoretic action for
system after taking the continuum limit:

S5E dt dx¢S ã~] t2DA¹2!a1b̃~] t2DB¹2!b

22vAa~rm2a2b!] iã22vBb~rm2a2b!] ib̃

1MA~¹ã!2a~rm2a2b!1MB~¹b̃!2b~rm2a2b!

1
l

2
@2~ ã1b̃!2~ ã1b̃!2# abD ~13!

in terms of the density fields (a,b) of each species and th
conjugate response fields (ã,b̃). The hard-core property o
particles is manifest in the action andrm is the density cutoff
due to the hard-core property. Since the densities are
stricted to a,b>0, we shift the fields bya52a2rm , b

52b2rm , ã5ã21, andb̃5b̃21, in order to apply a per-
turbative RG analysis. Skipping all the irrelevant terms,
get the reduced action

S5E dt dx¢S ã~] t2D¹2!a1b̃~] t2D¹2!b2
v
2

a2] iã

2
v
2

b2] ib̃1M ã¹2ã1M b̃¹2b̃

2
l

2
@~ ã1b̃ !2

12~ ã1b̃ !#~rm1a!~rm1b! D ~14!

in the case ofDA5DB5D, vA5vB5v, andMA5MB5M
with D(M )¹25D i(M i)¹ i

21D'(M')¹'
2 . From power

counting with shifted fields, we find the upper critical dime
sion dc52. The scaling dimension of the coupling consta
v indicates that the drift term is effective only for fewer tha
two dimensions, and ford>2 the action becomes equivale
to the action derived by Lee and Cardy using the boso
approach for the symmetric reaction-diffusion systemA1B
→0” without drift.
o

e

e-

e

t
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We use the Wilson RG method to analyze the long-ti
kinetics of the action. The flow equations ind522« dimen-
sions, to one-loop order, are

dD'

dl
5~z22!D' ,

dM'

dl
5~z22!M' ,

dDi

dl
5~z22!D i1

D i

8 S 31
M i

D i
Dg,

~15!
dMi

dl
5~z22!M i1

M i

16 S 3
M i

D i
1213

D i

M i
D ,

dl

dl
5~z2d!l1

l2

4pAD iD'

,
dv
dl

5S z212
d

2D v,

whereg5v2/4pD i
3/2D'

1/2. The Feynman diagrams that con
tribute to these equations are shown in Figs. 1 and 2.

The dynamical exponent is given byz52, leaving D'

and M' unchanged under the RG flow. The flow equatio
for D i and M i have the same contribution and the ra
D i /M i remains constant (51). The reaction ratel is renor-
malized only by thel terms, not the drift term. Combining
the flow equations forD' , D i , and v, we find the flow
equation for the expansion parameterg:

d ln g

dl
5~22d!2

3

4
g. ~16!

For d.dc52 we find an infrared stable fixed pointg* 50,
and in a region of attractionD i andM i remain constant. The
scaling form of the average concentration ofA and B par-
ticles @c(t)[cA(t)5cB(t)# @7#

c~ t !5e2dl S n0~ l !

8p2D i~ l !1/2D'~ l !(d21)/2t~ l !d/2D 1/2

~17!

FIG. 1. The one-loop diagrams contributing to the renormali
tion of ~left! D i and ~right! M i . The legs with the outgoing arrow

are for the response fields (ã,b̃) and the legs with the incoming
arrow for the density fields (a,b). The bar denotes spatial differ
entiation and the dot anM vertex.

FIG. 2. The one-loop diagrams contributing to the renormali
tion of v. These two diagrams cancel each other.



-

a
r
n

or
ck
tio

e
d-

ra
r
p
i

w

s
G

the
ws

s.
the
on-

ft
nd

sky

n-
, it
al-
the
tem
ady

rant

PRE 62 7645PATH-INTEGRAL FORMULATION OF STOCHASTIC . . .
gives c(t);t2d/4 using the time flow equationt(l )

5te2*0
l z(l )dl . Below the critical dimensiondc , there exists

a nontrivial infrared stable fixed point atg* 54/3«, and near
this pointD i andM i flow ase2el /3. Thus, the average con
centration behaves as

c~ t !;t2(d11)/6. ~18!

In summary, we have presented a systematic formalism
derive the field-theoretic action for systems of hard-core p
ticles. Starting from the master equation for a stochastic p
cess of the system, we have constructed the Fokker-Pla
equation by introducing annihilation and creation operat
with mixed commutation relations. This Fokker-Plan
equation is connected to the stochastic differential equa
by identifying the coefficient functions in the Itoˆ interpreta-
tion. Finally, the stochastic differential equation is mapp
onto field theory using the path integral, giving the fiel
theoretic action to be analyzed by the RG method.

Although there have been many attempts to incorpo
the hard-core property of particles into field theory, our fo
malism has a very important advantage over other attem
Our formalism can be applied to multispecies systems
arbitrary spatial dimension. As a paradigmatic example,
have applied our formalism to theA1B→0” reaction-
to
r-
o-
ck
s

n

d

te
-
ts.
n
e

diffusion system with drift. Following straightforward step
to obtain the action and applying the momentum-shell R
method, we have calculated the long-time behavior for
average concentration of particles. Power counting sho
that the upper critical dimension isdc52, and the drift term
affects the RG flow only for fewer than two dimension
Thus, ford>2, the hard-core action behaves the same as
bosonic action derived by Lee and Cardy. The average c
centration behaves ast21 for d>4 andt2d/4 for 4>d>2 in
the long-time limits. Below the critical dimension, the dri
term moves the stable fixed point to the nontrivial one a
the average concentration behaves ast2(d11)/6 for d<2.
These results agree with the simulation results by Janow
@9# and the scaling arguments by Ispolatovet al. @10#.

As mentioned before, our formalism has merit in exte
sion to multispecies and to higher spatial dimensions. Also
is necessary to use this formalism, not the bosonic form
ism, when the system has nonvanishing concentrations in
steady states. The three-species reaction-diffusion sys
@12# and some other systems having nonvanishing ste
states are under investigation using this formalism.
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