
PHYSICAL REVIEW E JUNE 1999VOLUME 59, NUMBER 6
Large deviation function of the partially asymmetric exclusion process

Deok-Sun Lee and Doochul Kim
Department of Physics, Seoul National University, Seoul 151-742, Korea

~Received 8 February 1999!

The large deviation function obtained recently by Derrida and Lebowitz@Phys. Rev. Lett.80, 209 ~1998!#
for the totally asymmetric exclusion process is generalized to the partially asymmetric case in the scaling limit.
The asymmetry parameter rescales the scaling variable in a simple way. The finite-size corrections to the
universal scaling function and the universal cumulant ratio are also obtained to the leading order.
@S1063-651X~99!08006-X#

PACS number~s!: 02.50.2r, 05.70.Ln, 82.20.Mj
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I. INTRODUCTION

The asymmetric simple exclusion process~ASEP! is the
simplest driven diffusive system where particles on a o
dimensional lattice hop with asymmetric rates under
cluded volume constraints. Due to its simple but nontriv
out-of-equilibrium properties, it has attracted much attent
recently. We refer to@1# for a review of recent development

For the prototype case of single-species, sequential up
ing dynamics, the time evolution operator of the probabil
distribution of particle configurations turns out to be t
asymmetricXXZ chain @2,3#. The latter admits the Beth
ansatz solution for its eigenfunctions and eigenvalues w
it is on a periodic ring. Due to its integrability, one ca
obtain many exact results of physical interest. In particu
the large deviation function~LDF! which describes the dis
tribution of the total current has been obtained recently fo
ring of N sites withP particles under a periodic bounda
condition @4,5#. The LDF also describes the height distrib
tion of the Kardar-Parisi-Zhang~KPZ!-type growth models
and is believed to be universal. To confirm the universa
of LDF, Derrida and Appert@5# compared a cumulant rati
obtained from the analytic LDF with numerical simulatio
of several stochastic models believed to belong to the K
universality class.

Since the LDF has been obtained in@4,5# for the totally
asymmetric exclusion process~TASEP!, where particle hop-
ping occurs only to the right, it would be desirable to calc
late it for the partially asymmetric exclusion proce
~PASEP!, where the particles can hop both to the right and
the left but with different rates. In this paper, we report
this generalization using the crossover scaling functions
the XXZ chain obtained previously in@3#. Our method as-
sumes from the outset thatN is sufficiently large, but allows
systematic evaluation of the finite-size corrections. We
produce the universal scaling function of@4,5# for the
PASEP and find that the asymmetry parameter rescales
scaling variable in a simple way. We also evaluate the le
ing order finite-size corrections to the universal scaling fu
tion and the cumulant ratio.

This paper is organized as follows. In Sec. II, we intr
duce the model and notation. In Sec. III, we make the c
nection between the present problem and the results o@3#
and derive the LDF for the PASEP. The finite-size corre
tions are evaluated in Sec. IV. Sec. V contains the summ
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and discussions, while Appendix shows the equivalence
two representations of the crossover scaling functions.

II. MODEL AND THE LARGE DEVIATION FUNCTION

We consider the dynamics of the one-dimensional mo
in a periodic lattice~ring! of N sites with P particles @2#.
Each sitej (1< j <N) is either occupied by a particle (s j
521) or vacant (s j511). The PASEP considered in thi
work is defined by the following random sequential updati
rule: During each time intervaldt, each particle can hop to
its right or left with probability 1

2 (11e)dt and 1
2 (12e)dt,

respectively, provided the target site is empty.e51 corre-
sponds to the TASEP considered in@4,5# and we work in the
region 0,e<1. Interpretings j561 as the local slope of an
interface in (111) dimensions, one can map the model
the single step model@5,6#, an archetype of the KPZ-clas
models. The quantity of main interest in this work is the to
displacementYt which is the total number of hops of a
particles to the right minus that to the left between time
and timet. In the single step model language,Yt is the total
number of particles deposited between time 0 and timet.

Let s denote a system configuration$s1 , . . . ,sN% and
Pt(s) the probability of finding the system in a configuratio
s at time t. The master equation for the time evolution
Pt(s) can then be written as

dPt~s!

dt
52(

s8
^suHus8&Pt~s8!, ~1!

where^suHus8& is the representation, on the basis wheres j
z

are diagonal, of the time evolution operatorH given by

H52(
j 51

N H S 11e

2 Ds j
1s j 11

2

1S 12e

2 Ds j
2s j 11

1 1
1

4
~s j

zs j 11
z 21!J . ~2!

Here,s j
6 and s j

z are the Pauli spin operators ands j561
are the eigenvalues ofs j

z .
Next, following @4,5#, we introducePt(s,Y), the joint

probability that the system is in a configurations and Yt ,
the total displacement, takes the valueY at time t, and let
6476 ©1999 The American Physical Society
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Ft~s;a!5 (
Y52`

`

eaYPt~s,Y!. ~3!

Then,Ft(s;a) evolves according to

dFt~s;a!

dt
5(

s8
^suM us8&Ft~s8;a!, ~4!

where

M5(
j 51

N H eaS 11e

2 Ds j
1s j 11

2

1e2aS 12e

2 Ds j
2s j 11

1 1
1

4
~s j

zs j 11
z 21!J . ~5!

The ‘‘Hamiltonian’’ 2M is the asymmetricXXZ chain
Hamiltonian studied, e.g., in@3#. Let l(a) denote the larges
eigenvalue ofM, regarded as a function ofa. Then, one can
show that

^eaYt&5(
s

Ft~s;a!;el(a)t ~6!

as t→` and the long time behaviors of all cumulants ofYt
are derived froml(a).

The LDF f describes the long time behavior of the dist
bution of Yt/t and is defined by

f ~y!5 lim
t→`

1

t
lnH ProbFYt

t
5 v̄1yG J , ~7!

where v̄5 limt→`^Yt&/t is the mean current for a ring o
finite sizeN. Note thatv̄5dl(a)/daua50. This can be eas
ily obtained from a first order perturbation calculation as

v̄5er~12r!N
N

N21
. ~8!

Our definition of f (y) is slightly different from that of@4,5#
in that we use the exact value ofv̄, Eq. ~8!, in Eq. ~7! while
@4,5# use its bulk valueer(12r)N. Since^eaYt&;el(a)t on
the one hand, and ^eaYt&5(Y52`

` Prob@Yt5Y#eaY

;maxye
t„f (y)1a v̄1ay… on the other, the LDF is related t

l(a)2a v̄ by the Legendre transformation

f ~y!5@l~a!2a v̄#2ay, ~9!

y5
d

da
@l~a!2a v̄#. ~10!

Therefore, the largest eigenvaluel(a) of the asymmetric
XXZ chainM determines the LDF.

III. l„a… IN THE SCALING LIMIT

In @4,5#, l(a) for the case ofe51 is obtained for arbi-
trary N and P. Then, one takes the scaling limit,N→`, a
→0, with the scaling variableaN3/2 and the densityr
[P/N fixed. In this scaling limit,l(a) takes the parametric
form

l~a!5aNr~12r!1Ar~12r!

2pN3
f 5/2~C!~e51!, ~11!

aA2pr~12r!N35 f 3/2~C!, ~12!

where f k(C) are defined as

f 3/2~C!52 (
n51

`
~2C!n

n3/2
, ~13!

f 5/2~C!52 (
n51

`
~2C!n

n5/2
, ~14!

for uCu<1. To probe the regionaA2pr(12r)N3, f 3/2
(21), f k(C) are analytically continued as

f 3/2~C!524Ap@2 ln~2C!#1/22 (
n51

`
~2C!n

n3/2
, ~15!

f 5/2~C!5
8

3
Ap@2 ln~2C!#3/22 (

n51

`
~2C!n

n5/2
, ~16!

for 21<C,0, while for aA2pr(12r)N3. f 3/2(1), one
may use the integral forms

f 3/2~C!52pE
0

`

ds
As

C21eps11
, ~17!

f 5/2~C!52pE
0

`

dsAs ln~11Ce2ps!. ~18!

To generalize Eqs.~11! and ~12! to the case of PASEP
(0,e<1), we limit our attention only to the scaling limi
and use the results of Kim@3#. In @3#, the low-lying eigen-
values of the asymmetricXXZ chain near the stochastic lin
@a50 in Eq. ~5!# have been expressed as perturbative
pansions inN21/2 with a scaling variable, which is essen
tially the same asaN23/2, held constant. Therefore the re
sults of@3# applied to the ground state energy~denoted asEN

0

in @3#! can be used immediately to obtain the LDF.
The notationsq, D̃, s, H, andn used in@3# translate into

the present ones asr, (cosha1e sinha)21, (sinha
1e cosha)/(cosha1e sinha), (a1tanh21e)/2, and tanh21e,
respectively. Using these and taking care of different norm
ization @l(a)52EN

0 /D̃#, one can rewrite Eq.~58a! of @3# as

l~a!5e (
m51

`

(
k51

m
bm,k

~12xc!
k11

Ym
0 ~z!S p

ND m/2

, ~19!

and Eq.~54a! of @3# as

a5
1

p (
m51

`

(
k51

m

bm,k

~21!k

kxc
k

Ym
0 ~z!S p

ND (m12)/2

. ~20!
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In the above sums,Ym
0 for evenm vanishes for the ground

state and only odd-m terms are needed. Form odd, Ym
0 (z)

with real z are defined as

Ym
0 ~z!5

m12iz

2~m12!
~2 iAz1 i !m1

m22iz

2~m12!
~ iAz2 i !m

1
1

2i E0

`

dt
~2 iAz1 i 1t !m2~2 iAz1 i 2t !m

ept21

2
1

2i E0

`

dt
~ iAz2 i 1t !m2~ iAz2 i 2t !m

ept21
. ~21!

The coefficientsxc andbm,k are recursively determined orde
by order inN21/2 from a set of equations, as explained in@3#
and xc52r/(12r)1O(N25/2), bm,k5bm,k

0 1O(N23/2).
bm,k is the coefficient ofxm in the series expansion o
((m51

` amxm)k, wheream5am
0 1O(N23/2) and the first few

values ofam
0 needed in this work are given by

a1
05A 2r

~12r!3,

a2
052

2

3

~11r!

~12r!2
,

a3
05A 2r

~12r!3

1111r1r2

18r~12r!
. ~22!

The eigenvalue expression, Eq.~19!, is a power series expan
sion in N21/2 with the scaling variableaN3/2.0 ande.0
fixed. ~If a.0 and finite, the asymmetricXXZ chain is in
the critical phase and hence the ground state energy an
low lying excitations possess finite-size corrections anal
in N21.! Whene→0 with another crossover scaling variab
eAN fixed, the infinite series Eq.~19! reduces to a series i
1/(eAN).

Inserting the zeroth order values ofxc and bm,k , and
keeping only the leading order terms in Eqs.~19! and ~20!,
one then obtains

A 2pN3

r~12r!
@l~a!2a v̄#

5eH S 2
4p2

3
Y3

0~z! D2@2pY1
0~z!#J ~0,e<1!,

~23!

aA2pr~12r!N35@2pY1
0~z!#. ~24!

Here v̄ is the exact average current,er(12r)N2/(N21).
The second term on the right-hand side of Eq.~23! appears
due to our choice of the exactv̄ on the left-hand side of Eq
~23!. Except for that, the similarity of Eq.~23! to Eq. ~11! is
obvious. One simply needs to relateYm

0 (z) to f k(C). In the
Appendix, we show, by changing the integration contours
Eq. ~21!, that 2pY1

0(z) is indeed nothing but a different form
of f 3/2(C), provided the variablesz andC are related byC
the
c

f

5epz. So is24p2Y3
0(z)/3 of f 5/2(C). Moreover, we show in

the Appendix that the analytic continuation of Eq.~21! to the
region Imz.1 naturally reproduces the analytically conti
ued forms of Eqs.~15! and ~16!. Therefore, the generaliza
tion of Eq.~11! to eÞ1 is achieved by a factore multiplying
the right-hand side of Eq.~11!. Consequently, by Eqs.~9!,
~10!, ~23!, and~24!, one obtains the LDF in the form

f ~y!.eAr~12r!

pN3
HS y

er~12r! D , ~25!

where the universal scaling functionH(x) is given in the
parametric form satisfying the relation

H~x!5
f 5/2~C! f 3/28~C!2 f 5/28~C! f 3/2~C!

A2 f 3/28 ~C!
, ~26!

x5
f 5/28~C!2 f 3/28~C!

f 3/28~C!
, ~27!

with 8 denoting the derivative with respect toC. H(x), as
defined here, isH(x11) of @4,5#, the difference originating
from using exactv̄ in Eqs. ~7! and ~23!. Thus it has the
following asymptotic behaviors:

H~x!.5
2x2 for uxu!1,

2
2

5
A3

p
x5/2 for x→`,

2
4

3
Apuxu3/2 for x→2`.

~28!

Equation~25! is the generalization of the result of@4,5#.

IV. FINITE-SIZE CORRECTIONS IN DISCRETE
DYNAMICS

Finite-size correction is useful in comparing theoretic
predictions with simulation data. In simulations, particle co
figurations are updated in discrete time steps, and to desc
such situations, Eqs.~1! and ~4! should be replaced by thei
discrete time versions. For example, Eq.~4! is replaced by

Ft11~s;a!2Ft~s;a!5
1

N (
s8

^suM us8&Ft~s8;a!,

~29!

where one update interval is set asdt51/N and t5t/N.
These difference equations reduce to the continuous t
versions, Eq.~1! and Eq.~4!, in the limit N→`. Thus the
leading terms inN of all quantities are the same in bot
versions. However, there appear differences in the finite-
corrections and we work in the discrete version. Using E
~29!, Eq. ~6! is then modified to ^eaYt&5(sFt(s;a)
;em(a)t, where

m~a!5N lnS 11
l~a!

N D . ~30!
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Therefore the LDF is the Legendre transformation ofm(a)
2a v̄.

From Eqs.~19!, ~20!, and ~30!, m(a)2a v̄ is written as,
including its next leading term,

A 2pN3

r~12r!
@m~a!2a v̄#

.e$ f 5/2~C!2 f 3/2~C!%2
e2

2A2
Ar~12r!

pN
f 3/2~C!2.

~31!

The last term on the right-hand side of Eq.~31! arises from
the first nonlinear term in the expansionm(a)5l(a)
2l(a)2/2N1•••. The leading correction term inm(a)
2a v̄ is of orderN21/2, while that inl(a)2a v̄ is of order
N21. Since the leading correction toaA2pr(12r)N3 is
also of orderN21, using Eq.~24! and Eq.~31!, one finds that

f ~y!5eAr~12r!

pN3 FHS y

er~12r! D
1eAr~12r!

pN
H1S y

er~12r! D1O~N21!G ,
~32!

whereH1(x) is determined from Eq.~27! and

H1~x!52
f 3/2~C!2

4
. ~33!

The correction term shows dependence on the particle
sity and the asymmetry parameter, and hence is not uni
sal. The asymptotic behaviors ofH1(x) are

H1~x!.H 22x2 for uxu!1

23x3/~2p! for x→`

22puxu for x→2`. ~34!

Another quantity of interest concerning the finite-size c
rection is the cumulant ratio considered in@5#. It is defined as

lim
t→`

Rt5 lim
t→`

^Yt
3&c

2

^Yt
2&c^Yt

4&c

, ~35!

where^Yt
n&c are the cumulants ofYt and are evaluated from

lim
t→`

^Yt
n&c

t
5

dnm~a!

dan U
a50

. ~36!

Using Eqs.~24! and ~31!, we find

lim
t→`

^Yt
2&c

t
5eN3/2@r~12r!#3/2

Ap

2

3F122eAr~12r!

pN
1O~N21!G ,
n-
r-

-

lim
t→`

^Yt
3&c

t
5eN3@r~12r!#2pS 3

2
2

8A3

9 D @11O~N21!#,

lim
t→`

^Yt
4&c

t
5eN9/2@r~12r!#5/2p3/2S 15

2
1

9A2

2
28A3D

3@11O~N21!#. ~37!

Therefore the cumulant ratio has anO(N21/2) correction
term,

lim
t→`

Rt52
S 3

2
2

8A3

9 D 2

S 15

2
1

9A2

2
28A3D

3S 112eAr~12r!

pN
1O~N21! D . ~38!

We note in passing that in the continuous time versi
our method shows

lim
t→`

^Yt
2&c

t
5eN3/2@r~12r!#3/2

Ap

2

3F11
1111r211r2

8r~12r!N
1O~N23/2!G . ~39!

This is in exact agreement with the expansion derived, w
the help of Stirling’s formula, from Eq.~6! of Derrida and
Mallick @7#.

V. DISCUSSION

The main results of this paper are Eqs.~25!, ~32!, and
~38!. The universal scaling function of the LDF,H(x), first
defined in@4,5# for the TASEP, is reproduced for the PASE
in Eq. ~25!. The only change in this generalization is th
modification of the scaling variable by a simple factore, the
asymmetry parameter. Physically, this is equivalent to a
caling of time bye. Nontrivial e-dependence ofl(a) ap-
pears only in higher orders ofN21/2 in Eq. ~19!. To compare
analytic results with simulation data, the finite-size corre
tion terms in the discrete time dynamics are important. Th
are derived for the LDF and the cumulant ratio in Eqs.~32!
and ~38!, respectively. One sees that the finite-size corr
tions in the discrete time dynamics are ofO(N21/2). Also
they depend onr ande explicitly in both versions implying
that they are non-universal.

Instead of the statistics ofYt , the total displacement, on
could have asked for the statistics of the displacement ac
one bond. In this case, one has to deal with an asymme
XXZ chain with a twisted boundary condition,sN11

6

5e7as1
6 and sN11

z 5s1
z , and analysis similar to that pre

sented here can be carried out@8#. In particular, ifJt is the
displacement across theNth bond, one can show tha
^eaJt&;^eaYt /N&;el(a/N)t ~in the continuous time notation!.
Therefore, the LDF and the long time behaviors of the c
mulants ofJt are the same as those ofYt /N. This is why Eq.
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FIG. 1. Contours forI 1 ~a! andI 2 ~b!. Rez is assumed to be negative anduIm zu,1. The semicircles about the origin have the small ra
d, which are set to be zero in the last step.
-
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~39! agrees with the result of@7# where limt→`^Jt

2&c /t is
obtained. However,̂Jt

2&c2^(Yt /N)2&c , the surface width in
the growth model language, saturates to a finite value
O(N) as t→`.
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APPENDIX: PROPERTIES OF Ym
0
„z…

In this Appendix, we show the equivalence off 11m/2(C)
and Ym

0 (z) (m51,3,5,. . . ). The former will be defined
later extending the definitions off 3/2(C) and f 5/2(C), and the
latter is defined in Eq.~21!. We take Eq.~21! as defining
Ym

0 (z) for any complexz.

1. Simple form of Y1
0
„z…

We first pay attention toY1
0(z) since Ym

0 (z) (m
53,5, . . . ) can beevaluated fromY1

0(z) through the recur-
sion relation,dYm12

0 (z)/dz52(m12)Ym
0 (z)/2 @3#. Equa-

tion ~21! for m51 is written as

2Y1
0~z!52 i ~z1 i !1/21

2

3
~z1 i !3/2

1E
0

`

dt
~z1 i 2t !1/22~z1 i 1t !1/2

ept21
1 i ~z2 i !1/2

1
2

3
~z2 i !3/21E

0

`

dt
~z2 i 2t !1/22~z2 i 1t !1/2

ept21
.

~A1!

SupposeuIm zu,1 and let I 1 and I 2 be the first and the
second integrals in Eq.~A1!, respectively. The two integra
tions are over the positive real axis of the complex-t plane,
denoted byK in Fig. 1. Our method is to deform the contou
in the complex-t plane such that only simple integrals rema
and the additive terms cancel out. Each integral has
terms. For the first term ofI 1 , K is deformed toA11A2
1A3 as shown in Fig. 1~a!, while for the second term ofI 1,
of

h
y
-

o

to B11B21B3 in Fig. 1~a!. Similarly, K is deformed toE1

1E21E3 andD11D21D3 for the first and second terms o
I 2, respectively, as shown in Fig. 1~b!. We then have

I 15E
A11A21A3

dt
~z1 i 2t !1/2

ept21
2E

B11B21B3

dt
~z1 i 1t !1/2

ept21

5E
0

u

du8
i ~z1 i !1/2

p
2E

0

2(p2u)

du8
i ~z1 i !1/2

p

1E
0

1

dj
~z1 i !3/2~12j!1/2

ep(z1 i )j21
2E

0

1

dj
2~z1 i !3/2~12j!1/2

e2p(z1 i )j21

1E
0

`

ds
~2s!1/2

ep(z1 i )eps21
2E

0

`

ds
s1/2

e2p(z1 i )eps21

5 i ~z1 i !1/22
2

3
~z1 i !3/21E

0

`

ds
~2s!1/2

ep(z1 i )eps21

2E
0

`

ds
s1/2

e2p(z1 i )eps21
, ~A2!

whereu5Arg(z1 i ). Similarly,

I 25E
E11E21E3

dt
~z2 i 2t !1/2

ept21
2E

D11D21D3

dt
~z2 i 1t !1/2

ept21

5E
0

2(p2u)

du8
i ~z2 i !1/2

p
2E

0

u

du8
i ~z2 i !1/2

p

1E
0

1

dj
~z2 i !3/2~12j!1/2

ep(z2 i )j21
2E

0

1

dj
2~z2 i !3/2~12j!1/2

e2p(z2 i )j21

1E
0

`

ds
~2s!1/2

ep(z2 i )eps21
2E

0

`

ds
s1/2

e2p(z2 i )eps21

52 i ~z2 i !1/22
2

3
~z2 i !3/21E

0

`

ds
~2s!1/2

ep(z2 i )eps21

2E
0

`

ds
s1/2

e2p(z2 i )eps21
, ~A3!

with u5Arg(2z1 i ).
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FIG. 2. Contours forI 1 ~a! andI 2 ~b!. Rez is assumed to be negative and 1,Im z,3. Compared with Fig. 1, a pole is placed inside t
contour forI 1 and the integration over the semicircle about the origin makes a different~sign-changed! value in I 2.
on

l
e

.

e

ar

.

We note that the branch cuts for the square-root functi
in I 1 and I 2 are in the opposite directions@3#, so the two
integrals having the factor (2s)1/2 in their integrands cance
out when I 1 and I 2 are added. Therefore we arrive at th
conclusion that

Y1
0~z!5E

0

`

ds
s1/2

e2pzeps11
~ uIm zu,1!. ~A4!

Next, consider the region 1,uIm zu,3. If 1,Im z,3,
the contours shown in Fig. 1 change to those shown in Fig
Compared with Fig. 1, a pole att52i is placed inside the
contour for I 1 and the direction of the integration over th
semicircle about the origin is reversed forI 2. These changes
produce extra contributions 2i (z2 i )1/2 for both I 1 and I 2.
Therefore, we obtain

Y1
0~z!52i ~z2 i !1/21E

0

`

ds
s1/2

e2pzeps11

522~2z1 i !1/21E
0

`

ds
s1/2

e2pzeps11
~1,Im z,3!.

~A5!

Similarly, for 23,Im z,21, we find

Y1
0~z!522i ~z1 i !1/21E

0

`

ds
s1/2

e2pzeps11

522~2z2 i !1/21E
0

`

ds
s1/2

e2pzeps11

~23,Im z,21!. ~A6!

When uIm zu increases further, more and more poles
placed inside the contours forI 1 and I 2, and corresponding
residues should be added. But recalling thatYm

0 (z) is used to
express reala and l(a), Eqs.~A4! and ~A5! are sufficient
for our purpose.

2. Relation betweenf 11m/2„C… and Ym
0
„z…

We now make the identificationC5epz with C real. C
.0 if z is real, and21,C,0 if z52x1 i 2 with x.0. In
both cases, we have, from Eq.~A4!,
s

2.

e

Y1
0~z!5E

0

`

ds
s1/2

C21eps11
. ~A7!

Equation~A7! admits a series expansion

Y1
0~z!5

1

2p (
n51

`
~21!n11Cn

n3/2
, ~A8!

whenuCu,1. The second branch in the region21,C,0 is
obtained if z52x1 i 1 with x.0. In this case, using Eq
~A5!,

Y1
0~z!52

2

Ap
@2 ln~2C!#1/21E

0

`

ds
s1/2

C21eps11

52
2

Ap
@2 ln~2C!#1/21

1

2p (
n51

`
~21!n11Cn

n3/2
.

~A9!

Comparing Eqs.~A7! and ~A9! with Eqs.~13! and ~15!, we
have

f 3/2~C!52pY1
0~z!, ~A10!

provided C5epz, the two branches of21,C,0 corre-
sponding touIm zu512 and uIm zu511, respectively.

Next, we definef 11m/2(C)(m51,3,5, . . . ) by Eq.~A10!
and the recursion relation

d

d~ ln C!
f 11(m12)/2~C!5 f 11m/2~C!, ~A11!

with the initial condition f 11m/2(0)50. Then f 11m/2(C)
takes the form

f 11m/2~C!5 (
n51

`
~21!n11Cn

n11m/2
, ~A12!

in the first branch and



io

6482 PRE 59DEOK-SUN LEE AND DOOCHUL KIM
f 11m/2~C!5~21!(11m)/2
~1/2!!

~m/2!!
4Ap@2 ln~2C!#m/2

1 (
n51

`
~21!n11Cn

n11m/2
, ~A13!

in the second branch. Comparison of the recursion relat
of Ym

0 (z) and f 11m/2(C) then leads to the identification

ns

f 11m/2~C!5~2p!(m21)/22p
~1/2!!

~m/2!!
Ym

0 ~z!. ~A14!

For example, f 3/2(C)52pY1
0(z), f 5/2(C)524p2Y3

0(z)/3,
f 7/2(C)58p3Y5

0(z)/15, etc.
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