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Large deviation function of the partially asymmetric exclusion process
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The large deviation function obtained recently by Derrida and LeboWitgs. Rev. Lett80, 209 (1998 ]
for the totally asymmetric exclusion process is generalized to the partially asymmetric case in the scaling limit.
The asymmetry parameter rescales the scaling variable in a simple way. The finite-size corrections to the
universal scaling function and the universal cumulant ratio are also obtained to the leading order.
[S1063-651%99)08006-X|

PACS numbes): 02.50-—r, 05.70.Ln, 82.20.Mj

I. INTRODUCTION and discussions, while Appendix shows the equivalence of
two representations of the crossover scaling functions.
The asymmetric simple exclusion procd#sSEP is the
simplest driven diffusive system where particles on a one- ||. MODEL AND THE LARGE DEVIATION FUNCTION
dimensional lattice hop with asymmetric rates under ex- ) ) . ]
cluded volume constraints. Due to its simple but nontrivial We consider the dynamics of the one-dimensional model
out-of-equilibrium properties, it has attracted much attentiorin @ periodic lattice(ring) of N sites with P particles[2].
recently. We refer 1] for a review of recent developments. Each sitej (1<j<N) is either occupied by a particler{
For the prototype case of single-species, sequential updaf —1) or vacant ¢;=+1). The PASEP considered in this
ing dynamics, the time evolution operator of the probabilityWork is defined by the following random sequential updating
distribution of particle configurations turns out to be therule: During each time intervalt, each particle can hop to
asymmetricXXZ chain [2,3]. The latter admits the Bethe its right or left with probability3(1+ €)dt and 3(1— €)dt,
ansatz solution for its eigenfunctions and eigenvalues whefespectively, provided the target site is empty=1 corre-
it is on a periodic ring. Due to its integrability, one can Sponds to the TASEP considered H5] and we work in the
obtain many exact results of physical interest. In particularfegion O<e<1. Interpretingo;= *1 as the local slope of an
the large deviation functiofLDF) which describes the dis- interface in (1) dimensions, one can map the model to
tribution of the total current has been obtained recently for 4he single step moddb,6], an archetype of the KPZ-class
ring of N sites withP partic|es under a periodic boundary models. The quantity of main interest in this work is the total
condition[4,5]. The LDF also describes the height distribu- displacementY; which is the total number of hops of all
tion of the Kardar-Parisi-ZhanKPZ2)-type growth models particles to the right minus that to the left between time 0
and is believed to be universal. To confirm the universalityand timet. In the single step model languagé, is the total
of LDF, Derrida and Apperf5] compared a cumulant ratio number of particles deposited between time 0 and time
obtained from the analytic LDF with numerical simulations Let o denote a system configuratidry, . .. ,on} and
of several stochastic models believed to belong to the KPZP(o) the probability of finding the system in a configuration
universality class. o at timet. The master equation for the time evolution of
Since the LDF has been obtained[#5] for the totally  P¢(o) can then be written as
asymmetric exclusion proce$SASEP), where particle hop-
ping occurs only to the right, it would be desirable to calcu- dPy(o) , ,
late it for the partially asymmetric exclusion process at _2, (alHla")Pi(a”), @
(PASEB, where the particles can hop both to the right and to 7
the left but with different rates. In this paper, we report O”Where(o-|H|a’> is the representation, on the basis whefe

this generalization using the crossover scaling functions of, . diagonal, of the time evolution operatdrgiven by
the XXZ chain obtained previously if3]. Our method as- ’

sumes from the outset thhtis sufficiently large, but allows N 1+
. . . . . € _
systematic evaluation of the finite-size corrections. We re- H=— 2 — UJ+<71+1
produce the universal scaling function ¢#,5 for the =1 2
PASEP and find that the asymmetry parameter rescales the 1—e 1
_scaling va_rie_lble _in a simple_ way. We als_o evaluate _the lead- + o Uj++l+_(gj20jz+l_ 1)}, 2)
ing order finite-size corrections to the universal scaling func- 2 4

tion and the cumulant ratio. .

This paper is organized as follows. In Sec. II, we intro-Here,o; and o are the Pauli spin operators ang=*1
duce the model and notation. In Sec. Ill, we make the conare the eigenvalues m;sz.
nection between the present problem and the resul{S]of Next, following [4,5], we introduceP(o,Y), the joint
and derive the LDF for the PASEP. The finite-size correc-probability that the system is in a configurationand Y,,
tions are evaluated in Sec. IV. Sec. V contains the summarthe total displacement, takes the vaiat timet, and let
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0

Floia)= 2 e"Py0.Y). (3)
Then,F(o;a) evolves according to
TUID S (oMl )Fi(oa), 4
where
tee ;)U;g;ﬁ %(gjzgjzﬂ—l) G

The “Hamiltonian” —M is the asymmetricXXZ chain
Hamiltonian studied, e.g., if8]. Let \(«) denote the largest
eigenvalue oM, regarded as a function ef. Then, one can
show that

(=2 Fy(o;a)~eM)t (6)

ast—oo and the long time behaviors of all cumulantsYgf
are derived from\ («).

The LDFf describes the long time behavior of the distri-
bution of Y/t and is defined by

()

1 Yo —
f(y)=I|mYIn Pro T:U+y

t—o

wherev_zlimt_,w(YQ/t is the mean current for a ring of

finite sizeN. Note thatv =d\ (@)/da|,_,. This can be eas-
ily obtained from a first order perturbation calculation as

v=ep(l-p)N——+ 8

N—-1°
Our definition off(y) is slightly different from that of4,5]
in that we use the exact value of Eq. (8), in Eq. (7) while
[4,5] use its bulk valueep(1— p)N. Since(e®"t)~eMt on
the one hand, and(e*Yy==3___ProfY,=Y]e*"

~maxefM*av+ay) on the other, the LDF is related to °

Ma)— av by the Legendre transformation

f(y)=[\(a)—av]—-ay, (9)

d _
d—a[k(a)—av]. (10
Therefore, the largest eigenvalud «) of the asymmetric
XXZ chainM determines the LDF.

lll. N(a) IN THE SCALING LIMIT

In [4,5], A(«) for the case ofe=1 is obtained for arbi-
trary N and P. Then, one takes the scaling limN—c, «
—0, with the scaling variablexN®? and the densityp
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=P/N fixed. In this scaling limit\ («) takes the parametric

form
p(1—p)
Ma)=aNp(1—p)+ \[——f5:C)(e=1), (1)
27N3

aN2mp(1—p)N3=f4,(C), (12
wheref(C) are defined as
o —C)n
farC)=— 2 (nT (13)
o —C n
fseC)=— 2 (nTz) (14)

for |C|<1. To probe the regione2mp(1— p)N3<f),
(—=1), f (C) are analytically continued as

o

4 C = —ayal—in(-C -3, L g
n=1 n

foC) = J [—In(—C)]3%- E CO e
= 52

for —1<C<0, while for a\27p(1—p)N3>fz,(1), one

may use the integral forms

@ Vs
f3/2(C)=27TJ'0 dSm, (17)
fS,Z(C)=27TJ:dsJ§|n(1+Ce*’fS). (18)

To generalize Eqs(11) and (12) to the case of PASEP
(0<e=<1), we limit our attention only to the scaling limit
and use the results of Kif8]. In [3], the low-lying eigen-
values of the asymmetrié XZ chain near the stochastic line
[@a=0 in Eq. (5)] have been expressed as perturbative ex-
pansions inN~Y? with a scaling variable, which is essen-
tially the same asyN~%2 held constant. Therefore the re-
sults of[3] applied to the ground state ener@enoted a&y,
in [3]) can be used immediately to obtain the LDF.

The notationgy, A, s, H, and v used in[3] translate into
the present ones ag, (cosha+esinha)™?, (sinha
+ ecosha)/(cosha+ esinha), (a+tanh e)/2, and tanhle,
respectively. Using these and taking care of different normal-

ization[ A (a) = —EY/A], one can rewrite Eq58a of [3] as

T m/2
N) , (19

N a) —62 Z

0
=1 K= 1(1 X)k+1 (Z)(
and Eq.(549 of [3] as

— 1)k

C

* . o\ (m+2)/2
> Ebmk Ym<z>(ﬁ . (0

m=1 k=1
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In the above sumsy?, for evenm vanishes for the ground
state and only oddh terms are needed. Fon odd, Y° m(2)
with real z are defined as

m+2iz ] — m-—2iz . -
Y%(Z)Zm(—l Z+|) +2(m—+2)(|\/2—|)
Jd —iNZHi )™= (—iz+i—t)"
e™—-1
N
@)
2| eﬂ't_l

The coefficientx, andb, , are recursively determined order
by order inN~%2 from a set of equations, as explained
and X.=—p/(1—p)+O(N">?, by, =bp ,+O(N"*?.
bmk is the coefficient ofx™ in the series expansion of
(S 1amxm)k wherea,,=a%+0O(N~%? and the first few
values ofa needed in this work are given by

0_ 2p
AEN(T-p®

(1+p)

(1-p)?
a0- [ 2p 31+11p+p2-
(1-p)° 18p(1—p)
The eigenvalue expression, E9), is a power series expan-

sion in N2 with the scaling variablexN®?>0 ande>0
fixed. (If >0 and finite, the asymmetriEXZ chain is in

0

2
32=_§

(22
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=e™. So is—4mw?Y? 3(2)/3 of f5,(C). Moreover, we show in
the Appendix that the analytic continuation of E81) to the
region Imz>1 naturally reproduces the analytically contin-
ued forms of Eqs(15) and(16). Therefore, the generaliza-
tion of EqQ.(11) to e# 1 is achieved by a factar multiplying
the right-hand side of Eq11). Consequently, by Eqg9),
(10), (23), and(24), one obtains the LDF in the form

[p(1-p)
fy)=e N3 ”(

where the universal scaling functidd(x) is given in the
parametric form satisfying the relation

y
EP(l_P)) ' @9

f5(C)f30' (C)— 5" (C)f3C)
V2f4,(C)

H(x)= , (26)

_ f5' (C)— 3,/ (C)
f3,'(C)

. (27)

with " denoting the derivative with respect @ H(x), as
defined here, i$1(x+1) of [4,5], the difference originating

from using exacty in Egs. (7) and (23). Thus it has the
following asymptotic behaviors:

—x? for |x|<1,

2 /3
——\ﬁxs’2 for x—oo,
5V

4
- §\/F|x|3’2 for x— —oo.

H(x)= (28

the critical phase and hence the ground state energy and the _ o
low lying excitations possess finite-size corrections analytigsquation(25) is the generalization of the result pf,5].
in N™1.) Whene— 0 with another crossover scaling variable

e\/ﬁ fixed, the infinite series Eq19) reduces to a series in
1/(e\N).

Inserting the zeroth order values & and by, ,, and
keeping only the leading order terms in E¢$9) and (20),
one then obtains

27N3 _
Npa=pih (@ -avl

(-5 w50 |-evta
=€ ——Y 3(2) [27TY (2)]; (0<e=<1),

(23
a\27p(1-p)N3=[27Y}(2)].

Herev is the exact average currentp(1—p)N%/(N—1).
The second term on the right-hand side of E2B) appears
due to our choice of the exagton the left-hand side of Eq.
(23). Except for that, the similarity of Eq23) to Eq.(11) is
obvious. One simply needs to relatd(z) to f,(C). In the

(24

IV. FINITE-SIZE CORRECTIONS IN DISCRETE
DYNAMICS

Finite-size correction is useful in comparing theoretical
predictions with simulation data. In simulations, particle con-
figurations are updated in discrete time steps, and to describe
such situations, Eq$1l) and(4) should be replaced by their
discrete time versions. For example, E4). is replaced by

Fri(oa)—F(o;a)=

1
NE, (aM|o")F (0";a),
Y (29

where one update interval is set ds=1/N and t=7/N.
These difference equations reduce to the continuous time
versions, Eq(1) and Eq.(4), in the limit N—. Thus the
leading terms inN of all quantities are the same in both
versions. However, there appear differences in the finite-size
corrections and we work in the discrete version. Using Eq.
(29, Eq. (6) is then modified to({e*")=3 F(o;a)

Appendix, we show, by changing the integration contours of

Eq.(21), that 27Y9(2) is indeed nothing but a different form
of f4,(C), provided the variableg and C are related byC

w(@)=NIn| 1+

~e@t where
N a)
T) (30
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Therefore the LDF is the Legendre transformationudfx)
—av.

From Eqgs.(19), (20), and (30), ,u(a)—av_ is written as,
including its next leading term,

2wN°3 -
\/m[ﬂ(a) av]
=¢{f5(C)—f3(C)}— \/ Pl _p)fslz(c)
\/_

(31)

The last term on the right-hand side of E§1) arises from
the first nonlinear term in the expansion(a)=\(a)
—\(@)?/2N+---. The leading correction term in(«)

—av is of orderN~ Y2, while that in\ («) — av is of order

N~. Since the leading correction ta\2mp(1—p)N® is
also of ordeN ™1, using Eq.(24) and Eq.(31), one finds that

[p(1-p)] y
fY)=eN s ,H(Ep(l—p)>
[p(1=p)
€ 7TN InE]

whereH (x) is determined from Eq27) and

f3(C)?
YRRt

y
ep(1—p)

)+O(N—1)},
(32

Hy(x)=— (33
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y3
i’ I>c=EN‘?[;O(l—;O)]ZW(E—ﬂg [1+O(NH)],
t—oo t 2 9
lim ( t>°_6N9/2[p(1 ]5/2 3/2 125 %5—8\/5)
t—oo
X[1+O(N"H]. (37

Therefore the cumulant ratio has @(N~?) correction
term,

9

125 9[ \/_)

[p(1—p) _
x| 1+2e€ par +O(N 1)). (39

We note in passing that in the continuous time version,
our method shows

(Yo)e
t

Eaal

t—oo

IMR,= (

lim =EN3/2[p(1—p)]3/2g

t—oo

1+11p—11p?

8p(1=p)N +O(N"%?)|,

(39

This is in exact agreement with the expansion derived, with
the help of Stirling’s formula, from Eq(6) of Derrida and
Mallick [7].

The correction term shows dependence on the particle den-

sity and the asymmetry parameter, and hence is not univer-

sal. The asymptotic behaviors Bif;(x) are

—2x? for |x|<1
Hy(x)={ —3x%(2m) forx—oo
—2m|x| for x— —oo. (34

Another quantity of interest concerning the finite-size cor-

rection is the cumulant ratio considered §. It is defined as

(YD)?
limR,= lim —C, (35
U (Y)Y

where(Y}). are the cumulants of, and are evaluated from

m <YP>C :dn;“(a)
t da"

t—oo

(36)

t—oo
Using Eqgs.(24) and (31), we find

li <2>°_ 3/ 3"
im——=eN*p(1-p)]

t—oo
x 1—26\/’)(1_p)+0(N1)},
7N

V. DISCUSSION

The main results of this paper are E¢g5), (32), and
(38). The universal scaling function of the LDF,(x), first
defined in[4,5] for the TASEP, is reproduced for the PASEP
in Eq. (25. The only change in this generalization is the
modification of the scaling variable by a simple factgithe
asymmetry parameter. Physically, this is equivalent to a res-
caling of time bye. Nontrivial e-dependence ok (a) ap-
pears only in higher orders &f ¥ in Eq. (19). To compare
analytic results with simulation data, the finite-size correc-
tion terms in the discrete time dynamics are important. They
are derived for the LDF and the cumulant ratio in E(2)
and (38), respectively. One sees that the finite-size correc-
tions in the discrete time dynamics are ®{N~%?). Also
they depend om and e explicitly in both versions implying
that they are non-universal.

Instead of the statistics of,, the total displacement, one
could have asked for the statistics of the displacement across
one bond. In this case, one has to deal with an asymmetric
XXZ chain with a twisted boundary conditiongy,
=e* %, andof,,=0%, and analysis similar to that pre-
sented here can be carried ¢6i. In particular, ifJ; is the
displacement across thblth bond, one can show that
(e¥)~ (e*Yt/Ny~ gMa/N)t (in the continuous time notation
Therefore, the LDF and the long time behaviors of the cu-
mulants ofJ; are the same as thosef/N. This is why Eq.
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FIG. 1. Contours fot, (a) andl, (b). Rezis assumed to be negative aligh z| < 1. The semicircles about the origin have the small radii
8, which are set to be zero in the last step.

(39) agrees with the result df7] where lim_.(J%)./t is  to B;+B,+Bj in Fig. 1(a). Similarly, K is deformed toE;
obtained. However,J%).—((Y,/N)?)., the surface width in  +E,+E3 andD;+ D,+ D5 for the first and second terms of
the growth model language, saturates to a finite value of,, respectively, as shown in Fig(ld. We then have
O(N) ast—oo.
(z+i—1)1? (z+i+t)1?
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APPENDIX: PROPERTIES OF Yom(z)

o (_3)1/2 o S1/2
In this Appendix, we show the equivalencefgf, ,»(C) + fo dsm_ fo Sm
and Y%(z) (m=1,3,5,...). The former will be defined
later extending the definitions é§,,(C) andfs,(C), and the ] ] 2 ] o0
latter is defined in Eq(21). We take Eq.(21) as defining =i(z+i)"%- §(Z+|)3/2+ J;) ds
Y(2) for any complexz.

( _ S)1/2

ew(z+i)ews_ 1

w 112
1. Simple form of Y9(2) - fo dsm, (A2)

We first pay attention toYY(z) since Y%(z) (m
=3,5,...) can besvaluated fromY?(z) through the recur-  where 9=Arg(z+i). Similarly,
sion relation,dY?,, ,(2)/dz=— (m+2)Y%(2)/2 [3]. Equa-

tion (21) for m=1 is written as (z—i—1)12 (z—i+1)12
|2=f dt——f dt———
2 E{+E,+E e™—1 D,+D,+D e™—1
2YY(2)= —i(z+1) Y2+ S (2+D)*? P R
_f—(w—@)da,i(z—nl/z f@de,i(z—i)”2
= (z+i-t)P—(z+i+ty?? 0 ™ 0 ™
+f dt " +i(z—1i)
0 e™—1 +fld§(z_i)3/2(1_§)l/2 fldg_(z_i)alz(l_g)l/z
2 o [, (zmi=P=(z-i+ )2 0 em@ i1 0 e m(EE—1
+=(z—i) +f dt .
3 0 e™—1 o (—s)12 ° sl2
S.—_ -, .~
(Al) + JO d eﬂ'(zfl)eﬂn's_l fO dse,ﬂ.(z,l)eﬂ.s_l
Suppose|lmz|<1 and letl; and I, be the first and the o 2y [ (—s)¥?
second integrals in EqAL), respectively. The two integra- = —1(z=1)""= 3 (z=D)™"+ . ds—e”(zfi)e”s—l
tions are over the positive real axis of the complgxane,

in the complext plane such that only simple integrals remain
and the additive terms cancel out. Each integral has two
terms. For the first term of;, K is deformed toA;+A,

+ A3 as shown in Fig. @), while for the second term df;,  with 6=Arg(—z+i).

denoted by in Fig. 1. Our method is to deform the contours foc gl2
- (A3)

S———————,
0 e W(Z—I)eWS_ 1
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FIG. 2. Contours fot 4 (a) andl,
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(b)

(b). Rez is assumed to be negative ane lin z<3. Compared with Fig. 1, a pole is placed inside the

contour forl; and the integration over the semicircle about the origin makes a diffésigm-changedvalue inl .

We note that the branch cuts for the square-root functions

in I, andl, are in the opposite directior{8], so the two
integrals having the factor<{s)? in their integrands cancel
out whenl, andl, are added. Therefore we arrive at the
conclusion that

sl
(JImz|<1).

_7TZe’7TS+ 1

Yd(z)= f ds (A4)

Next, consider the region<|Imz|<3. If 1<Imz<3,

1/2

* s
Y(2)= J ds——. A7
12) o Cle™+1 (A7)
Equation(A7) admits a series expansion
* (_ 1)n+1Cn
O7y=_—_ A
Yi@)=5- 2, pa (A8)

the contours shown in Fig. 1 change to those shown in Fig. 2.

Compared with Fig. 1, a pole at=2i is placed inside the
contour forl, and the direction of the integration over the
semicircle about the origin is reversed 1gr These changes
produce extra contributionsi@—i)/? for both I, and 1.
Therefore, we obtain

o - g2
Yi(z)=2i(z—i 1’2+f ds———
(2)=2i(z=1)"2+ | s
- 12
_ S
=—2(—z+|)1’2+f ds (1<Imz<3).
0 e ™e™+1
(A5)
Similarly, for —3<Imz<-1, we find
. w0 g2
Yi(z)=—2i(z+i 1’2+f ds————
@)= =2 | s
. w0 gl2
:—2(—z—|)1’2+f ds——
0 e "e™+1

(—=3<Imz<—-1). (A6)

When |Im z| increases further, more and more poles are

placed inside the contours fo§ andl,, and corresponding
residues should be added. But recalling fh%(z) is used to
express reakk and\ («), Egs.(A4) and (A5) are sufficient
for our purpose.

2. Relation betweenf ;, ,,»(C) and Y° m(2)

We now make the identificatio®=e™ with C real.C
>0 if zisreal, and—1<C<0 if z=—x+i" with x>0. In
both cases, we have, from E@4),

when|C|<1. The second branch in the regierl<C<0 is
obtained ifz=—x+i" with x>0. In this case, using Eq.

(A5),
0 2 1/2 1/2
Yi(z)=— \/_[ In(—C)] +j dSm
2 ( 1)n+lcn
=- \/_;[ In(— C)]1’2+ 5 Z,l —

(A9)

Comparing Eqs(A7) and (A9) with Egs.(13) and(15), we
have

faC)=2mY{(2), (A10)
provided C=e™, the two branches of-1<C<0 corre-
sponding toiImz|=1" and|Imz=1", respectively.

Next, we definef; . ,,»(C)(m=1,3,5...) by Eq.(A10)
and the recursion relation

dn ey MLm= frima(C), (A11)

with the initial condition f{, ,2(0)=0. Then f;, ,,»(C)
takes the form

* )n+1Cn
2 1+m/2 !

f1ema(C (A12)

in the first branch and
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(1/2)! (1/2)!
_ 1+m)i2 2 —(_ ~1)2 0
f1ima(C)=(—1)*m Mm/;[—ln(—C)]m f1maAC)=(—m) ™) Zﬂ(mlz)!Ym(Z)- (A14)
o (_1)n+lCn
£S (13
_ 0 _ 24,0
in the second branch. Comparison of the recursion relation§°" examplge,gg,z(C)—erYl(z), f5(C) = —4m°Y3(2)/3,
of YO (2) andf, w»(C) then leads to the identification f2(C)=8m°Y5(2)/15, etc.
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