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Dynamic states of a continuum traffic equation with on-ramp
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We study the phase diagram of the continuum traffic flow model of a highway with an on-ramp. Using an
open boundary condition, traffic states and metastabilities are investigated numerically for several representa-
tive values of the upstream boundary fluxf up and for the whole range of the on-ramp fluxf rmp. An inhomo-
geneous but time-independent traffic state~standing localized cluster state! is found and related to a recently
measured traffic state. Due to the density gradient near the on-ramp, a traffic jam can occur even when the
downstream density is below the critical density of the usual traffic jam formation in homogeneous highways,
and its structure varies qualitatively withf rmp. The free flow, the recurring hump~RH! state, and the traffic jam
can all coexist in a certain metastable region where the free flow can undergo phase transitions either to the RH
state or to the traffic jam state. We also find two nontrivial analytic solutions. These solutions correspond to the
standing localized cluster state and the homogeneous congested traffic state~one form of the traffic jam!, which
are observed in numerical simulations.@S1063-651X~99!10405-7#

PACS number~s!: 64.60.My, 89.40.1k, 05.40.2a
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I. INTRODUCTION

Traffic flow, a many body system of strongly interactin
vehicles, shows various complex behaviors. Numerous
pirical data of the highway traffic have been obtained@1–5#,
which demonstrate the existence of distinct dynamic sta
and dynamic phase transitions between them. Recent stu
reveal physical phenomena such as hysteresis, self-organ
criticality, and phase transitions in the traffic flow@6,7#.

The transition from the homogeneous free flow to t
jammed state has been studied by microscopic and ma
scopic models without any inhomogeneity in the syst
@8–14#. The traffic jam, one of the dynamic phases of t
traffic flow, appears spontaneously when the vehicle den
is between the two critical valuesrc1 and rc2(.rc1). The
traffic jam, however, can appear even belowrc1. The traffic
jam can be triggered by localized perturbations provid
that the density is larger than a different critical val
rb (,rc1). As a result, in the density range betweenrb and
rc1, both the free flow and the traffic jam can exist, resulti
in metastability and hysteresis@15–17#. It is observed that
some features of the traffic jam are uniquely determined
underlying dynamics, and independent of initial conditio
of the traffic flow that lead to the jam@4#. The presence o
such characteristic features is also reproduced by ana
and numerical studies of traffic flow models@15,18#.

The synchronized traffic flow, another dynamic phase
the traffic flow, is identified in recent measurements on hi
ways@2,3#. The synchronized traffic flow resembles the tra
fic jam in the sense that both states produce inhomogen
density and flow profiles. The dynamics of the synchroniz
flow is however much more complicated than that of t
traffic jam. One notable property of the synchronized tra
flow is the high level of its average flow, which almo
matches the flow of the free flow state. The synchroniz
traffic flow is observed, in nearly all occasions, localiz
near ramps and it is thus believed that ramps are impor
for the stability of the synchronized traffic flow. The disco
PRE 591063-651X/99/59~5!/5101~11!/$15.00
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tinuous transition from the free flow to the synchronized flo
can be induced by localized perturbations of finite amp
tudes. Measurements show a hysteresis effect in the p
transitions between the free flow and the synchronized fl
the transition from the synchronized flow to the free flo
occurs at a lower on-ramp flux, or lower upstream flux, th
that for the reverse transition. In Ref.@19#, the recurring
hump~RH! state is proposed as an origin of the~nonstation-
ary type! synchronized traffic flow@3#, and the dynamic
phase transitions between the RH state and the free flow
investigated using continuum traffic equations that take i
account the effect of ramps. In the RH state, the veh
density and the velocity show temporal oscillations whi
are localized near on-ramps. That the synchronized flow
maintained for several hours can be explained from one
portant property of the RH state, its being a limit cycle of t
traffic equations. The RH state can be characterized a
self-excited oscillator, where constant vehicle flux from
on-ramp serves as a source of the repeated excitation
each excitation is subsequently relaxed within a localiz
region. The traffic equations also describe the hysteresis
nomena between the RH state and the free flow.

The traffic jam and the synchronized traffic flow are d
tinct phases of traffic flow. However, the distinction betwe
the conditions for the appearance of the jam state and
synchronized flow is not clearly identified yet, both in me
surements and in model studies. Highway measurem
analysis reports that almost identical initial states of the tr
fic flow can evolve to both the traffic jam and the synchr
nized flow @2#.

To describe the hysteretic phase transitions between
free flow and the synchronized flow, a different macrosco
model based on a gas-kinetic approach is also proposed@20#.
In this model, a peak of the inflow from an on-ramp pr
duces a congested but homogeneous region near the
ramp, which spreads in the upstream direction. This hom
geneous congested traffic~HCT! state is proposed as a
explanation for the~stationary type! synchronized traffic
5101 ©1999 The American Physical Society
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flow @3#. The subsequent study@21# investigated the phas
diagram of the model and identified additional dynam
phases such as the standing localized cluster~SLC!, the trig-
gered stop and go~TSG!, and the oscillating congested tra
fic ~OCT! states. Analytical conditions for the existence
these phases are provided and it is suggested that the p
diagram is universal for a class of traffic models. The stu
is, however, largely restricted to the traffic states genera
from a particular initial condition and thus important issu
such as multistability and hysteresis are not fully address

In this paper, we investigate the phase diagram of
traffic flow in the presence of an on-ramp using a differe
continuum model@14#, which tests the idea of the univers
phase diagram. Various traffic states in Ref.@21# are repro-
duced. However, the phase diagram is found to be qua
tively different. For instance, some traffic states, which re
resent distinct phases in Ref.@21#, make smooth crossover
to other traffic states without any sharp phase boundarie
between, implying that they are different limiting behavio
of a single dynamic phase. The investigation is also p
formed for a large variety of initial conditions using tw
effective search methods. The conditions for the stable e
tence of the free flow, the RH state, and the traffic jam
examined. In some parameter ranges, it is found that mult
dynamic phases can remain stable with respect to sufficie
small perturbations. In such parameter ranges, finite pe
bations may induce transitions between those phases, re
ing in metastability. Due to the presence of the on-ramp,
evolution process of the jam shows several different patte
and the phase boundaries for the formation of the jam
significantly modified.

The paper is organized as follows. In the next section,
investigate the possible traffic phases for given values of
upstream flux and the input flux through the on-ramp. Va
ous features are discovered, which are absent in hom
neous highways. We examine the conditions for the stab
ties of the traffic jam and the RH state. The metastabi
among the free flow, the RH state, and the traffic jam
investigated, and the travel time distributions of the th
states are compared. We also discuss the several diffe
evolution processes of the jam due to the presence of
on-ramp. Based on the phase diagrams, we find that the
ramp flux becomes a more important factor for the format
of the traffic jam than the total flux, the sum of the on-ram
flux and the upstream flux. In Sec. III, we demonstrate a
lytically that our macroscopic model possesses nontrivial
lutions which are indeed found in numerical simulations.
nally, Sec. IV summarizes our results.

II. PHASE DIAGRAMS OF TRAFFIC EQUATIONS
WITH AN ON-RAMP

In this work, we adopt the continuum model of the hig
way traffic flow proposed by Kerner and Konha¨user@14#,
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wherer(x,t) is the local vehicle density andv(x,t) the local
velocity. qin(t)w(x) is the source term representing the e
ternal flux through an on-ramp. The spatial distribution
the external fluxw(x) is localized nearx50 ~on-ramp posi-
tion! and normalized so thatqin(t) denotes the total incom
ing flux. V(r) is the safe velocity that is achieved in th
time-independent and homogeneous traffic flow. In Eq.~2!,
the second term on the right hand side represents an effe
‘‘pressure’’ gradient on vehicles due to the anticipation dr
ing @14# and the velocity fluctuations@5,13#, and the third
term takes into account an intrinsic dampening effect tha
required to fit the experimental data@22#. Here t,c0 ,m are
appropriate constants. The flux or flow,rv, is denoted below
by eitherq or f.

In order to investigate the effects of a single on-ramp,
use the open boundary condition. The upstream bound
values of the density and velocity are fixed atr(x5
2L/2,t)5rup and v(x52L/2,t)5V(rup), respectively. On
the other hand, the values at the downstream boundarx
5L/2) are linearly extrapolated from their values at neig
boring points,x5L/22Dx andL/222Dx whereDx is spac-
ing used in the discretization. The numerical simulations
performed using the two-step Lax-Wendroff scheme@23#.
We choose the following parameters:t50.5 min, m5600
vehicles km/h, c0554 km/h, and V(r)5V0(12r/ r̂)/
„11E(r/ r̂)4

… where the maximum densityr̂5 140 vehi-
cles/km,V05120 km/h, andE5100 @24#. Concerning the
discretization, spatial intervals ofDx537.8 m and time in-
tervals of Dt51024 min are used. We choose the spat
distribution of the external flux as

w~x!5~2ps2!21/2exp~2x2/2s2!

with s556.7 m. With this choice of parameters, critical va
ues are rb521.1 vehicles/km, rc1525.3 vehicles/km,
rc2562.3 vehicles/km, f b[rbV(rb)52047 vehicles/h,
f c1[rc1V(rc1)52249 vehicles/h, and f c2[rc2V(rc2)
5843 vehicles/h. The maximum flow that can be achieved
the time-independent homogeneous flow isf max
5maxr$rV(r)%52336 vehicles/h. Below we are intereste
mainly in the low density regime (,rc1), and thus we will
use for brevity the subscriptc in place ofc1.

In the real highway traffic, there are many kinds of nois
which perturb the traffic out of its steady states. The r
traffic state is hence under an infinite sequence of pertu
tions and subsequent responses of dynamic states. Pre
studies@15,18# on highway traffic without ramps howeve
showed that many observed features of the traffic flow can
explained from the steady state properties of the continu
model without any noise. Motivated by previous success
we will ignore noises in this paper.

In the absence of noises, each dynamic phase of the tr
flow corresponds to a steady state, or equivalently an att
tor of the nonlinear hydrodynamic model@Eqs.~1! and ~2!#.
A steady state may exhibit complicated time dependen
depending on the nature of the corresponding attractor.
examine in this section the linearly stable steady states~or
phases of traffic flow! for a given upstream fluxf (2L/2)
5 f up[rupV(rup) and the vehicle fluxqin(t)5 f rmp through
the on-ramp atx50. Linearly stable states are, howeve
often unstable to large perturbations and multistability c



th
m
e
ta
s,
t

is
ea

ve
fo
d
dy
rin
e
n
th
di
f
s
c
ta

e
te

s
th

e
ge

th
d
pe
r t

ia
e

fo

he
Th

b
T
,

er
its

ba-
l

d as
s

e of
lar

-
nds

s,
lity

de-

that
nge
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occur. Here it is worth emphasizing that the concept of
multistability in dynamic systems is somewhat different fro
that in equilibrium systems. In equilibrium systems the fr
energy selects one particular state as a ‘‘true’’ stable s
and other states become metastable. In dynamic system
the other hand, the free energy cannot be defined and
concept of the ‘‘true’’ stable state is not applicable. In th
sense, all states are metastable and they all should be tr
equally.

Possible presence of multiple steady states makes it
difficult to search completely for all phases that are stable
given parameters, since it requires examinations of many
ferent initial conditions. To search out all multiple stea
states, we use two methods: One is to apply a trigge
pulse to a steady state, for example, by changing the valu
f rmp for a short time. For a sufficiently strong pulse, a tra
sition to a different steady state can be induced, allowing
identification of another steady state. The other is the a
batic sweeping method. Starting with a given steady state
a particular set of the system parameters, one increase
decreases one parameter adiabatically. This way, one
find the range of the parameter values where a dynamic s
remains stable. These two methods effectively simulat
large variety of initial conditions. Using these, we investiga
the steady states for given system parametersf up and f rmp. In
particular, we concentrate on three representative value
f up, and for each of them construct a phase diagram for
entire range off rmp. However, since too large a value off rmp
is unrealistic, we restrict our attention to the rangef rmp

< f rmp
max[ f max2 f up.
The values off up studied in this work are chosen from th

following considerations. In the previous studies of homo
neous highways without ramps, it was found that the fluxf b
provides an important boundary. Whereas the free flow is
only stable phase belowf b , the traffic jam can be create
above this value. In the presence of ramps, one can ex
that the appearance of the traffic jam depends on whethe
upstream fluxf up is larger or smaller thanf b . ~Below we
show that this expectation is not true, due to the nontriv
effect of an on-ramp.! This property motivated us to choos
one representative value off up in the range larger thanf b and
another smaller. We also choose a very small value
f up(! f b), which later reveals the importance off rmp on the
formation of the congested traffic.

A. f up>f b

The phase diagram of the traffic states forf up52119
vehicles/h appears in Fig. 1~a!. Here f rmp

c is the critical input
flux through the on-ramp above which the free flow in t
downstream of the on-ramp becomes linearly unstable.
critical on-ramp fluxf rmp

c is determined from

f rmp
c 5 f c2 f up, ~3!

where f c5 f c1. For 0< f rmp< f rmp
c , the flux, both in the up-

stream and downstream, is lower thanf c but higher thanf b .
Hence the traffic jam can be created from the free flow
triggering events but it does not appear spontaneously.
finite amplitude perturbation tof rmp generates a cluster
e
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which grows to a traffic jam since the upstream flux is larg
than f b . The traffic jam propagates to the upstream with
characteristic group velocity.

When f rmp. f rmp
c , the flux of the free flow in the down-

stream is larger than the critical fluxf c and the free flow is
linearly unstable with respect to long wavelength pertur
tions of infinitesimal amplitude. The growth of infinitesima
perturbations leads to spontaneously formed clusters an
pointed out in Ref.@16#, complex sequences of traffic jam
may appear in the downstream region. In a certain rang
f rmp, we also observe that clusters form a periodic regu

FIG. 1. The phase diagrams forf up. f b ~a!, f up, f b ~b!, and
f up! f b ~c!. Here f b52047 vehicles/h,f c52249 vehicles/h, and
f max52336 vehicles/h whilef rmp

b [ f b2 f up, f rmp
c [ f c2 f up, and

f rmp
max[ f max2 f up. ~a! The phase diagram forf up52119 vehicles/h

where f rmp
c 5130 vehicles/h, andf rmp

max5217 vehicles/h. Forf rmp

. f rmp
c , the traffic jam state is generated spontaneously.~b! The

phase diagram forf up51948 vehicles/h wheref rmp
b 599 vehicles/h,

f rmp
c 5301 vehicles/h, andf rmp

max5389 vehicles/h. The metastable re
gion among the free flow, the RH state, and the OCT state exte
from f rmp5206 vehicles/h to 238 vehicles/h.~c! The phase diagram
for f up51497 vehicles/h wheref rmp

b 5550 vehicles/h,f rmp
c 5752

vehicles/h, andf rmp
max5839 vehicles/h. As the on-ramp flux increase

the traffic jams with different structures appear. The lower stabi
limit of the HCT state is defined as the value off rmp above which
the inhomogeneous part disappears. In a similar way, one may
fine the upper stability limit of the OCT as the value off rmp below
which the homogeneous part does not expand with time. Notice
between these two stability limits, there exists an intermediate ra
of f rmp for which both the OCT-like part~inhomogeneous part! and
the HCT-like part~homogeneous part! expand with time. This in-
termediate state is called the ‘‘mixed congested traffic’’~MCT!
state. The stability limit between the OCT and MCT state isf rmp

5603 vehicles/h and that between the MCT and HCT state isf rmp

5730 vehicles/h.
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sequence. It turns out that this regular sequence is cause
the presence of the on-ramp, whose detailed discussion
be given in the next subsection.

B. f up<f b

In Fig. 1~b!, we present the phase diagram forf up
51948 vehicles/h. The free flow can exist untilf rmp reaches
f rmp

c , as in the previous subsection. Whenf rmp is smaller than
92 vehicles/h, the free flow~with a transition layer! is the
only stable phase.

For f rmp.92 vehicles/h, we find another time
independent state beside the free flow, which is shown
Fig. 2~a!. In our simulation, this state can be generated fr
the free flow by applying the triggering pulse inf rmp for a
short time. Far away from the on-ramp, the density and fl
are homogeneous both in the upstream and downstre
Near the on-ramp, a localized cluster appears, which d
not propagate in either direction but stays motionless. Du
this immobility, such state is named as the ‘‘standing loc
ized cluster’’~SLC! state in Ref.@21#. The immobility of the
SLC state is in contrast to the situations without ramps wh
all inhomogeneities should propagate. Hence the proper
due to an effect of the on-ramp. Another interesting prope
of the SLC state becomes manifest in the density-flow re

FIG. 2. ~a! The spatial density profile of the SLC state forf up

51948 vehicles/h andf rmp5121 vehicles/h. The on-ramp is at
km. The profile does not change with time.~b! Circles: The density-
flow relation for several positions near the on-ramp. That deno
as U~D! is the data in the upstream~downstream! homogeneous
region. Each data point is stationary with time, and upon adiab
variations of f up and the external flux profilew(x), it covers a
two-dimensional area. Solid line: The curveq5rV(r).
by
ill

in

m.
es
to
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re
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y
-

tions. Notice that the density-flow relations@circles in Fig.
2~b!# measured at several locations near the on-ramp do
necessarily fall on the homogeneous density-flow relat
curve (r,rV(r)) @solid line in Fig. 2~b!# even though the
relation at each measurement location remains station
with time. More remarkably, the circles lie in the linear
unstable density region.

Incidentally, an experimental data which may be relev
to this has been reported@3#. It was observed that when th
traffic is in the stationary synchronized flow state, the dens
and flux can remain stationary during a relatively long tim
interval ~2–5 min!. Their stationary values often lie in th
linearly unstable density region and they form a tw
dimensional area in the density-flow plane instead of fall
on a single well-defined density-flow relation curve. In R
@3#, the stationary values are interpreted as an indication
the spatiallyhomogeneoustraffic, and Helbing, Hennecke
and Treiber@21# proposed the HCT state as an origin of t
stationary synchronized flow. The HCT state provides an
planation for the stability of the traffic in the linearly un
stable density region but it leads to the formation of t
well-defined density-flow relation curve, failing to expla
the absence of such a curve in the measurement.

Present analysis of the SLC state raises an alternative
sibility. The SLC state shows that being stationary does
necessarily imply the homogeneity, and it also explains
stability in the linearly unstable density region. Furthermo
it can explain the absence of the well-defined density-fl
relation curve. We mention that upon the adiabatic variatio
of f up, f rmp and the external flux profilew(x), the density-
flow relation at a single measurement location can cove
two-dimensional area in the density-flow plane. These ag
ments raises an interesting possibility of an alternative ex
nation for the stationary synchronized traffic flow based
the SLC state. We judge however that it is yet premature
draw a definite conclusion from these agreements alone.
ther experimental investigation of the stationary synch
nized traffic flow is necessary. In the next section, we de
onstrate analytically that the traffic equations~1! and ~2! do
have the SLC state solution.

As the on-ramp fluxf rmp increases adiabatically, one find
the phase transition from the SLC state to the recurring hu
~RH! state@Fig. 3~a!#. In the RH state, a cluster, or a hum
does not remain stationary but moves back and forth i
localized region near the on-ramp. Its drift to far upstream
not allowed since the upstream vehicle density is lower th
the boundary valuerb . The RH state is investigated in deta
in Ref. @19# using the periodic boundary condition, and ma
interesting properties are found such as the discontinu
transition from the free flow to the RH state induced
localized perturbations of finite amplitudes, hysteres
gradual spatial transitions from the RH state to the free flo
and synchronized oscillations. These properties are iden
to those of the synchronized flow~nonstationary type! @2,3#,
and based on these common properties, the RH state is
posed as the origin of the synchronized flow.

In addition to the properties of the RH state discussed
Ref. @19#, we investigate here the transition between the R
state and the SLC state. Our simulation shows that the t
sition from the SLC state to the RH state and the reve
transition occur at the same critical value off rmp without
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hysteresis. We also examine the oscillation amplitude of
RH state. The amplitude decreases to zero continuousl
f rmp approaches the critical value@Fig. 3~b!#. Below the criti-
cal value, the hump does not oscillate and it become
standing cluster. These properties suggest that these tr
tions are a result of the supercritical~or very weak subcriti-
cal! Hopf bifurcation@25# of the SLC state to the RH state

These transitions between the SLC state and the RH s
are not observed in the previous study@19#, where the adia-
batic decrease of the ramp flux leads to the discontinu
transition of the RH state to the free flow instead~Fig. 3 in
Ref. @19#!. We attribute this difference to the differen
boundary condition adopted in this paper. Unlike the op
boundary condition wheref up and f rmp can be controlled
independently, the periodic boundary condition used in@19#
is such that the increase~decrease! of f rmp is always accom-
panied by the decrease~increase! of f up since the average
density of the total system is fixed. Therefore the ‘‘sca
ning’’ direction in Ref. @19# is different from that in this
paper.

We next discuss the traffic jam state. In homogene
highways without ramps, the formation and propagation
the jam cannot occur when the flux is smaller thanf b . In the
present case with an on-ramp, the fluxf up in the upstream
region is lower thanf b while the flux in the downstream
region can be controlled byf rmp. Thus a usual jam that con
sists of a single localized cluster should decay after t
reach the upstream region. So in this sense, a usual tr
jam is not a steady state. Our investigations show tha
different type of traffic jams~Fig. 4! can occur even when
f up, f b due to the nontrivial effect of the on-ramp: Cluste

FIG. 3. ~a! The evolution of the RH state forf up51948
vehicles/h andf rmp5222 vehicles/h. The hump moves back a
forth in a localized region near the on-ramp.~b! The evolution of
the RH state forf up51948 vehicles/h andf rmp5130 vehicles/h.
Near the lower stability limit of the RH state, which coincides wi
the upper stability limit of the SLC state, the oscillation amplitu
of the RH state is very small.
e
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te
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are self-generated near the on-ramp repeatedly, formin
‘‘train’’ of clusters moving upstream. Although each cons
tuting cluster decays during its upstream propagation,
train can still remain stable provided that the decay rate
smaller than the self-generation rate, which is controlled
the extent of the inhomogeneity,f rmp, rather than by the
upstream or downstream flux. Thus the stability limits of t
new traffic jam do not coincide with those of the usual traf
jams @Fig. 1~b!#. Notice that this train structure is differen
from usual traffic jams in homogeneous highways. To in
cate the structural difference, we will call this state the ‘‘o
cillating congested traffic’’~OCT! state.

We note that a traffic jam state very similar to the OC
state appears forf up. f b . Clusters are self-generated ne
the on-ramp repeatedly, forming a regular sequence of c
ters. For f up. f b , however, each cluster does not decay
their upstream movement because of the high upstream
sity.

The structure of the OCT state can be compared to the
state. In both states, clusters appear recurrently near the
ramp. In the OCT state, however, the area of the conge
region expands with time, while in the RH state, clusters
localized. This difference is due to the larger size of clust
in the former.

It is also worth mentioning that the structure of the OC
state shows an interesting crossover asf rmp varies. For small
values off rmp ~close to the lower stability limit!, the distance
between the clusters is relatively large so that there e
homogeneous flow regions in between@Fig. 4~a!#. As f rmp
increases, the distance between the clusters shrinks an

FIG. 4. ~a! The spatiotemporal evolution of the density of th
OCT state forf up51948 vehicles/h andf rmp5222 vehicles/h. The
values off up and f rmp are the same with those in Fig. 3~a!. The RH
state in Fig. 3~a! and the OCT state in this figure are independe
metastable states.~b! The spatiotemporal evolution of the OCT sta
for f up51948 vehicles/h andf rmp5381 vehicles/h. The increase o
f rmp generates the ‘‘closely packed’’ clusters. Similarly to~a!, each
cluster decays at far upstream from the on-ramp.
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sufficiently large values off rmp, the homogeneous region
between them disappear@Fig. 4~b!#, and the clusters are
‘‘closely packed’’ inside the congested region.

In Ref. @21#, these structural differences are discover
using a different hydrodynamic model and the OCT sta
for small and largef rmp are identified as two distinct phase
The former was called the ‘‘triggered stop and go’’~TSG!
flow and the latter OCT. In this paper, however, we find th
these apparently different states transform smoothly to e
other asf rmp is varied, without any signature of singularitie
Thus we group these two states as a single dynamic pha
this paper. This difference between this paper and Ref.@21#
may be due to the different models used, but presently we
not know the precise origin of the difference.

We emphasize that in a certain range off rmp, three
phases, the free flow, the RH state, and the traffic jam~OCT!
can coexist. In this metastable region off rmp, small differ-
ences in the initial traffic condition may result in quite d
ferent final states. We mention that in a recent measurem
@2#, very similar initial states of the free flow are observed
undergo different phase transitions either to the synchron
flow or to the traffic jam. Here we obtain the three phas
from the traffic equations with a fixed parameter set.

The difference between the three phases, the free flow
RH state, and the traffic jam~OCT!, is manifest in the trave
time distributions which are shown in Fig. 5. In order
calculate the exact travel time distributions, we determine
trajectory of a vehicle, which is initially located atxveh(t0),
as follows:

xveh~ t !5xveh~ t0!1E
t0

t

dt8 v„xveh~ t8!,t8…. ~4!

From the trajectory of each vehicle, we obtain the vehi
travel time passing through the region fromx0525 km to
x155 km. With the samef up51948 vehicles/h andf rmp
5222 vehicles/h, the travel time distributions of the thr
states show different behaviors. While it consists of a sin
peak for the free flow, those for the RH state and the tra
jam ~OCT! show broad distributions due to the nonstationa

FIG. 5. The travel time distributions of the free flow~solid line!,
the RH state~dashed line!, and the traffic jam~OCT! ~dotted line!
for f up51948 vehicles/h andf rmp5222 vehicles/h. The travel time
distributions are obtained by following 105 trajectories of vehicles
through the region from25 km to 5 km.
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nature of these phases. Also notice that in average, the tr
time for the traffic jam~OCT! is greater than those for th
free flow and the RH state.

C. f up!f b

Figure 1~c! shows the phase diagram forf up51497
vehicles/h~about 25% lower thanf b52047 vehicles/h!. The
free flow remains linearly stable forf rmp, f rmp

c . In a narrow
range of f rmp, 480 vehicles/h< f rmp,492 vehicles/h, the
SLC state is found, and forf rmp>492 vehicles/h, the OCT
state is found. For this low upstream flux, however, the R
state does not appear. We find the critical value off up below
the RH state is absent is about 1872 vehicles/h.

It is interesting to notice that the upper stability limit o
the SLC state and the lower stability limit of the OCT sta
coincide within our numerical accuracy. We verified th
upon the adiabatic increase off rmp, the SLC state undergoe
the phase transition to the OCT state, and upon the adiab
decrease off rmp, the reverse phase transition occurs, both
f rmp5492 vehicles/h. This coincidence raises an interest
possibility of a close relation between the two phases. T
possibility is also supported by the expansion rate of
congested region, which seems to approach zero smooth
f rmp is reduced to the lower stability limit of the OCT stat

We next examine the evolution of the traffic jam sta
Figure 6 shows the evolution of the structure of the co
gested region asf rmp is increased. For relatively smallf rmp,
the structure is the same as in Fig. 4. Asf rmp increases,
however, a homogeneous flow region appears near the
ramp, which expands with time@Fig. 6~a!#. Hence the con-
gested region is partitioned into an inhomogeneous part

FIG. 6. The evolution of the MCT~a! and HCT state~b! for
f up51497 vehicles/h.~a! f rmp5635 vehicles/h. The congested re
gion consists of the homogeneous part and the inhomogeneous
~b! f rmp5794 vehicles/h. The inhomogeneous part is not pres
The upstream front moves with a fixed group velocity.
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PRE 59 5107DYNAMIC STATES OF A CONTINUUM TRAFFIC . . .
a homogeneous one. For an even higher value off rmp

(5730 vehicles/h!, the inhomogeneous part shrinks in leng
with time and after this transient process, the whole c
gested region consists of a homogeneous part@Fig. 6~b!#. In
Ref. @21#, this state of traffic flow is named the ‘‘homoge
neous congested traffic’’~HCT! state and is identified as
distinct phase.

Unlike Ref. @21#, however, it is not so clear in our simu
lations whether the OCT and HCT states are distinct pha
The distinction between the OCT and the HCT state is
scured further in our simulations by the presence of an in
mediate traffic state where both the OCT-like inhomog
neous part and the HCT-like homogeneous part expand
time. We call this intermediate state the ‘‘mixed conges
traffic’’ ~MCT! state @Fig. 6~a!#. As f rmp increases, the
change from the OCT state to the MCT state and then to
HCT state seems to occur in a smooth way. We thus in
that the OCT, MCT, and HCT are different forms of a sing
jam phase.

We now focus on the HCT state. Notice that even thou
f up, f b , the area of the congested traffic increases mo
tonically with the group velocity of the upstream front abo
27.68 km/h, which is considerably lower than the usual j
propagation velocity;215 km/h @4#. This monotonic wid-
ening of the congested region is caused by the ‘‘blockag
effect of the ramp, which can be understood easily by rec
ing that in real highways, a large flux from the on-ramp c
almost block the flow of vehicles on main highways. We a
mention that the structure of the HCT state is identical to
traffic jam ~shock! caused by a blockage@26#, which implies
that for largef rmp, the ramp works as a bottleneck.

Interestingly, the density in the congested region lies
the linearly unstable region of the homogeneous flow,rc1
(5rc),r,rc2. Hence according to Refs.@14,15#, long
wavelength fluctuations of even infinitesimal amplitu
should grow in this region. In our simulations, we find th
small inhomogeneities in the initial state indeed grow
form clusters. These clusters however disappear when
reach the upstream boundary of the congested region an
congested region becomes homogeneous afterwards. Th
sult implies that inside the linearly unstable region, the
exists a range of density where the homogeneous flow
convectivelystable@27# ~that is, the instability drifts away in
one particular direction leaving the regions behind un
fected!. The same observation is made in Ref.@21#, where
the HCT state is related to the stationary synchronized fl
As mentioned in the preceding subsection, however,
density-flow relation in the congested region of the HC
state lies on the single curve„r,rV(r)…, which differs from
the experimental observations of scattered data@3#. We men-
tion that the HCT state may be very sensitive to the prese
of noises since it is only convectively stable.

It is instructive to compare the stability ranges in Fig. 1~c!
with those in Fig. 1~b!. The stability range of the SLC stat
lies entirely belowf rmp

b in Fig. 1~c! while it is mostly above
f rmp

b in Fig. 1~b!. Also the stability range of the OCT reache
below f rmp

b in Fig. 1~c! while it lies entirely abovef rmp
b in Fig.

1~b!. This suggests that when the sumf up1 f rmp is the same,
the formation of the cluster is easier for largerf rmp and thus
the actual total flux level in the downstream is lower. Phy
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cally this tendency can be understood as resulting from
larger density gradient near the on-ramp when the rela
portion of f rmp is larger. This trend is indeed observed
highway measurements@28# and is called the ‘‘capacity re
duction.’’

III. ANALYTIC SOLUTIONS OF THE SLC AND THE HCT
STATES

In Sec. II, we showed that various forms of traffic flow
occur near an on-ramp. In the case of the free flow and
usual traffic jam, they are affected by the on-ramp in min
ways and their properties are essentially the same as t
without an on-ramp, which have already been investiga
intensively@15#. For other phases, however, the presence
the on-ramp is crucial and understanding of their proper
are relatively poor. In this section, we present analytic st
ies of two forms of traffic flow, the SLC state and the HC
state.

A. Standing localized cluster„SLC… state

The analytic examination of the SLC state is relative
simple since all time dependence disappears. This ana
also provides a good starting point for future analysis of
RH state and the OCT state since they are closely relate
the SLC state as discussed in the preceding section. H
we present below the analysis of the SLC state in detail.

In a homogeneous highway, inhomogeneities in the d
sity or the velocity always propagate. In the presence of
on-ramp, on the other hand, the numerical investigation
the previous section shows that inhomogeneities may for
standingcluster without propagation. Here we demonstra
analytically that the model@Eqs. ~1! and ~2!# indeed allows
standing cluster solutions in the presence of an on-ramp

To obtain the SLC solution, one imposes

]r

]t
5

]v
]t

50. ~5!

By integrating Eq.~1! with respect tox, one obtains

r~x!v~x!5 f rmpE
2`

x

w~x!dx1 f up[q~x!. ~6!

Since the functionq(x) is completely determined for given
f rmp and f up, one can use this equation to expressr(x) in
terms ofv(x). Using this, one can rewrite Eq.~2! as follows:

m
d2v
dx2 5qS 12

c0
2

v2D dv
dx

2
q~x!

tv FVS q~x!

v D2vG1
c0

2

v
q8~x!,

~7!

where]/]x has been replaced byd/dx since all time depen-
dence disappears.

For further analysis, it is convenient to assume a parti
lar form of the influx profilew(x). We take the localized
influx limit and choosew(x)5d(x). Thenq(x) becomesf up
for x,0, f up1 f rmp for x.0, andq8(x)5 f rmpd(x). Then Eq.
~7! can be decomposed into two separate problems defi
on two semi-infinite regions,x,0 andx.0, with the match-
ing conditions atx50,
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FIG. 7. The flow in the phase space (v,w) ~a! with f rmp slightly below the lower stability limit of the SLC state and~b! with f rmp slightly
above the lower stability limit. The path 1 represents the flow that is associated with the unstable eigendirection of the fixed poinvn1,0)
~point A), and the path 2 the flow that is associated with the stable eigendirection of the fixed point (v rmp1,0) ~point C). The path 3 represent
the image of the path 1 through the mapping~8!. The insets are the enlargements of the dotted regions at right.~c! The density profile~solid
line! of the SLC state obtained analytically forf up51948 vehicles/h andf rmp5121 vehicles/h. The marksA, G, H, C represent corre-
sponding points in Fig. 7~b!. The density profile obtained from the numerical simulation of Eqs.~1! and ~2! is also given for comparison
~dotted line, vertically shifted 40 vehicles/km!. Notice that the density jump at the on-ramp (x50) in the solid line@due to the approximation
w(x)5d(x)] is smoothed out in the dotted line.
te
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d
ee
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tial
v~x!ux5015v~x!ux502 ,

dv
dxU

x501

5
dv
dxU

x502

1
c0

2

mv~0!
f rmp. ~8!

For each semi-infinite region, it is instructive to rewri
Eq. ~7! as follows:

m
dw

dx
5qsS 12

c0
2

v2Dw2
qs

tv FVS qs

v D2vG ,
dv
dx

5w, ~9!

where s5p(ositive) for x.0 and s5n(egative) forx,0,
and qp5 f up1 f rmp, qn5 f up. Notice that after the variable
transformationsv→y, x→t, m→m, Eq. ~9! can be re-
garded as the equation of motion of a particle subject t
potentialUs(y) wheredUs /dy5(qs /ty)@V(qs /y)2y# and
to the ‘‘strange’’ coordinate-dependent damping force.
a

For the safe velocityV(r) adopted in this paper, Eq.~9! is
highly nonlinear and it does not seem feasible to write do
solutions in a closed form. However, qualitative properties
the solutions can be still investigated by taking Eq.~9! as a
set of flow equations defined on the phase space (v,w).

Since the global structure of the flow is largely dete
mined from properties of fixed points, we first find fixe
points of Eq.~9!. Simple algebra shows that there are thr
fixed points, (v,w)5(0,0),(vs1,0),(vs2,0). The first one is
unphysical sincev50 impliesr→`. This unphysical fixed
point appears since we setV(r)50 for r. r̂, and we ignore
this below. The other two come from the two solutio
vs1 , vs2 (,vs1) of V(qs /v)5v. @It can be easily verified
that for qs, f max, there are always two solutions, the larg
one corresponding to the maximum point of the poten
Us(y) and the smaller to the minimum point.#

We are interested in the solutions where

v~x!→H vn1 for x→2`

vp1 for x→`.
~10!
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Thus (vn1,0) @point A in Figs. 7~a! and 7~b!# is the relevant
fixed point forx,0. By linearizing Eq.~9!, it can be verified
that it is a saddle point. Then the flow@path 1 in Figs. 7~a!
and 7~b!# that is associated with the unstable eigendirect
of the fixed point determines the entire flow in the sem
infinite regionx,0. Similarly (vp1,0) @point C in Figs. 7~a!
and 7~b!# is the relevant fixed point forx.0, which is again
a saddle point. The entire flow in the positive semi-infin
region is then determined by the flow@path 2 in Figs. 7~a!
and 7~b!# that is associated with the stable eigendirection
the fixed point.

In order to construct a legitimate solution from the path
and 2, one should join the two paths using the match
conditions@Eq. ~8!#. It is convenient to regard the condition
@Eq. ~8!# as a definition of a mapping defined in the pha
space (v,w), from a point (v,w) to (v,w1c0

2f rmp/mv). The
effect of the mapping is shown in Fig. 7~a!, where the path 1
is mapped to the path 3. The path 3 crosses the path 2
point denoted asF in the inset. Then one can construct a fu
solution by connecting the curveAE with the curveFC.
This solution exists for an arbitrary small value off rmp and
represents the free flow solution~with a transition layer@16#
at the on-ramp!.

Different solutions appear for sufficiently largef rmp. The
mapping of the path 1 to the path 3 for a largerf rmp is
depicted in Fig. 7~b!. Now the path 3 crosses the path 2
three pointsF,H,I , which implies the presence of three s
lutions. The solution associated with the crossing poinF
again corresponds to the transition layer solution. The
other solutions associated with the crossing pointsH and I
correspond to the desired SLC solutions. Each solution p
vides the velocity profile for2`,x,`, from which the
density profile can be obtained fromr(x)5qs /v(x). Figure
7~c! compares the density profile associated with the cro
ing pointH with that from the direct numerical simulation o
the traffic model@Eqs.~1! and~2!# with the Gaussian form o
w(x). Notice that the two profiles are essentially identic
except for a small difference in the ramp region, which ari
due to the approximation of the input flux profile by a de
function. The density profile associated with the cross
point I can be obtained in a similar way. This solution, ho
ever, is not found in the direct numerical simulation, whi
suggests that this solution is linearly unstable.

This analysis implies that the SLC solutions appear o
for f rmp larger than a critical value. Precisely at the critic
value, the two crossing pointsH and I coincide. For f rmp
larger than the critical value, numerical simulations indic
that only one solution~one through the crossing pointH) is
stable and the other is not. Thus one finds that a turning p
connecting the stable and unstable SLC solutions appe
the critical ramp flux.

Above considerations use a specific form of an influx p
file. We believe that the precise profile does not change
qualitative nature of above discussion. In fact, the value
the critical ramp flux for the SLC state obtained using t
approximationw(x)5d(x) is found identical within the nu-
merical accuracy to that obtained from the direct numer
simulation of Eqs.~1! and ~2! @with w(x) Gaussian#.

B. Homogeneous congested traffic„HCT … state

When the on-ramp influx is added, we observe anot
kind of the traffic jam: The downstream front is fixed at t
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on-ramp and the upstream front moves with a fixed gro
velocity. Between the downstream and the upstream fro
the congested region of the homogeneous flow is mainta
@Fig. 6~b!#. We notice that the upstream front is a stea
structure in a proper reference frame. Below we show a
lytically that Eqs.~1! and~2! possess the HCT state solutio
Since the congested region is homogeneous, one can spl
discussion into two parts, one for the moving upstream fr
and the other for the fixed downstream front. For the u
stream front, the relevant equations of motion are

]r

]t
1

]~rv !

]x
50, ~11!

rS ]v
]t

1v
]v
]xD5

r

t
@V~r!2v#2c0

2 ]r

]x
1m

]2v
]x2 . ~12!

Since this front is surrounded bywide regions of the homo-
geneous flow both in the upstream and the downstream,
can impose the following boundary conditions:

r~x52`,t !5r25rup, ~13!

v~x52`,t !5v25V~r2!, ~14!

r~x51`,t !5r1 , ~15!

v~x51`,t !5v15V~r1!. ~16!

Herer2 is the density of the far upstream region andr1 of
the congested region Also the spatial coordinate is chose
such a way thatx51` corresponds to a location deep in th
congested region instead of the far downstream in the or
nal equations~1! and ~2!.

Let us assume that Eqs.~11! and~12! allow asteadystate
solution that satisfies the boundary conditions Eqs.~13!,
~14!, ~15!, and ~16!. Here the steady state means that in
proper reference frame, all time-dependence disappears
perform the change of the reference frame:

x85x2vgt, ~17!

t85t, ~18!

and neglect all time dependence in this new reference fra
to find

dq8

dx8
50, ~19!

q8
dv

dx8
5r

V~r!2v
t

2c0
2 dr

dx8
1m

d2v

dx82
, ~20!

where q8[rv2rvg . We can determine the constantsq8
and vg from the boundary conditions Eqs.~13!, ~14!, ~15!,
and ~16!. From the condition that the in-flux to and the ou
flux from the front should be the same in the primed ref
ence frame, we obtain

vg5
r1v12r2v2

r12r2
, ~21!
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q85
r1r2~v22v1!

r12r2
. ~22!

Using Eq.~19!, one has

r5
q8

v2vg
. ~23!

Plugging in this expression into Eq.~20!, one finds

m
d2v

dx82
1q8F c0

2

~v2vg!2 21G dv

dx8
1F~v;q8,vg!50,

~24!

where

F~v;q8,vg![
q8

t~v2vg! FVS q8

v2vg
D2vG . ~25!

Equation~24! is again an equation of motion of a partic
subject to a conservative force2F and the coordinate
dependent damping force. The boundary conditions Eqs.~13!
and ~14! ensure thatF(v6 ;q8,vg)50 automatically. Since
v2.v1 , the root v2(v1) corresponds to the potentia
maximum~minimum!. Thus the nature of the stationary sta
is clear in the particle motion analogy. Atx52`, the par-
ticle is at the unstable maximum pointv5v2 . As ‘‘time’’ x
increases, the particle slides down the hill and after so
time, it settles down atv5v1 due to the friction, provided
the damping coefficient in Eq.~24! remains positive. This
particle motion describes the upstream front of the HCT s
@Fig. 6~b!#.

Before we begin the next analysis of the downstre
front of the HCT state@Fig. 6~b!#, one remark is in order. In
the direct numerical simulation of Eqs.~1! and ~2!, the ve-
hicle velocity in the congested region of the HCT state
fixed for givenf up and f rmp. However, in the above analys
of the upstream front, wheref up is used to fixv25vup, the
value ofv1 is still a free parameter. We show below that th
degree of freedom should be used to allow the downstre
front solution.

Analysis of the stationary downstream front is very sim
lar to the analysis of the SLC state in the preceding sub
tion. Using the condition of the stationarity and integrati
Eq. ~1!, one obtains Eq.~5! and ~6!, respectively. Adopting
the approximationw(x)5d(x), one recovers the matchin
conditions at the ramp@Eq. ~8!# and the set of the flow equa
tions @Eq. ~9!#. The value ofqn should ber1v1 to allow a
continuous connection ofv(x) to the upstream front solution
and qp5qn1 f rmp. The asymptotic behavior ofv(x) far
away from the on-ramp should be chosen differently as
lows:

v~x!→H vn25v1 for x→2`

vp1 for x→`,
~26!

where vp1 and vn2 are defined in the same way as in t
preceding subsection, andx→2` corresponds to the regio
deep in the congested region.

Notice that forx→2`, v(x) approachesvn2 instead of
vn1 sincev1 corresponds to the smaller of the two solutio
e

te

s

m

c-

l-

of V(qn /v)5v ~or since the corresponding densityr1 lies
on the descending slope of the homogeneous density-
relation!. This difference in the asymptotic behavior resu
in a qualitative change. It can be verified through the line
ization of Eq.~9! that (vn2,0) is astablefixed point. Then we
find v(x)5vn2 for the entire semi-infinite regionx,0,
which should be contrasted to the preceding subsection. N
the fixed point (vp1,0), on the other hand, the situation
similar to the preceding subsection and the flow in the po
tive semi-infinite region becomes a continuous path, like
path 2 in Figs. 7~a! and 7~b!.

To construct a full solution of the HCT downstream fron
the separate solutions forx,0 andx.0 should be joined
using the matching condition@Eq. ~8!#. Since the velocity for
x,0 is constant, the matching conditions reduce to

v~x!ux5015vn2 ,

dv
dxU

x501

5
c0

2

mv~0!
f rmp. ~27!

This matching conditions can be satisfied only when
phase space trajectory forx.0 passes the poin
„vn2 ,(c0

2/mvn2) f rmp…. For given vn2 and f rmp, the path in
general doesnot pass the point except for a particular valu
of vn25v1 . This tuning thus fixes the free parameterv1 as
mentioned before. In general,v1 is a function of the influx
profile w(x) since the matching conditions depend onw(x).

Figure 8 shows the density profile~solid line! of the HCT
state obtained from this matching method forw(x)5d(x). It
is essentially identical to the profile~dotted line! obtained
from the numerical simulation of Eqs.~1! and~2!, except for
the larger density peak at the on-ramp caused by the app
mation w(x)5d(x). We confirm from the simulation resul
that the group velocity of the moving front is consistent w
27.68 km/h which is given by Eq.~21! and the damping
coefficientq8@c0

2/(v2vg)221# is positive in the congested
region.

FIG. 8. The density profile of the HCT state obtained analy
cally ~solid line! under the approximationw(x)5d(x) for f up

51497 vehicles/h andf rmp5762 vehicles/h. The density profile ob
tained from the numerical simulation of Eqs.~1! and ~2! is also
given for comparison~dotted line, vertically shifted 50 vehi-
cles/km!. Small differences between the two are due to the differ
choices ofw(x).
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IV. CONCLUSION

The traffic equation with a source term representing
on-ramp influx of a highway displays a variety of traffic flo
states not present in the homogeneous equations. To un
stand the role of the source term, we map out the ph
diagram using the continuum traffic model@Eqs.~1! and~2!#
proposed by Kerner and Konha¨user @14#. In our numerical
simulation, we use the open boundary condition, which
lows one to handle the single on-ramp without using v
large system sizes. Due to the possible presence of mul
metastable states, detailed simulation is carried out for a
ited number of representative values of the upstream fluxf up
and for the whole range of the on-ramp fluxf rmp. Various
traffic states are identified and characterized. The phase
grams thus obtained are summarized in Fig. 1. It is fou
that an inhomogeneous but stationary traffic state~SLC! can
appear near the on-ramp due tof rmp. This state is related to
the recent measurement of the homogeneous synchron
flow. The on-ramp also generates another kind of traffic ja
ffic
rt

ug

v

Ito
e

er-
se
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y
le
-

ia-
d

ed
,

which can appear even below the stability limit of the usu
traffic jam in homogeneous highways. The structure of t
traffic jam varies qualitatively withf rmp. The capacity reduc-
tion due tof rmp is also observed. In a certain range off rmp,
the free flow, the RH state, and the traffic jam can all coex
so that the free flow can undergo phase transitions eithe
the RH state or to the traffic jam state. Analytic investig
tions are also performed and two nontrivial solutions of E
~1! and~2! are found. These solutions describe the SLC st
and the HCT state.
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