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H. Y. Leel?H.-W. Lee! and D. Kim"2
1Center for Theoretical Physics, Seoul National University, Seoul 151-742, Korea
2Department of Physics, Seoul National University, Seoul 151-742, Korea
(Received 15 December 1998; revised manuscript received 1 February 1999

We study the phase diagram of the continuum traffic flow model of a highway with an on-ramp. Using an
open boundary condition, traffic states and metastabilities are investigated numerically for several representa-
tive values of the upstream boundary fltyg and for the whole range of the on-ramp flé,,. An inhomo-
geneous but time-independent traffic sta@nding localized cluster statis found and related to a recently
measured traffic state. Due to the density gradient near the on-ramp, a traffic jam can occur even when the
downstream density is below the critical density of the usual traffic jam formation in homogeneous highways,
and its structure varies qualitatively with,,. The free flow, the recurring hun(RH) state, and the traffic jam
can all coexist in a certain metastable region where the free flow can undergo phase transitions either to the RH
state or to the traffic jam state. We also find two nontrivial analytic solutions. These solutions correspond to the
standing localized cluster state and the homogeneous congested traffiorstaterm of the traffic jarny which
are observed in numerical simulation$1063-651X%99)10405-7

PACS numbdis): 64.60.My, 89.40+k, 05.40—-a

[. INTRODUCTION tinuous transition from the free flow to the synchronized flow
can be induced by localized perturbations of finite ampli-
Traffic flow, a many body system of strongly interacting tudes. Measurements show a hysteresis effect in the phase
vehicles, shows various complex behaviors. Numerous entransitions between the free flow and the synchronized flow:
pirical data of the highway traffic have been obtaifigd5], the transition from the synchronized flow to the free flow
which demonstrate the existence of distinct dynamic statesccurs at a lower on-ramp flux, or lower upstream flux, than
and dynamic phase transitions between them. Recent studigsat for the reverse transition. In Rgf19], the recurring
reveal physical phenomena such as hysteresis, self-organizadmp (RH) state is proposed as an origin of tffnstation-
criticality, and phase transitions in the traffic fld@,7]. ary type synchronized traffic flow{3], and the dynamic
The transition from the homogeneous free flow to thephase transitions between the RH state and the free flow are
jammed state has been studied by microscopic and macrinvestigated using continuum traffic equations that take into
scopic models without any inhomogeneity in the systemaccount the effect of ramps. In the RH state, the vehicle
[8—14]. The traffic jam, one of the dynamic phases of thedensity and the velocity show temporal oscillations which
traffic flow, appears spontaneously when the vehicle densitgre localized near on-ramps. That the synchronized flow is
is between the two critical valugs,; and p.,(>p.1). The  maintained for several hours can be explained from one im-
traffic jam, however, can appear even belpyy. The traffic  portant property of the RH state, its being a limit cycle of the
jam can be triggered by localized perturbations providedraffic equations. The RH state can be characterized as a
that the density is larger than a different critical valueself-excited oscillator, where constant vehicle flux from an
pp (<pc1). As a result, in the density range betwggnand  on-ramp serves as a source of the repeated excitation and
pc1, both the free flow and the traffic jam can exist, resultingeach excitation is subsequently relaxed within a localized
in metastability and hysteresjd5-17. It is observed that region. The traffic equations also describe the hysteresis phe-
some features of the traffic jam are uniquely determined byiomena between the RH state and the free flow.
underlying dynamics, and independent of initial conditions The traffic jam and the synchronized traffic flow are dis-
of the traffic flow that lead to the jarf¥]. The presence of tinct phases of traffic flow. However, the distinction between
such characteristic features is also reproduced by analytihe conditions for the appearance of the jam state and the
and numerical studies of traffic flow modéls5,18. synchronized flow is not clearly identified yet, both in mea-
The synchronized traffic flow, another dynamic phase ofsurements and in model studies. Highway measurements
the traffic flow, is identified in recent measurements on high-analysis reports that almost identical initial states of the traf-
ways[2,3]. The synchronized traffic flow resembles the traf-fic flow can evolve to both the traffic jam and the synchro-
fic jam in the sense that both states produce inhomogeneousized flow[2].
density and flow profiles. The dynamics of the synchronized To describe the hysteretic phase transitions between the
flow is however much more complicated than that of thefree flow and the synchronized flow, a different macroscopic
traffic jam. One notable property of the synchronized trafficmodel based on a gas-kinetic approach is also propg@ad
flow is the high level of its average flow, which almost In this model, a peak of the inflow from an on-ramp pro-
matches the flow of the free flow state. The synchronizediuces a congested but homogeneous region near the on-
traffic flow is observed, in nearly all occasions, localizedramp, which spreads in the upstream direction. This homo-
near ramps and it is thus believed that ramps are importanfeneous congested traffitiCT) state is proposed as an
for the stability of the synchronized traffic flow. The discon- explanation for the(stationary typg synchronized traffic
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flow [3]. The subsequent stud®1] investigated the phase wherep(x,t) is the local vehicle density andx,t) the local
diagram of the model and identified additional dynamicvelocity. g;,(t) ¢(x) is the source term representing the ex-
phases such as the standing localized clu8e€), the trig-  ternal flux through an on-ramp. The spatial distribution of
gered stop and géTSG), and the oscillating congested traf- the external fluxp(x) is localized neax=0 (on-ramp posi-
fic (OCT) states. Analytical conditions for the existence oftion) and normalized so that;,(t) denotes the total incom-
these phases are provided and it is suggested that the phdag flux. V(p) is the safe velocity that is achieved in the
diagram is universal for a class of traffic models. The studytime-independent and homogeneous traffic flow. In €.
is, however, largely restricted to the traffic states generatethe second term on the right hand side represents an effective
from a particular initial condition and thus important issues‘“pressure” gradient on vehicles due to the anticipation driv-
such as multistability and hysteresis are not fully addressedng [14] and the velocity fluctuationg5,13], and the third

In this paper, we investigate the phase diagram of theerm takes into account an intrinsic dampening effect that is
traffic flow in the presence of an on-ramp using a differentrequired to fit the experimental dafa2]. Here r,co,u are
continuum mode[14], which tests the idea of the universal appropriate constants. The flux or flopy, is denoted below
phase diagram. Various traffic states in H&fl] are repro- by eitherq or f.
duced. However, the phase diagram is found to be qualita- In order to investigate the effects of a single on-ramp, we
tively different. For instance, some traffic states, which rep-use the open boundary condition. The upstream boundary
resent distinct phases in R¢R1], make smooth crossovers values of the density and velocity are fixed a(x=
to other traffic states without any sharp phase boundaries in-L/2t)=p,, andv(x=—L/2t)=V(p,), respectively. On
between, implying that they are different limiting behaviorsthe other hand, the values at the downstream boundary (
of a single dynamic phase. The investigation is also per=|/2) are linearly extrapolated from their values at neigh-
formed for a large variety of initial conditions using two boring pointsx=L/2— Ax andL/2—2Ax whereAx is spac-
effective search methods. The conditions for the stable eXisng used in the discretization. The numerical simulations are
tence of the free flow, the RH state, and the traffic jam argyerformed using the two-step Lax-Wendroff schefag].
examined. In some parameter ranges, it is found that multiplgve choose the following parameters=0.5 min, u= 600
dynamic phases can remain stable with respect to S,“ff'c'enﬂVehicles km/h, co=54 km/h, and V(p)=Vy(1—p/p)/
small perturbations. In such parameter ranges, finite pertur- ~ 4 . .~ .
bations may induce transitions between those phases, resuﬁ L+E(p/p)®) where the maximum density= 140. vehi-
ing in metastability. Due to the presence of the on-ramp, thé’.eS/km’VF’:lzo km/h, ande=100[24]. Concern!ng t.he
evolution process of the jam shows several different patternd/Scretization, spatial intervals dfx=37.8 m and time in-
and the phase boundaries for the formation of the jam arffrvals ofAt=10"" min are used. We choose the spatial
significantly modified. distribution of the external flux as

The paper is organized as follows. In the next section, we _ 2\-1/2 —2(912
investigate the possible traffic phases for given values of the ¢(X)=(2m7) eXp —x/207)
upstream flux and the input flux through the on-ramp. Vari-yith ¢=56.7 m. With this choice of parameters, critical val-
ous features are discovered, which are absent in homoggeas are pp=21.1 vehicles/km, p.;=25.3 vehicles/km,
neous highways. We examine the conditions for the stabili, _g2 3" vehicles/km, f,=p,V(p,)=2047 vehicles/h,
ties of the traffic jam and the RH state. The metastabllltyfclEpclv(pcl):2249 vehicles/h, and f.,=peoV(peo)

among the free flow, the RH state, and the traffic jam iS_g43 yehicles/h. The maximum flow that can be achieved in
investigated, and the travel time distributions of the thregq time-independent  homogeneous  flow i

states are compared. We also discuss the several differegtma&{pv(p)}zzgv% vehicles/h. Below we are interested

evolution processes of the jam due to the presence of thﬁﬁainly in the low density regime<(p.,), and thus we will

on-ramp. Based on the phase diagrams, we find that the of5. o, brevity the subscrimtin place ofcl.

ramp flux k_)e(_:omes a more important factor for the formation In the real highway traffic, there are many kinds of noises
of the traffic jam than the total flux, the sum of the on-ramp,,nich perturb the traffic out of its steady states. The real
; . & aNdgaffic state is hence under an infinite sequence of perturba-
Iyt!cally th"."t our macroscopic mpdel POSSESSes nonFrlwaI SOfions and subsequent responses of dynamic states. Previous
lutions which are mdet—_zd found in numerical simulations. F"studies[lS,l@ on highway traffic without ramps however
nally, Sec. IV summarizes our results. showed that many observed features of the traffic flow can be
explained from the steady state properties of the continuum
Il. PHASE DIAGRAMS OF TRAFFIC EQUATIONS model without any noise. Motivated by previous successes,
WITH AN ON-RAMP we will ignore noises in this paper.
] ) ] In the absence of noises, each dynamic phase of the traffic
In this work, we adopt the continuum model of the high- fiow corresponds to a steady state, or equivalently an attrac-

way traffic flow proposed by Kerner and Kontser[14], tor of the nonlinear hydrodynamic moddgs. (1) and(2)].
A steady state may exhibit complicated time dependences
dp d(pv) depending on the nature of the corresponding attractor. We
ng Tox in(D) (X)), @ examine in this section the linearly stable steady stédes

phases of traffic floywfor a given upstream flux(—L/2)

) =fp=puV(pyp and the vehicle fluxgi,(t)="f,, through
=£[V( )_U]_Czﬁ+ f7_v 2 the on-ramp atx=0. Linearly stable states are, however,
FEUP Oox " Hax? often unstable to large perturbations and multistability can
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occur. Here it is worth emphasizing that the concept of the JAM
multistability in dynamic systems is somewhat different from ¢
that in equilibrium systems. In equilibrium systems the free FREE
energy selects one particular state as a “true” stable state |
and other states become metastable. In dynamic systems, on't
the other hand, the free energy cannot be defined and the ¢ f° fmax
concept of the “true” stable state is not applicable. In this  (a) mp mp
sense, all states are metastable and they all should be treated
equally. JAM(OCT)
Possible presence of multiple steady states makes it very [
difficult to search completely for all phases that are stable for SLC RH
given parameters, since it requires examinations of many dif- —t—
ferent initial conditions. To search out all multiple steady FREE
states, we use two methods: One is to apply a triggering *
pulse to a steady state, for example, by changing the value of fb f:‘c
fimp for a short time. For a sufficiently strong pulse, a tran- b rmp mp
sition to a different steady state can be induced, allowing the )
identification of another steady state. The other is the adia- JAM
batic sweeping method. Starting with a given steady state for
a particular set of the system parameters, one increases or
decreases one parameter adiabatically. This way, one can SL.C
find the range of the parameter values where a dynamic state FREE ,
remains stable. These two methods effectively simulate a . P
large variety of initial conditions. Using these, we investigate £ ﬁn fmax rmp
the steady states for given system parameftgrandf,,. In © mp p ~mp
particular, we concentrate on three representative values of
fup, and for each of them construct a phase diagram for the FIG. 1. The phase diagrams féf,>f, (@), f,,<fy (b), and
entire range of ,,,. However, since too large a value fgf, fup<fp (0). Here f,=2047 vehicles/hf.=2249 vehicles/h, and

. S . . — R Nafb — —
is unrealistic, we restrict our attention to the ranfyg, fma=2336 vehicles/h whilef =ty —fyp, fin=fc—fyp, and
<fmax_f g fimp=fmax—fup- (@ The phase diagram fof,,=2119 vehicles/h
='mp~ 'max 'up- _ . - .

The values of ,, studied in this work are chosen from the “here fimp=130 vehiclesh, and'm,=217 vehicles/h. Forf i,

rmp

= o

OCT MCT HCT

mp— rmp

N o up= . . >fC . the traffic jam state is generated spontaneoudy.The
Z p’

following considerations. In the previous studies of homoge phase diagram fof,,,~ 1948 vehicles/h whert?, =99 vehiclesh,

neous highways without ramps, it was found that the fiyx . =301 vehicles/h, and™®=389 vehicles/h. The metastable re-

H H H mp— rmp
provides an important boundary. Whereas the free flow is thSion among the free flow, the RH state, and the OCT state extends

only stab_le phase belody,, the traffic jam can be created from f...,=206 vehicles/h to 238 vehicles/t) The phase diagram
above this value. In the presence of ramps, one can expegl ¢+ —1497 vehicles’h wherd® =550 vehicles/h & =752
up ’

that the appearance of the traffic jam depends on whether thﬁéhicles/h, and?r‘na;: 839 vehiclesm?As the on-ramp qu;nipncreases,

upstream fluxf,, is larger or smaller tharfi,. (Below we  the traffic jams with different structures appear. The lower stability
show that this expectation is not true, due to the nontrivialimit of the HCT state is defined as the valuefof,, above which
effect of an on-ramp.This property motivated us to choose the inhomogeneous part disappears. In a similar way, one may de-
one representative value fif, in the range larger thafy, and  fine the upper stability limit of the OCT as the valuefgf,, below
another smaller. We also choose a very small value fowhich the homogeneous part does not expand with time. Notice that
fu(<fp), which later reveals the importance ff,, on the  between these two stability limits, there exists an intermediate range
formation of the congested traffic. of fmp for which both the OCT-like parinhomogeneous parand
the HCT-like part(thomogeneous parexpand with time. This in-
termediate state is called the “mixed congested traffit1CT)
A. fp>fy state. The stability limit between the OCT and MCT statd jg,
The phase diagram of the traffic states figp=2119 =603 vehicles/h and that between the MCT and HCT stafgjs

vehicles/h appears in Fig(d. Hereffmp is the critical input =730 vehicles/h.

flux through the on-ramp above which the free flow in the o ) )

critical on-ramp fluxfS,, is determined from thanf,. Thg traffic jam propagates to the upstream with its
characteristic group velocity.
ffmp=fc—fup, 3 Whenfrmp>ffmp, the flux of the free flow in the down-

stream is larger than the critical flux and the free flow is

linearly unstable with respect to long wavelength perturba-
wheref.=f.,. For Osfrmpsffmp, the flux, both in the up- tions of infinitesimal amplitude. The growth of infinitesimal
stream and downstream, is lower thigrbut higher tharf, . perturbations leads to spontaneously formed clusters and as
Hence the traffic jam can be created from the free flow bypointed out in Ref[16], complex sequences of traffic jams
triggering events but it does not appear spontaneously. Thmay appear in the downstream region. In a certain range of
finite amplitude perturbation td,,, generates a cluster, f.,,, we also observe that clusters form a periodic regular
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70— - ' tions. Notice that the density-flow relatiofsircles in Fig.
2(b)] measured at several locations near the on-ramp do not
necessarily fall on the homogeneous density-flow relation
5o | ] curve (p,pV(p)) [solid line in Fig. Zb)] even though the
relation at each measurement location remains stationary
with time. More remarkably, the circles lie in the linearly
unstable density region.

80 ¢ 1 Incidentally, an experimental data which may be relevant
to this has been reportg8]. It was observed that when the
traffic is in the stationary synchronized flow state, the density

. . . and flux can remain stationary during a relatively long time
-5 km 0km 5km interval (2-5 min. Their stationary values often lie in the
(@) x (km) linearly unstable density region and they form a two-

2400 : : : dimensional area in the density-flow plane instead of falling
on a single well-defined density-flow relation curve. In Ref.
[3], the stationary values are interpreted as an indication of
the spatiallyhomogeneousraffic, and Helbing, Hennecke,
| and Treibel{21] proposed the HCT state as an origin of the
o stationary synchronized flow. The HCT state provides an ex-
planation for the stability of the traffic in the linearly un-
stable density region but it leads to the formation of the
well-defined density-flow relation curve, failing to explain
the absence of such a curve in the measurement.

Present analysis of the SLC state raises an alternative pos-
sibility. The SLC state shows that being stationary does not
necessarily imply the homogeneity, and it also explains the
stability in the linearly unstable density region. Furthermore

FIG. 2. (a) The spatial density profile of the SLC state fio, it can explain the absence of the well-defined density-flow
=1948 vehicles/h and,,,=121 vehicles/h. The on-ramp is at 0 relation curve. We mention that upon the adiabatic variations
km. The profile does not change with tinib) Circles: The density-  of f,, f.,, and the external flux profile(x), the density-
flow relation for several positions near the on-ramp. That denotediow relation at a single measurement location can cover a
as UD) is the data in the upstrearfdownstrearh homogeneous  two-dimensional area in the density-flow plane. These agree-
region. Each data point is stationary with time, and upon adiabatignents raises an interesting possibility of an alternative expla-
variations off,, and the external flux profilex(x), it covers a  nation for the stationary synchronized traffic flow based on
two-dimensional area. Solid line: The curge- pV(p). the SLC state. We judge however that it is yet premature to

draw a definite conclusion from these agreements alone. Fur-
sequence. It turns out that this regular sequence is caused ther experimental investigation of the stationary synchro-
the presence of the on-ramp, whose detailed discussion willized traffic flow is necessary. In the next section, we dem-
be given in the next subsection. onstrate analytically that the traffic equatiois and(2) do
have the SLC state solution.

As the on-ramp fluxt,,, increases adiabatically, one finds
the phase transition from the SLC state to the recurring hump
In Fig. 1(b), we present the phase diagram fof, (RH) state[Fig. 3@)]. In the RH state, a cluster, or a hump,
=1948 vehicles/h. The free flow can exist urfti,, reaches  does not remain stationary but moves back and forth in a
ffmp, as in the previous subsection. Whigp,, is smaller than  localized region near the on-ramp. Its drift to far upstream is
92 vehicles/h, the free flouwith a transition layeris the not allowed since the upstream vehicle density is lower than

only stable phase. the boundary valup,. The RH state is investigated in detall

For f,,>92 vehicles/h, we find another time- in Ref.[19]using the periodic boundary condition, and many
independent state beside the free flow, which is shown iinteresting properties are found such as the discontinuous
Fig. 2@). In our simulation, this state can be generated fromtransition from the free flow to the RH state induced by
the free flow by applying the triggering pulse fpy,,, for a  localized perturbations of finite amplitudes, hysteresis,
short time. Far away from the on-ramp, the density and flongradual spatial transitions from the RH state to the free flow,
are homogeneous both in the upstream and downstrearand synchronized oscillations. These properties are identical
Near the on-ramp, a localized cluster appears, which doe® those of the synchronized floimonstationary type[2,3],
not propagate in either direction but stays motionless. Due tand based on these common properties, the RH state is pro-
this immobility, such state is named as the “standing local-posed as the origin of the synchronized flow.
ized cluster”(SLC) state in Ref[21]. The immobility of the In addition to the properties of the RH state discussed in
SLC state is in contrast to the situations without ramps wher&ef. [19], we investigate here the transition between the RH
all inhomogeneities should propagate. Hence the property istate and the SLC state. Our simulation shows that the tran-
due to an effect of the on-ramp. Another interesting propertysition from the SLC state to the RH state and the reverse
of the SLC state becomes manifest in the density-flow relatransition occur at the same critical value ff,, without

P (vehicles/km)
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FIG. 4. (a) The spatiotemporal evolution of the density of the
OCT state forf,,=1948 vehicles/h andi,,,= 222 vehicles/h. The
values off ,, andf,, are the same with those in Figia. The RH

FIG. 3. (@ The evolution of the RH state fof ,=1948
vehicles/h andf,,=222 vehicles/h. The hump moves back and

forth in a localized region near the on-ranip) The evolution of state in Fig. 8a) and the OCT state in this figure are independent

:\Te Rﬂ sltate forf“g_T 19|_48_ vefhi:les/ h andfmp:h_lio Vghi_ﬂeS/ h'_ h metastable state&) The spatiotemporal evolution of the OCT state
ear the lower stability limit of the RH state, which coincides with ¢, f p=1948 vehicles/h andi,,=381 vehicles/h. The increase of

tr:cehup%e; stablll'ty limit of thlelz SLC state, the oscillation amplitude f omp gENETates the “closely packed” clusters. Similarly(&, each
of the state Is very small. cluster decays at far upstream from the on-ramp.

hysteresis. We also examine the oscillation amplitude of the
RH state. The amplitude decreases to zero continuously ase self-generated near the on-ramp repeatedly, forming a
fmp @pproaches the critical valigig. 3b)]. Below the criti- ~ “train” of clusters moving upstream. Although each consti-
cal value, the hump does not oscillate and it becomes tuting cluster decays during its upstream propagation, the
standing cluster. These properties suggest that these trangiain can still remain stable provided that the decay rate is
tions are a result of the supercritid@lr very weak subcriti-  smaller than the self-generation rate, which is controlled by
cal) Hopf bifurcation[25] of the SLC state to the RH state. the extent of the inhomogeneity,,,, rather than by the
These transitions between the SLC state and the RH statgstream or downstream flux. Thus the stability limits of the
are not observed in the previous stydy], where the adia- new traffic jam do not coincide with those of the usual traffic
batic decrease of the ramp flux leads to the discontinuougms[Fig. 1(b)]. Notice that this train structure is different
transition of the RH state to the free flow inste@dg. 3 in  from usual traffic jams in homogeneous highways. To indi-
Ref. [19]). We attribute this difference to the different cate the structural difference, we will call this state the “os-
boundary condition adopted in this paper. Unlike the opertillating congested traffic’{OCT) state.
boundary condition wheré, and f,,, can be controlled We note that a traffic jam state very similar to the OCT
independently, the periodic boundary condition useflli®]  state appears fof ,>f,. Clusters are self-generated near
is such that the increagdecreaseof f ., is always accom- the on-ramp repeatedly, forming a regular sequence of clus-
panied by the decreadincreasg of f,, since the average ters. Forf,,>f,, however, each cluster does not decay in
density of the total system is fixed. Therefore the ‘“scan-their upstream movement because of the high upstream den-
ning” direction in Ref.[19] is different from that in this sity.
paper. The structure of the OCT state can be compared to the RH
We next discuss the traffic jam state. In homogeneoustate. In both states, clusters appear recurrently near the on-
highways without ramps, the formation and propagation offamp. In the OCT state, however, the area of the congested
the jam cannot occur when the flux is smaller tlignIn the  region expands with time, while in the RH state, clusters are
present case with an on-ramp, the fliyy in the upstream localized. This difference is due to the larger size of clusters
region is lower thanf,, while the flux in the downstream in the former.
region can be controlled bfy,,. Thus a usual jam that con- It is also worth mentioning that the structure of the OCT
sists of a single localized cluster should decay after theytate shows an interesting crossovef gg varies. For small
reach the upstream region. So in this sense, a usual traffi@lues off ., (close to the lower stability limjt the distance
jam is not a steady state. Our investigations show that &etween the clusters is relatively large so that there exist
different type of traffic jamqFig. 4) can occur even when homogeneous flow regions in betweffig. 4a)]. As f,
fp<fp due to the nontrivial effect of the on-ramp: Clustersincreases, the distance between the clusters shrinks and for
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FIG. 5. The travel time distributions of the free flqaolid line), 50

the RH statgdashed ling and the traffic jam{OCT) (dotted ling
for f,,=1948 vehicles/h andi,,= 222 vehicles/h. The travel time
distributions are obtained by following i@rajectories of vehicles
through the region from-5 km to 5 km.

t(min)  5gg

sufficiently large values of,,,, the homogeneous regions
between them disappedFig. 4(b)], and the clusters are (b)
“closely packed” inside the congested region.

In Ref. [21], these structural differences are discovered FIG. 6. The evolution of the MCTa) and HCT state(b) for
using a different hydrodynamic model and the OCT stated ,=1497 vehicles/h(a) f,,=635 vehicles/h. The congested re-
for small and largd ,,, are identified as two distinct phases. gion consists of the homogeneous part and the inhomogeneous part.
The former was called the “triggered stop and g6rsG) (b) fimp=794 vehicles/h. The inhomogeneous part is not present.
flow and the latter OCT. In this paper, however, we find thatThe upstream front moves with a fixed group velocity.
these apparently different states transform smoothly to each
other asf ., is varied, without any signature of singularities. nature of these phases. Also notice that in average, the travel
Thus we group these two states as a single dynamic phasetime for the traffic jam(OCT) is greater than those for the
this paper. This difference between this paper and Rdf.  free flow and the RH state.
may be due to the different models used, but presently we do
not know the precise origin of the difference.

We emphasize that in a certain range fof,,, three
phases, the free flow, the RH state, and the traffic(@aT) Figure Xc) shows the phase diagram fdr,,=1497
can coexist. In this metastable regionfof,,, small differ-  vehicles/h(about 25% lower tham,= 2047 vehicles/h The
ences in the initial traffic condition may result in quite dif- free flow remains linearly stable fdrrmp<ffmp. In a narrow
ferent final states. We mention that in a recent measuremerénge of f.,,,, 480 vehicles/k f,,,,<492 vehicles/h, the
[2], very similar initial states of the free flow are observed toS|C state is found, and foi,mp=492 vehicles/h, the OCT
undergo different phase transitions either to the synchronizegtate is found. For this low upstream flux, however, the RH
flow or to the traffic jam. Here we obtain the three phasesstate does not appear. We find the critical valué, ghbelow
from the traffic equations with a fixed parameter set. the RH state is absent is about 1872 vehicles/h.

The difference between the three phases, the free flow, the |t is interesting to notice that the upper stability limit of
RH state, and the traffic ja©CT), is manifest in the travel the SLC state and the lower stability limit of the OCT state
time distributions which are shown in Fig. 5. In order to coincide within our numerical accuracy. We verified that
calculate the exact travel time distributions, we determine th@pon the adiabatic increase ©f,,, the SLC state undergoes
trajectory of a vehicle, which is initially located atc(to),  the phase transition to the OCT state, and upon the adiabatic

300 - x (km)

C. fyp<fp

as follows: decrease of ., the reverse phase transition occurs, both at
. fimp=492 vehicles/h. This coincidence raises an interesting

Xver{t):Xvef{tO)+f dt’ v (Xer(t'),t'). (4) poss!b!l?ty Qf a close relation between the two phases. This

to possibility is also supported by the expansion rate of the

congested region, which seems to approach zero smoothly as

fimp is reduced to the lower stability limit of the OCT state.
From the trajectory of each vehicle, we obtain the vehicle We next examine the evolution of the traffic jam state.
travel time passing through the region frogg=—5 km to  Figure 6 shows the evolution of the structure of the con-
X;=5 km. With the samef =1948 vehicles/h and,,, gested region a,, is increased. For relatively smdll,,,
=222 vehicles/h, the travel time distributions of the threethe structure is the same as in Fig. 4. Ag,, increases,
states show different behaviors. While it consists of a singldhowever, a homogeneous flow region appears near the on-
peak for the free flow, those for the RH state and the trafficamp, which expands with timgFig. 6(@)]. Hence the con-
jam (OCT) show broad distributions due to the nonstationarygested region is partitioned into an inhomogeneous part and
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a homogeneous one. For an even higher valuef gf cally this tendency can be understood as resulting from the
(=730 vehicles/h the inhomogeneous part shrinks in length larger density gradient near the on-ramp when the relative
with time and after this transient process, the whole conPortion of f,, is larger. This trend is indeed observed in
gested region consists of a homogeneous [Fg 6(b)]. In hlghyvay measuremen{8] and is called the “capacity re-
Ref. [21], this state of traffic flow is named the “homoge- duction.”
neous congested trafficC(HCT) state and is identified as a
distinct phase. [ll. ANALYTIC SOLUTIONS OF THE SLC AND THE HCT

Unlike Ref.[21], however, it is not so clear in our simu- STATES
lations whether the OCT and HCT states are distinct phases. |n sec. 11, we showed that various forms of traffic flows
The distinction between the OCT and the HCT state is obpccur near an on-ramp. In the case of the free flow and the
scured further in our simulations by the presence of an interysual traffic jam, they are affected by the on-ramp in minor
mediate traffic state where both the OCT-like inhomoge-ways and their properties are essentially the same as those
neous part and the HCT-like homogeneous part expand witvithout an on-ramp, which have already been investigated
time. We call this intermediate state the “mixed congestedntensively[15]. For other phases, however, the presence of
traffic” (MCT) state [Fig. 6@]. As f,,, increases, the the on-ramp is crucial and understanding of their properties
change from the OCT state to the MCT state and then to thare relatively poor. In this section, we present analytic stud-
HCT state seems to occur in a smooth way. We thus infeies of two forms of traffic flow, the SLC state and the HCT
that the OCT, MCT, and HCT are different forms of a single state.
jam phase.

We now focus on the HCT state. Notice that even though A. Standing localized cluster(SLC) state

fup<fy, the area of the congested traffic increases mono- The gnalytic examination of the SLC state is relatively
tonically with the group velocity of the upstream front about gjmpje since all time dependence disappears. This analysis
—7.68 km/h, which is considerably lower than the usual jamyso provides a good starting point for future analysis of the
propagation velocity~ —15 km/h[4]. This monotonic wid- R state and the OCT state since they are closely related to
ening of the congested region is caused by the “blockage’ihe SLC state as discussed in the preceding section. Hence
effect of the ramp, which can be understood easily by recally,e present below the analysis of the SLC state in detail.
ing that in real highways, a large flux from the on-ramp can | 3 homogeneous highway, inhomogeneities in the den-
aImo_st block the flow of vehicles on main hlgh\(vays: We a|505ity or the velocity always propagate. In the presence of an
mention that the structure of the HCT state is identical to th%n-ramp, on the other hand, the numerical investigation in
traffic jam (shock caused by a blockad@6], which implies  the previous section shows that inhomogeneities may form a
that for largef ,p, the ramp works as a bottleneck. ~ standingcluster without propagation. Here we demonstrate
Inf[erestlngly, the densﬁy in the congested region lies INanalytically that the moddIEgs. (1) and (2)] indeed allows
the linearly unstable region of the homogeneous flpw,  standing cluster solutions in the presence of an on-ramp.

(=pc)<p<pco- Hence according to Refd14,15, long To obtain the SLC solution, one imposes
wavelength fluctuations of even infinitesimal amplitude

should grow in this region. In our simulations, we find that dp v

small inhomogeneities in the initial state indeed grow to ot ot (5)

form clusters. These clusters however disappear when they

reach the upstream boundary of the congested region and tiB integrating Eq.(1) with respect tax, one obtains
congested region becomes homogeneous afterwards. This re-

sult implies that inside the linearly unstable region, there x

exists a range of density where the homogeneous flow is P(X)U(X):frmpﬁxﬁ"(x)dx“qupEQ(X)- (6)
convectivelystable[27] (that is, the instability drifts away in

one particular direction leaving the regions behind unaf-since the functiormy(x) is completely determined for given
feCted. The same observation is made in R[gl], where frmp and fupv one can use this equation to expr%x) in

the HCT state is related to the Stationary SynChronized ﬂO\Nterms OfU(X). Using this, one can rewrite ECQ) as follows:
As mentioned in the preceding subsection, however, the
density-flow relation in the congested region of the HCT g2, ( cg) dv  q(x) (q(x)) 2
\% —v
1%

+-4 (x),

state lies on the single curg,pV(p)), which differs from ’“W:q 2
the experimental observations of scattered @&tawWe men-
tion that the HCT state may be very sensitive to the presence
of noises since it is only convectively stable. whered/dx has been replaced y/dx since all time depen-

It is instructive to compare the stability ranges in Fi)1  dence disappears.
with those in Fig. 1b). The stability range of the SLC state  For further analysis, it is convenient to assume a particu-
lies entirely belowfy,, in Fig. 1(c) while it is mostly above  |ar form of the influx profilee(x). We take the localized
mep in Fig. 1(b). Also the stability range of the OCT reaches influx limit and choosep(x) = 8(x). Theng(x) becomed up
belowff’mp in Fig. 1(c) while it lies entirely abovéf’mp inFig.  forx<O0, fy+ fimpfor x>0, andq’ (x) = fmpd(x). Then Eq.
1(b). This suggests that when the sdp+ f ., is the same, (7) can be decomposed into two separate problems defined
the formation of the cluster is easier for lardef, and thus  on two semi-infinite regionsx<<0 andx>0, with the match-
the actual total flux level in the downstream is lower. Physi-ing conditions atx=0,

dx 7
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FIG. 7. The flow in the phase spaae W) (a) with f,, slightly below the lower stability limit of the SLC state afig) with f,,, slightly
above the lower stability limit. The path 1 represents the flow that is associated with the unstable eigendirection of the fixeg, @int (
(pointA), and the path 2 the flow that is associated with the stable eigendirection of the fixedupgid) (pointC). The path 3 represents
the image of the path 1 through the mappi{By The insets are the enlargements of the dotted regions at (@fthe density profil€solid
line) of the SLC state obtained analytically fog,=1948 vehicles/h and,,,=121 vehicles/h. The mark&, G, H, C represent corre-
sponding points in Fig. (b). The density profile obtained from the numerical simulation of Efjsand (2) is also given for comparison
(dotted line, vertically shifted 40 vehicles/kniNotice that the density jump at the on-ramp=0) in the solid lind due to the approximation
¢(X)=68(x)] is smoothed out in the dotted line.

v(X) |x=0+=0(X)|x=0—, For the safe velocity/(p) adopted in this paper, E®) is
highly nonlinear and it does not seem feasible to write down
do do cg solutions in a closed form. However, qualitative properties of
ax ~ax + —O)f”“p' (8) the solutions can be still investigated by taking E®). as a
Xlyoor OX[ oo mo( set of flow equations defined on the phase spacw).

Since the global structure of the flow is largely deter-

For each semi-infinite region, it is instructive to rewrite mined from properties of fixed points, we first find fixed

Eq. (7) as follows: points of Eq.(9). Simple algebra shows that there are three
fixed points, ¢,w)=(0,0),(©s1,0),(vs,0). The first one is

dw _ (1_ C_(Z))W_E V(%) Y unphysical since =0 implies p—c. This unphysical fixed
K ax Gs v? TU v ' point appears since we sé{p) =0 for p>p, and we ignore
this below. The other two come from the two solutions
dv Ve, Vs (<wvg) Of V(gs/v)=v. [It can be easily verified
- W (9 that for gs<fmay there are always two solutions, the larger

one corresponding to the maximum point of the potential
U(y) and the smaller to the minimum poipt.

where s=p(ositive) for x>0 ands=n(egative) forx<O0, h . .
P ) (eg ) We are interested in the solutions where

and gp= fypt+ fimp, dn="fyp- Notice that after the variable
transformationsv —y, x—t, u—m, Eqg. (9) can be re-
garded as the equation of motion of a particle subject to a
potentialU4(y) wheredU/dy=(qs/7y)[V(qgs/y)—y] and vny for x—-—o

: . 10
to the “strange” coordinate-dependent damping force. v(xX)— vpp for x—ee. (10
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Thus @,1,0) [point A in Figs. 7a) and 7b)] is the relevant on-ramp and the upstream front moves with a fixed group
fixed point forx<<0. By linearizing Eq(9), it can be verified velocity. Between the downstream and the upstream fronts,
that it is a saddle point. Then the fldwath 1 in Figs. @  the congested region of the homogeneous flow is maintained
and 1b)] that is associated with the unstable eigendirectiorfFig. 6b)]. We notice that the upstream front is a steady
of the fixed point determines the entire flow in the semi-structure in a proper reference frame. Below we show ana-
infinite regionx<0. Similarly (v;,0) [pointC in Figs. 48  Iytically that Eqs.(1) and(2) possess the HCT state solution.
and qb)] is the relevant fixed point fax>0, which is again  Since the congested region is homogeneous, one can split the
a saddle point. The entire flow in the positive semi-infinite giscussion into two parts, one for the moving upstream front
region is then determined by the fldpath 2 in Figs. @  and the other for the fixed downstream front. For the up-
and qb)] that is associated with the stable eigendirection ofgraam front. the relevant equations of motion are
the fixed point. ’

In order to construct a legitimate solution from the path 1 ap d(pv)

and 2, one should join the two paths using the matching ot X , (11
conditions[Eq. (8)]. It is convenient to regard the conditions

[Eq. (8)] as a definition of a mapping defined in the phase v v p 20

space ¢,w), from a point ¢, w) to (v, W+ C3f ./ uv). The o _+v_) — B[V(p)—v]—cg—pr,u—z. (12)
effect of the mapping is shown in Fig(&J, where the path 1 gt x| 7T ax X

is mapped to the path 3. The path 3 crosses the path 2 at a _ _ ) )

point denoted aF in the inset. Then one can construct a full Since this front is surrounded hyide regions of the homo-

solution by connecting the curvAE with the curveFC. geneous flow both in t.he upstream and thf—: downstream, one

This solution exists for an arbitrary small value fof,, and ~ ¢&n impose the following boundary conditions:

represents the free flow solutidwith a transition layef16]

at the on-ramp p(X===1)=p_=pyp, (13
Different solutions appear for sufficiently lardg,,. The

mapping of the path 1 to the path 3 for a lardgg, is

depicted in Fig. ). Now the path 3 crosses the path 2 at

three pointsF,H, 1, which implies the presence of three so- px=+=10=p, (15

lutions. The solution associated with the crossing pdint

again corresponds to the transition layer solution. The two v(Xx=+=0)=v,=V(p,). (16)

other solutions associated with the crossing pokitand | Herep_ is the density of the far upstream region and of

correspond to the desired SLC solutions. Each solution PT% e congested region Also the spatial coordinate is chosen in
vides the velocity profile for—o<x<w, from which the 9 9 P

density profile can be obtained frop(x) =g /v(x). Figure such a way that= +« corresponds to a location deep in the

7(c) compares the density profile associated with the Crossgongested region instead of the far downstream in the origi-

\ X . ) ) . . nal equationgl) and(2).
ing pointH with that from the direct numerical simulation of
the traffic mode[Egs.(1) and(2)] with the Gaussian form of Let us assume that EqeL1) and(12) allow asteadystate

. " . : .__ solution that satisfies the boundary conditions E{s3),
¢(x). Notice that the two prpﬂles are essgntlally '|dent|'cal 14), (15), and (16). Here the steady state means that in a
except for a small difference in the ramp region, which arise

N . ! roper reference frame, all time-dependence disappears. We
due to the approximation O.f the Input flux pTOf"e by a del_ta erform the change of the reference frame:
function. The density profile associated with the crossmgf

v(x=—,t)=v_=V(p_), (14)

point| can be obtained in a similar way. This solution, how- X' =X—vt, (17)
ever, is not found in the direct numerical simulation, which ’
suggests that this solution is linearly unstable. t'=t, (18

This analysis implies that the SLC solutions appear only
for f,p larger than a critical value. Precisely at the critical and neglect all time dependence in this new reference frame
value, the two crossing pointd and | coincide. Forf,,, to find
larger than the critical value, numerical simulations indicate
that only one solutiorfone through the crossing poiht) is dq’
stable and the other is not. Thus one finds that a turning point & =0, (19
connecting the stable and unstable SLC solutions appear at

the critical ramp flux. 2

Above considerations use a specific form of an influx pro- /d_U:pV(P)_U _Czd_P +Md_v (20)
file. We believe that the precise profile does not change the dx’ T O4x’ dx’'?’
qualitative nature of above discussion. In fact, the value of
the critical ramp flux for the SLC state obtained using thewhere q’=pv —pvy. We can determine the constarg$
approximatione(x) = 8(x) is found identical within the nu- andvg4 from the boundary conditions Eqél3), (14), (15),
merical accuracy to that obtained from the direct numericahnd (16). From the condition that the in-flux to and the out-
simulation of Eqs(1) and (2) [with ¢(x) Gaussiah flux from the front should be the same in the primed refer-

ence frame, we obtain
B. Homogeneous congested traffi(HCT) state

PV PV

U 1
S pi-po

When the on-ramp influx is added, we observe another

21
kind of the traffic jam: The downstream front is fixed at the (
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 pap_(v_—vy)
qQ=—— (22)
P+—pP- 120 |
J
Using Eq.(19), one has _wof 3
€ H
q’ % sor
= , 23 2 ] """"
P V=g (23 g eof
(=%
Plugging in this expression into E(R0), one finds “or ]
2
dv [ ¢} dv .
de’2+q (U—Ug)z_la—H:(v’q vg)=0, - -60 30 0 10
(24) x (km)
where FIG. 8. The density profile of the HCT state obtained analyti-
cally (solid ling) under the approximationp(x)=a(x) for f,,
q' q' = 1497 vehicles/h anél,,,= 762 vehicles/h. The density profile ob-
F(v;q',vg)z v( )—v . (25 tained from the numerical simulation of Eq4) and (2) is also
T(v—vg) U™ Uy given for comparison(dotted line, vertically shifted 50 vehi-

cles/km. Small differences between the two are due to the different

Equation(24) is again an equation of motion of a particle choices ofe(x)

subject to a conservative force F and the coordinate-
dependent damping force. The boundary conditions E&¢s.

and (14) ensure thaF(v..;q’,0g) =0 automatically. Since on the descending slope of the homogeneous density-flow

v_>vy, the rootv_(v,) corresponds to the potential relation. This difference in the asymptotic behavior results
maximum(minimum). Thus the nature of the stationary state.

is clear in the particle motion analogy. At=—, the par- in a qualitative change. It can be verified through the linear-

ticle is at the unstable maximum pointv _ . As “time” x i_zation of Eq,(g) that (n,0) i_s astabl_efixgd_ point. _Then we
increases, the particle slides down the hill and after somgnq v(X)=vp, for the entire sem|-|nf|n_|te reg|orx§0,
time. it se’ttles down ab=v., due to the friction, provided Which should be contrasted to the preceding subsection. Near

’ : - g . i . the fixed point (,1,0), on the other hand, the situation is
the damping coefficient in Eq24) remains positive. This _. _. pL . . .

. ; . similar to the preceding subsection and the flow in the posi-
pgrtlcle motion describes the upstream front of the HCT Stat(t:ive semi-infinite region becomes a continuous path, like the
[Flg.e?(()?)e].we begin the next analysis of the downstreamDath 2 in Figs. @) and 7b).

. L To construct a full solution of the HCT downstream front,
front pf the HCT §tat¢F|g. 6@]' Gne remarkiis in order. In the separate solutions for<O andx>0 should be joined
thhe direct r)umerlcal simulation of Eq(il) and(2), the ve- ._using the matching conditigrEq. (8)]. Since the velocity for

icle velocity in the congested region of the HCT state IS, ~0 is constant. the matching conditions reduce to
fixed for givenf,, andf,,,. However, in the above analysis '
of the upstream front, wherk,; is used to fixv _ =v,, the
value ofv, is still a free parameter. We show below that this v(X)|x=0+ =Vn2,
degree of freedom should be used to allow the downstream
front solution. do cl
Analysis of the stationary downstream front is very simi-
lar to the analysis of the SLC state in the preceding subsec-
tion. Using the condition of the stationarity and integrating
Eq. (1), one obtains Eq(5) and (6), respectively. Adopting This matching conditions can be satisfied only when the
the approximationy(x) = 8(x), one recovers the matching phase space trajectory forx>0 passes the point
conditions at the ramfEq. (8)] and the set of the flow equa- (vnz,(cgl,uvnz)frmp). For givenv,, and f,,, the path in
tions[Eqg. (9)]. The value ofqg, should bep.v, to allow a  general doesiot pass the point except for a particular value
continuous connection af(x) to the upstream front solution of v,,=wv . . This tuning thus fixes the free parameter as
and qp,=0n+fmp. The asymptotic behavior of(x) far ~ mentioned before. In general,. is a function of the influx
away from the on-ramp should be chosen differently as folprofile ¢(x) since the matching conditions depend @fx).
lows: Figure 8 shows the density profi(solid line) of the HCT
state obtained from this matching method §g(ix) = 5(x). It
Un2=v4 for x——o is essentially identical to the profileotted ling obtained
v(x)= vy for x—oo, (28)  from the numerical simulation of Eqgé&l) and(2), except for

P the larger density peak at the on-ramp caused by the approxi-
wherev,; andv,, are defined in the same way as in the mation ¢(x) = 8(x). We confirm from the simulation result
preceding subsection, ard- — corresponds to the region that the group velocity of the moving front is consistent with
deep in the congested region. —7.68 km/h which is given by Eq21) and the damping

Notice that forx— —, v(x) approachew,, instead of coefficientq’[cgl(u—vg)z—1] is positive in the congested
vy Sincev ;. corresponds to the smaller of the two solutionsregion.

of V(g,/v)=v (or since the corresponding denspy lies

- =———fmp- (27)
dx O+ uov(0) ™M
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IV. CONCLUSION which can appear even below the stability limit of the usual
traffic jam in homogeneous highways. The structure of this

The traffic equation with a source term representing the[rafficjam varies qualitatively witffi,,,. The capacity reduc-

on-ramp influx of a highway displays a variety of traffic flow tion due tof,, is also observed. In a certain rangefg,.

states not present in the homogeneous equations. To und he free flow, the RH state, and the traffic jam can all coexist
stand the role of the source term, we map out the phase

diagram using the continuum traffic modégs. (1) and(2)] So that the free flow can undergo phase transitions either to

proposed by Kerner and Koniger[14]. In our numerical the RH state or to the traffic jam state. Analytic investiga-

simulation, we use the open boundary condition, which al_t|ons are also performed and two nontrivial solutions of Egs.

| : : X (1) and(2) are found. These solutions describe the SLC state
ows one to handle the single on-ramp without using very d the HCT stat

large system sizes. Due to the possible presence of multipfaen € state.
metastable states, detailed simulation is carried out for a lim-
ited number of representative values of the upstreamffjyix
and for the whole range of the on-ramp flfix,,. Various H.Y.L. thanks Daewoo Foundation for financial support,
traffic states are identified and characterized. The phase diand M. Schreckenberg for hospitality during her stay at Du-
grams thus obtained are summarized in Fig. 1. It is foundsburg University. H.-W.L. was supported by the Korea Sci-
that an inhomogeneous but stationary traffic st8eC) can  ence and Engineering Foundation. This work was supported
appear near the on-ramp dueftg,,. This state is related to by the Korea Science and Engineering Foundation through
the recent measurement of the homogeneous synchronizéite SRC program at SNU-CTP, and also by Korea Research
flow. The on-ramp also generates another kind of traffic jamFoundation(1998-015-D0005b
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