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Lattice statistics in three dimensions: Solution of layered dimer and layered domain wall models
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Analyses are given for two three-dimensional lattice systems: A system of close-packed dimers placed in
layers of honeycomb lattices and a layered triangular-lattice interacting domain wall model, both with non-
trivial interlayer interactions. We show that both models are equivalent to a five-vertex model on the square
lattice with interlayer vertex-vertex interactions. Using the method of Bethe ansatz, a closed-form expression
for the free energy is obtained and analyzed. We deduce the exact phase diagram and determine the nature of
the phase transitions determined as a function of the strength of the interlayer interaction.
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I. INTRODUCTION

An important milestone in the field of exact solutions
lattice-statistical systems is the solution of close-pac
dimers on planar lattices obtained by Kasteleyn@1# and by
Fisher@2#. However, there has since been very little progr
in extending the dimer solution to higher dimensions. To
sure, Bhattacharjeeet al. @3# have studied dimers on a certa
three-dimensional~3D! lattice using numerical means, an
two of us @4# have solved a vertex model in arbitraryd
dimension, a solution which also solves a dimer problem
d dimension. In the latter case, however, the dimer mo
involves unphysical negative statistical weights.

In a recent Letter@5#, hereafter referred to as I, three of u
reported on the solution of a 3D dimer system as an insta
of a more general class of soluble 3D lattice-statistical pr
lem. In contradistinction with other exactly solved 3D sy
tems @6,7# which invariably involve negative Boltzman
weights, the formulation reported in I, which generaliz
other special cases reported elsewhere@8#, marks the succes
of solving a 3D lattice-statistical model with strictly positiv
Boltzmann weights. In this paper we present details of t
solution. In addition, we show also that our solution solve
layered domain wall model with interlayer interactions.

This paper is organized as follows. In Sec. II we defin
layered dimer system with interlayer interactions and
equivalent layered five-vertex model. The description of
equivalent layered domain wall model is given in Sec.
The free energy of the 3D system is analyzed in Sec. IV w
the phase diagram obtained in Sec. V. The critical beha
is deduced in Sec. VI. Finally in Sec. VII we discuss t
occurrence of infinite degeneracy of orders in the system
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II. A LAYERED DIMER SYSTEM
AND THE EQUIVALENT FIVE-VERTEX MODEL

Consider a 3D latticeL consisting ofK layers of honey-
comb lattices stacked together as shown in Fig. 1. Each la
of L is a honeycomb dimer lattice in which dimers wi
weightsu,v,w are placed in the three respective lattice
rections. The dimers are close packed within each layer
interact with an interlayer interaction shown in Table I whi
gives, for example, the interaction energy 2h/3, and hence a
Boltzmann factore22h/3, between au dimer in thekth layer
and a v dimer in the (k11)th layer. This completes the
description of our 3D dimer system. The interlayer coupli
introduced here is admittedly artificial and we do not conje
ture about possible physical applications. However, the m
of the model is that it is integrable, enabling one to study
properties exactly.

Since a perusal of Table I shows that the negation oh
corresponds to the interchange of the layersk andk11, we
can without loss of generality takeh>0.

The honeycomb dimer system can be formulated a

s, FIG. 1. A three-dimensional lattice model consisting of layers
honeycomb dimer lattices.
3999 © 1997 The American Physical Society
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five-vertex model on a square lattice@9#. This can be seen by
drawing the honeycomb lattice in the form of a ‘‘brick wall
as shown in Fig. 2. The shrinking of each box containing t
lattice points connected by aw edge into a point then con
verts the honeycomb lattice into a square lattice. By rega
ing the presence of au or v dimer on the remaining honey
comb edges as being bonds, each dimer configuration is
mapped into a vertex configuration of a five-vertex mod
and vice versa. The resulting five-vertex configurations a
weights@9# are shown in Fig. 3.

Furthermore, the interlayer dimer interaction leads to
interlayer vertex interaction. It turns out that the interlay
vertex-vertex interaction corresponding to Table I is n
unique. To deduce a useful interlayer vertex-vertex inter
tion we first modify Table I by replacing theuu and vv
entries by 2eh, wheree511(21) for sites in sublatticeA
(B). Since two interactinguu or vv dimers are always par
allel covering a pair ofA andB sites, this replacement doe
not alter the overall interaction energy. A little algebra th
shows that the dimer interaction of the modified Table
leads to the interlayer vertex interactions shown in Table
Thus we have at hand a layered five-vertex model with
terlayer interactions.

Let each square lattice be of sizeM3N, with M sites in
a column andN sites in a row. This corresponds toMNK
dimers onL. Label sites of the layers of square lattices
indices $m, j ,k%, with m51, . . . ,M , j 51, . . . ,N, and
k51, . . . ,K. Denote the vertex weight at site$m, j ,k% by
Wm jk , and denote the interaction in Table II between ve
ces$m, j ,k% and$m, j ,k11% by Bm jk . Then, it is our goal to
evaluate the partition function

ZMNK5 (
config

)
k51

K

)
m51

M

)
j 51

N

~Bm jkWm jk!, ~1!

where the summation is taken over all dimer, or vertex, c
figurations, and theper-dimerfree energy

f 5K21 lim
M ,N→`

~MN!21lnZMNK . ~2!

TABLE I. Interaction energy between two dimers incident at t
same site of adjacent layers. The interaction is symmetric inu,v,w.

Layer k→k11 u v w

u 0 2h/3 22h/3
v 22h/3 0 2h/3
w 2h/3 22h/3 0

FIG. 2. The mapping of a honeycomb lattice onto a squ
lattice.
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For simplicity, we shall assumeK533 integers. We also
assume periodic boundary conditions.

To write the interlayer vertex interactions of Table II
the form of Bm jk , we introduce variablesam jk561 and
bm jk561, respectively, for the horizontal and vertical edg
within the kth layer and originating from the site$m, j ,k% in
the direction of, say, decreasing$m, j %, such that
am jk511(21) corresponds to the edge having a bo
~empty!. It is then straightforward to verify that the vertex
vertex interactions in Table II can be written as

«52h~a j b̃ j2ã j 11b j8!2
h

3
~a j2ã j 11!2

h

3
~ b̃ j2b j8!,

~3!

where we have, for convenience, suppressed the subscripm
andk by adopting the notation

bm11,j ,k→b j8, bm, j ,k11→b̃ j , ~4!

and similarly for thea ’s. Now the second and third terms i
Eq. ~3! are cancelled upon introducing this interaction in
the overall partition function~1!. This leads to an effective
Boltzmann factor

Bm jk5exp@h~a j b̃ j2ã j 11b j8!#, ~5!

which is to be used in Eq.~1!.

III. A LAYERED DOMAIN WALL MODEL

In this section we show that the layered dimer and fiv
vertex models of the preceding sections also describe a
ered domain wall model with interlayer interactions.

Consider a 3D lattice consisting ofK layers of triangular
lattices whose faces are elementary~up-pointing and down-
pointing! triangles. Sites of the triangular lattices are occ
pied by Ising spinss56 with the constraint that, around
each face of the lattice, there are precisely two spins of

FIG. 3. Vertex configurations and weights of the five-vert
model.

TABLE II. Interaction energy between two vertex configur
tions of adjacent layers.v i ,i 52, . . . ,6denotes the vertex of typei
in Fig. 3.

Layer k2k11 v2 v3 v4 v5 v6

v2 0 24h/3 4h/3 0 0
v3 4h/3 0 24h/3 4h/3 28h/3
v4 24h/3 4h/3 0 24h/3 8h/3
v5 0 8h/3 28h/3 0 0
v6 0 24h/3 4h/3 0 0

e
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same sign and one spin of the opposite sign. The allowe
spin configurations are those of the ground state of an is
tropic antiferromagnetic Ising model. Furthermore, if one
erases lattice edges connecting two spins of the same si
one arrives at a diamond~or rhombus! covering of the trian-
gular lattice. This can be interpreted as a dimer covering o
the dual honeycomb lattice, by placing dimers connecting th
two dual lattice points on the elongated diagonal of eac
rhombus. It is clear that the mapping between the spin co
figurations and the diamond and dimer coverings is two t
one. Indeed, this mapping has been used to extract the so
tion of the honeycomb dimer lattice from the Ising ground
state@10#.

The spin configurations can also be viewed as represen
ing domain wall configurations@10,11#. This mapping is
most conveniently seen@11# from the associated diamond
covering scheme. If one attaches strips to those diamon
oriented in two of the three possible directions as shown i
Fig. 4, then the strips form continuous lines and propagate
a zigzag but generally vertical direction, which can be inter
preted as representing domain walls~cf. Figs. 2 and 4 of@11#
for a typical domain wall configuration!. A spin configura-
tion is thus mapped into a domain wall configuration Spe
cifically, the triangular faces of the lattice can be in one o
the six ‘‘strip’’ configurations shown in Fig. 5, and the do-
main wall model is defined by associating weights to th
triangles as shown in Fig. 5.

Next we introduce interlayer domain wall interactions
Shift the (k11)th layer by half lattice constant to the left
with respect to thekth layer so that the up-pointing~down-
pointing! triangles in the layerk will be adjacent to down-
pointing ~up-pointing! triangles in the layerk11. Let two
adjacent triangular faces in planesk andk11 interact with
an energy shown in Table III. Together with the triangle
weights given in Fig. 5, this completely defines the layere
domain wall problem. More precisely, the partition function
for the domain wall problem is given by Eq.~1! now with the
summation extending over all domain wall configurations
Wm jk representing the product of the triangle weights give

FIG. 4. The three possible orientations of a diamond. Strips a
associated with diamonds oriented in two particular directions.

FIG. 5. The six strip configurations and the associated weigh
of a triangle.
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in Fig. 5 andBm jk the interlayer interaction given by Tabl
III.

The mapping of a domain wall configuration to a fiv
vertex arrow configuration is given in@11#, where the trian-
gular lattice was deformed into a square lattice by tilting
clockwise, leading to a five-vertex model withv350 ~in-
stead ofv150 as in Fig. 3!. For the present paper, we de
formed the triangular lattice by tilting it counterclockwis
Then, the vertex weights reduce exactly to those given
Fig. 3.

To obtain an explicit form forBm jk , it is straightforward
to verify that the interaction of Table III can be written as,
the language of the layered five-vertex model,

«52h~a j b̃ j82ã j 11b j !1h~a j2ã j 11!2h~ b̃ j82b j !.
~6!

Again the second and third terms in Eq.~6! are cancelled in
the overall partition function~1!. But the effective interaction
Boltzmann factor now assumes the form

Bm jk5exp@h~a j b̃ j82ã j 11b j !#, ~7!

which differs slightly from Eq.~5! for the dimer problem.
However, repeating precisely the same line of argument a
I, one can show that the interlayer interaction~7! leads to
precisely the same free energy~9! and~8! given below. Thus
the domain wall problem~with interlayer interactions of
Table III! is completely equivalent to the dimer system~with
interlayer interactions of Table I!.

IV. THE FREE ENERGY

In the preceding sections we have established the c
plete equivalence of the layered dimer and domain w
problems, and their further equivalence with a layered fi
vertex model. In this section we analyze the free energy
the layered 5-vertex problem. For simplicity we use the la
guage of the dimer system@12#.

It has been shown in I that the layers of five-vertex mo
els with interlayer interaction~5! can be solved by applying
a transfer matrix in the vertical direction and a global Bet
ansatz consisting of the usual Bethe ansatz within each la
This leads to the following expression for the free energy

f ~u,v,w,h!5 max
21<yk<1

f ~$yk%!, ~8!

where

re

ts

TABLE III. Interaction energy between two strip triangles o
adjacent layers. The triangle configurations are as numbered in
5.

Layer k→k11 1 2 3 4 5 6

1 0 0 0 0 22h 0
2 0 0 0 2h 0 0
3 0 0 0 0 0 0
4 0 22h 0 0 0 0
5 2h 0 0 0 0 0
6 0 0 0 0 0 0
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f ~$yk%!5 ln u1
1

K (
k51

K
1

pE0

p~12yk!/2

3 lnUwu 1
v
u

e2h~yk112yk21!eiuUdu. ~9!

Here,

yk5
1

N(
j 51

N

b j5
1

N(
j 51

N

b j8

is a quantity conserved from row to row~of vertical edges! in
the kth layer square lattice. Specifically, we ha
yk5122nk /N, wherenk is the number of vacant edges in
row. Analysis leading to Eq.~9! has been given in I and wil
not be reproduced here.

It is clear that for largeu, v, or w, the system is frozen
with complete ordering ofu, v, or w dimers in all layers,
and hence the free energies

f U5 ln u, U phase,

f V5 ln v, V phase, ~10!

f W5 ln w, W phase.

These are frozen orderings which we refer to as theU, V,
and W phases, respectively. For largeh, it is readily seen
from Table I that the energetically preferred state is the
in which each layer is occupied by one kind of dimer,u, v,
or w, and that the layers are ordered in the sequence
$u,w,v,u,w,v, . . . %. This ordered phase is referred to as t
H phase with the free energy

f H5
1

3
ln~uvwe4h!, H phase ~11!

obtained from a perusal of Table I.
For any layer withyk511 the corresponding integral i

Eq. ~9! vanishes, and foryk521 the integral can be evalu
ated using the integration formula

1

pE0

p

lnuA1Beiuudu5max$ lnuAu, lnuBu%. ~12!

Therefore the free energy~9! can be explicitly evaluated i
yk561 for all k. Further discussion of this case will b
given in Sec. VII.

We have carried out analytic as well as numerical ana
ses of the free energy~9! for fixedu,v,w,h, and it was found
that the set$yk% which gives the extremum value in Eq.~8!
always repeats in multiples of 3, namely, satisfying@13#

yk135yk .

The following extremum sets of$yk% are found.
~1! $y1 ,y2 ,y3%5$1,1,1%: In this case we have allyk51,

and hence from Eq.~9!

f 5 f U, U phase. ~13!

This gives rise to theU phase.
e

of

-

~2! $y1 ,y2 ,y3%5$21,21,21%: In this case we have al
yk521, and hence from Eq.~9!

f 5 ln u1
1

pE0

p

lnU w

u
1

v
u

eiuUdu

5H f W , w.v, W phase

f V , v.w, V phase.
~14!

This gives rise to theW andV phases.
~3! $y1 ,y2 ,y3%5$1,21,21%: Substituting this sequenc

of yk values into Eq.~9! and making use of Eq.~12! in the
resulting expression, one obtains

f 5 ln u1
1

6pE2p

p

lnU w

u
1

v
u

e2heiuUdu

1
1

6pE2p

p

lnU w

u
1

v
u

e22heiuUdu

~15!

55
1

3
f U1

2

3
f W , ve24h,ve4h,w

1

3
f U1

2

3
f V , w,ve24h,ve4h

f H , ve24h,w,ve4h, H phase.

~16!

~17!

Now the free energies~15! and ~16! can be discarded sinc
they are always smaller than the largest of$ f U , f V , f W%. Thus
this set of $yk% leads to a frozen ordering for sufficientl
largeh as indicated in Eq.~17!, which is theH phase.

~4! $y1 ,y2 ,y3%5$y,y,y%: In this case allyk5y, wherey
maximizes the free energy~9!. Then, substitutingyk5y into
Eq. ~9! and carrying out the maximization in Eq.~8! by a
straightforward differentiation with respect toy, one obtains

f 5 f Y~y0![ ln u1
1

pE0

p~12y0!/2

3 lnUwu 1
v
u

eiuUdu, Y phase, ~18!

where the extremumy0 is given by

p

2
~12y0!5cos21Fu22w22v2

2wv G . ~19!

This is a disorder phase which we refer to as theY phase.
Note that, despite its apparent asymmetric appearance
free energyf Y(y) is actually symmetric inu,v,w. Note that,
for largev;w, we have
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p

2
~12y0!5p2u0 , ~20!

whereu0 is small and given by

u0
25@u22~w2v !2#/wv. ~21!
re

-

er
of

e

~5! $y1 ,y2 ,y3%5$y1 ,21,21%: This is theH phase with
theu layers replaced by layers withyk5y1 , so that the layer
ordering is $y1 ,w,v,y1 ,w,v, . . . %. This is a partially or-
dered phase which we refer to as theI u phase. Again, the
substitution of these values of$yk% into Eq. ~9! and a
straightforward maximization yield, after using Eq.~12!,
~22!

f 5 f I u
~y10!55

1

3
@2 f W1 f Y~y10!#, w.ve4h~11y10!

1

3
@2 f V1 f Y~y10!#, w,ve22h~11y10!

1

3
@ ln~vwe2h~11y10!!1 f Y~y10!#, ve22h~11y10!,w,ve2h~11y10!, I u phase,

~23!

~24!
al-

-

rgies
where f Y(y10) is defined in Eq.~18!, with the extremumy10
given by

p

2
~12y10!5cos21Fu2e8h2w22v2

2wv G . ~25!

The free energies~22! and ~23! are discarded since they a
always less than the largest of$ f W , f V , f Y(y10)%, and we
have f Y(y10), f Y(y0) by definition. Therefore the free en
ergy of theI u phase is given by Eq.~24!. Note that, for large
v;w, we have

p

2
~12y10!5p2u1 , ~26!

whereu1 is small and given by

u1
25@u2e8h2~w2v !2#/wv. ~27!

~6! $y1 ,y2 ,y3%5$1,y2 ,21%: This is theH phase with the
w layers replaced by layers withyk115y2 , so that the layer
ordering is$u,y2 ,v,u,y2 ,v, . . . %. We refer to this as theI v
phase. Due to the intrinsic symmetry of the interlayer int
action, the free energy of theI w phase is the same as that
I u , given in Eq. ~24!, with the cyclic permutation of
u→w→v→u. Alternately, one can substitute these$yk% val-
ues into Eq.~9! and carry out the maximization. It can b
verified that this leads to

f 5 f I w
~y20!5

1

3F2 f U1 f V1
1

pE0

p~12y20!/2

3 lnUvu 1
w

u
e4heiuUduG , I w phase, ~28!

with
-

p

2
~12y20!5cos21Fu22w2e8h2v2

2wve4h G . ~29!

~7! $y1 ,y2 ,y3%5$1,21,y3%: This is theH phase with the
v layers replaced by layers withyk125y3 , so that the layer
ordering is$u,w,y3 ,u,w,y3, . . . %. We refer to this as theI v
phase. Again, the free energy of theI v phase can be written
down by symmetry. Alternately, the substitution of these v
ues of$yk% into Eqs.~9! and ~8! yields

f 5 f I v
~y30!5

1

3F2 f U1 f W1
1

pE0

p~12y30!/2

3 lnUvu e4h1
w

u
eiuUduG , I v phase, ~30!

with

p

2
~12y30!5cos21Fu22w22v2e8h

2wve4h G . ~31!

V. THE PHASE DIAGRAM

Since the phase diagram must reflect the$u,v,w% symme-
try of the interlayer interaction given in Table I, it is conve
nient to introduce coordinates

X5 ln~v/w!, Y5~A3!21 ln~vw/u2! ~32!

such that any interchange of the three variablesu, v, andw
corresponds to a 120° rotation in the$X,Y% plane. The phase
boundaries are then determined by equating the free ene
of adjacent phases. The results are collected in Fig. 6.

The phase diagrams depend on the value ofh and are
different in different regimes.
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FIG. 6. Phase diagram of the 3D system.
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~1! h,h0 : For smallh the phase diagram is the same
that of theh50 noninteracting 2D system, namely, the d
gram shown in Fig. 6~a!. The phase boundary between t
$U,V,W% phases and theY phase, which stays the same
all regimes below, is obtained by settingy0561 in Eq.~19!
where f U , f V , or f W is equal tof Y . These boundaries are

u5uv6wu. ~33!

In terms of the coordinatesX and Y, u5v1w and
u5uv2wu read, respectively,

Y5
22

A3
ln@2 cosh~X/2!#, Y5

22

A3
ln@2sinh~ uXu/2!#.

~2! h0,h,h1 : As h increases from zero, our numeric
analyses indicate that theH phase appears whenh reaches a
certain valueh0 . The resulting phase diagram is shown
Fig. 6~b!. The phase boundary between theH andY phases
is given by f H5 f Y , or, explicitly

1

3
ln~uvwe4h!5 f Y~y0!. ~34!
Thus h0 is obtained from Eq.~34! by setting u5v5w
(X5Y50) where theH phase first appears. This yield
p(12y0)/252p/3 and

h05
3

8pE0

2p/3

ln~212 cosu!du50.242 299 5 . . . .

~35!

~3! h1,h,h2 : As h increases fromh0 , the I u , I v ,I w

phases appear whenh reaches a certain valueh1 . The result-
ing phase diagram is shown in Fig. 6~c!. Now theI u phase is
the H phase with theu layers~with yk51) replaced by lay-
ers with yk5y01, the boundary between the two regimes
therefore given byy1051 or, explicitly using Eq.~25!,

w1v5ue4h. ~36!

The boundary between theI u and theY phases isf Y(y0)
5f I u

(y10) or, explicitly,
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ln u1
1

pE0

p~12y0!/2
lnU v

u
1

w

u
eiuUdu

5
1

3 F ln~vwe2h~11y10!!1 ln u1
1

pE0

p~12y10!/2

3 lnU v
u

1
w

u
eiuUduG . ~37!

The boundaries of theI v andI w regimes can be written dow
similarly.

To compute the numerical value ofh1 , we note that theI u
phase first appears atv5w (X50) when all three phasesH,
Y, andI u coincide. Thereforeh1 is obtained by solving Eqs
~34! and~36! for v/u andh at w5v. This leads to the value

h15
1

4
lnS 2v

u D50.255 247 9 . . . ,

wherev/u is the solution of the equation

~11y0!ln
v
u

1
1

6
~113y0!ln 25

1

pE0

p~12y0!/2

3 ln~11cosu!du,

~38!

with

p

2
~12y0!5cos21S u2

2v2
21D . ~39!

~4! h2,h,h3 : As h increases fromh1 , it was found that
the regimesI u , I v , and I w extends to infinite whenh ex-
ceeds a certain valueh2 . The phase diagram is shown in Fi
6~d!. The value ofh2 can be deduced from Eq.~37! in its
largew5v expansion. Settingw5v in Eq. ~37!, introducing
Eqs. ~20! and ~26! for large w, v, and equating the coeffi
cients of ln(v/u) on both sides of the equation, one obtain

1

p
~p2u0!5

1

3F21
1

p
~p2u1!G , ~40!

or, simply,u05u1/3. Now from Eqs.~21!, ~27!, andw5v,
we have the expressionsu05u/v andu15(u/v)e4h. It fol-
lows that we have

h25~ ln 3!/450.274 653 0 . . . .

~5! h3,h,h4 : As h increases fromh2 , it was found that
the boundary of theH phase bulges toward theU,V,W
phases along the 30°, 150°, 270° lines, touching theU,V,W
boundaries in these directions whenh equals a certain value
h3 . For h.h3 , the H phase borders directly with th
U,V,W phases with respective boundaries

u25vwe4h, v25wue4h, w25uve4h. ~41!

The size of these borders grows while theY phase shrinks as
h increases. The phase diagram in this regime is show
Fig. 6~e!. To determineh3 , we let the$H,Y% phase boundary
in

~34! touch the$Y,U% phase boundaryu5w1v at w5v ~the
270° direction!. Using Eq.~19! we havey051, and it fol-
lows that Eq.~34! becomes

1

3
@ ln~2v3e4h!#5 ln~2v !10

from which we find@14#

h35~ ln 2!/250.346 573 5 . . . .

~6! h.h4 : As h increases further fromh3 , it was found
that theY phase disappears completely whenh exceeds a
certain valueh4 . The phase diagram in this regime is show
in Fig. 6~f!. To determine the numerical value ofh4 , we note
that theY phase disappears when the boundaryv5w1u
between theV and Y phases coincides with the bounda
~37! between theI u andY phases at largew,v. Therefore we
again expand Eq.~37! for large v,w but now subject to
v2w5u. Introduce Eqs.~20! and ~26! for the integration
limits. But now from Eqs.~21! and ~27! we haveu050,
u15gu/Awv, where

g5Ae8h21. ~42!

Substituting Eqs.~20! and ~26! into Eq. ~37! and making
use of Eq.~12! and the relation~for v.w)

1

pE0

p2u1
lnUvu 1

w

u
eiuUdu5 ln

v
u

2
1

pE0

u1
lnUvu 2

w

u
eiuUdu,

one obtains

ln v5
1

3F ln~vwe4hu1 /p!1 ln v2
1

2pE0

u1

3 lnS v2

u2 1
w2

u2 2
2vw

u2 cosu DduG . ~43!

Sinceu1 is small, we can write cosu512u2/2 in the inte-
grand, and the integral can be simplified by introducing
change of variabley5Awvu/u. Introducingw5v2u and
expanding Eq.~43! for large w,v using, for example,
ln(vw)52lnv2u/v, the leading terms of the order of lnv are
cancelled. The next terms including the integral are of
order ofO(u/v). Setting the coefficient of these terms equ
to zero, one obtains

4hg5p1
1

2E0

g

ln~11y2!dy

5p1
1

2
g ln~11g2!2g1tan21g,

or, after using 11g25e8h,

g2tan21 g5p ~44!

whose solution givesh4 . Specifically, we find

h45
1

8
ln~11g2!50.381 695 5 . . . .
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Phase diagram for the domain wall model. Since the do-
main wall model with weights given in Fig. 5 and interlay
interactions of Table III is completely equivalent to the la
ered dimer system, the phase diagram of the domain
model is the same as that of the dimer model. For exam
the phaseU corresponds to a phase with no domain wa
and the phaseH corresponds to a sequence of triplets
layers with no domain walls, maximal density of doma
walls consisting of elementary weightsAw, and maximal
density of domain walls of weightsAv ~cf. Fig. 5!.

VI. THE CRITICAL BEHAVIOR

In this section we determine the critical behavior at
phase boundaries. Since the free energies are given by
ferent analytic expressions in different phase regimes,
generally expects the first derivatives of the free energy~with
respect to a temperatureT, say! be discontinuous. This the
leads to first-order transitions. However, if the first deriv
tives of the free energies happen to vanish on both side
the boundary, then one has continuous transition. Apply
this analysis, we find all transitions to be of first order, e
cept those between the$U,V,W% andY phases, and betwee
the$I u ,I v ,I w% andH phases, which are found to be the sam
as the transition in the five-vertex model@9#, namely, a con-
tinuous transition with a square-root singularity in the sp
cific heat. This transition, first reported by one of us in 19
@15#, is now known as the Pokrovsky-Talapov type pha
transition@16#.

Regardingu, v, w, andeh as Boltzmann factors, the or
deredU, V, W, and H phases~with yk561) have con-
stant free energies and hence zero first derivatives. Th
fore, we focus on the boundaries of these frozen regime

We have seen that the transition between theU,V,W
phases and theY phase is the same as that of the 2D syste
which is known@9# to be of second order. This fact can al
be seen by expanding the free energy neary0 as

f Y~y!5 f Y~y0!1~y2y0! f Y8 ~y0!1
1

2!
~y2y0!2f Y9 ~y0!

1
1

3!
~y2y0!3f Y-~y0!1•••. ~45!

Using the expression off Y(y) defined by Eq.~18!, one sees
that, indeed, the first derivativef Y(y0), y0561, vanishes
identically on the boundary~33! which is precisely
f Y8 (y0)50. Furthermore, it is also seen th
f Y9 (y0);sin@p(12y0)/2#50. Therefore the extremum o
f Y(y) ~45! occurs aty5yextrm given by

yextrm2y056A 2 f Y8 ~y0!

2 f lY- ~y0!
;t1/2, ~46!

wheret5uT2Tcu, Tc being the critical temperature. Subs
tuting thisyextrm into Eq. ~45!, one obtains

f Y~yextrm!5 f Y~y0!6
2

3
f Y8 ~y0!A 2 f Y8 ~y0!

2 f Y-~y0!

5 f Y~y0!1c~u,v,w,h!t3/2. ~47!
ll
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This leads to a square-root singularity in the specific he
which is a characteristic of the Pokrovsky-Talapov pha
transition. The key element leading to this result is the f
that the boundary of the frozen phases is given precisely
f Y8 (y0)50, rendering the first derivative of the free energy
vanish at the boundary.

Applying the same analysis to theH and I u phases, the
boundary is again given byf I u

8 (y10)50. Furthermore, it is

also seen thatf I u
9 (y10)50 identically. It follows that the

analysis can be carried through exactly as given in the ab
and one concludes

f I u
~yextrm!5 f ~y10!1c1~u,v,w,h!t3/2. ~48!

This gives rise again to a square-root singularity in the s
cific heat. The consideration of theI v , I w , and theH bound-
aries can be done similarly.

VII. DEGENERACY OF ORDERED STATES

We discuss in this section the degeneracy of orde
states. Particularly, we show that the system has a non
per-layer entropy on the boundaries betweenH andU,V,W
phases.

We first establish the occurrence of a degeneracy from
energy consideration. For this purpose it is sufficient to sh
that this is the case along the$H,V% boundary~41!, namely,

e4h5v2/wu. ~49!

We already know that, along the boundary~49!, the follow-
ing layer orderings of theH andV phase are degenerate,

. . . 222222222 . . .

. . . ~132!~132!~132! . . . . ~50!

Here, for convenience, we have used the notations$1,2,3%
for $u,v,w%. Generally, whenyk561, each layer contains
dimers of only one kind,u, v, or w. Let a i , i 51,2,3 denote
the numbers ofu, v, andw layers, respectively, as a fractio
of K, anda12 the fraction of adjacent pair ofu,v layers, etc.
Then, perusal of Table I shows that this leads to the per-
free energy

f 5
1

2
~a1 ln u1a2 ln v1a3 ln w!

1
2h

3
~a131a321a212a122a232a31!. ~51!

Here, thea ’s satisfy the conservation rulesa11a21a351,
( ja i j 5a i .

Consider the following ordering:

. . . 2~1!3222~1!322222~1!32 . . . , ~52!

characterized by singleu layers separating strings of laye
of the typewvvvvv . . . where there is at least onev layer
in each string. It is readily seen from Eq.~52! that we have
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a125a235a3150,

a215a325a135a15a3[a, a25122a. ~53!

It is then a simple matter to substitute Eqs.~49!, ~53! into Eq.
~51!, obtaining f 5 f V . Thus, any layer ordering having th
structure of Eq.~52! is degenerate tof V on the$V,H% bound-
ary. Obviously, the number of such structures is infinite a
ha
-
n

e

r-

.

ix

e

K→`. Note that Eq.~50! is a special case of Eq.~52!. This
degeneracy has been confirmed in our numerical analys
Eq. ~9!.

Generally ifyk561 for all layers, the free energy~9! can
be explicitly evaluated for any ordering. Letps,s8 , s56,
denote the fraction of layers withyk521 such that
$yk21 ,yk ,yk11%5$s,2,s8%, where for brevity we denote
61 by 6. Consider, for example, the domainv,w. A
straightforward evaluation of Eq.~9! leads to the expressio
f 5H a1 ln u1a2 ln w, ve24h,ve4h,w

a1 ln u1~p111p211p22!ln v1p12 ln w14hp21 , ve24h,w,ve4h, H phase.
~54!
mer
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The first line can be discarded since it is always smaller t
the larger of lnu and lnw. A degeneracy of states now oc
curs if the second line coincides with the free energy of a
phase. In the case of the ordering~52!, for example, it is
translated to

•••2~1 !2222~1 !222222~1 !22••• .

Now since each1 layer is associated with precisely on
12 and one21 neighbors, we havea15p125p21 .
The substitution of this relation and Eq.~49! into Eq. ~54!
now leads tof 5 f V in agreement with the energy conside
ation. The degenerate states on the$H,U% and $H,W%
boundaries can be obtained by cyclic permutations ofu,v,w.

The entropy of the ordered state~52! can be computed
We note that the main feature of Eq.~52! is that layersv are
followed by eitheru or v layers, andu layers are followed
by only w layers, andw layers byv. Then the degeneracyS
of the sequence~52! is given by the trace of a transfer matr
as

S5Tr~TK!5l1
K1l2

K1l3
K;l1

K , ~55!

where

T5S 0 0 1

1 0 1

0 1 0
D , ~56!

andl j ’s are the eigenvalues ofT with l1.ul j u, j 52,3. We
find
n

y
l15

1

3 F11S 29

2
1

3A93

2 D 1/3

1S 29

2
2

3A93

2 D 1/3G
;1.465 57 . . . .

VIII. SUMMARY

We have considered a three-dimensional layered di
system with interlayer interactions and its equivalent laye
domain wall model, and analyzed its exact solution. It
found that the phase diagram, shown in Fig. 6, depends
cially on the strength of the interlayer interactions. The
exist orderedU,V,W,H phases corresponding to, respe
tively, large dimer weightsu,v,w and large interlayer inter-
actionsh. In addition, there also exist a disorder phaseY and
partially ordered phasesI u ,I v ,I w . The phase boundaries ar
determined by equating the free energies of adjacent
gimes. Particularly, the boundary between theU,V,W phases
and theY phase assume the simple form~33!, between theH
andY phases the form~34!, and between theH andI u phases
the form ~36!. All transitions are found to be of first orde
except the transitions between theU,V,W phases and theY
phase, and the transitions between theI u , I v , I w , and H
phases, which are of second order with a square root sin
larity in the specific heat.
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