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Lattice statistics in three dimensions: Solution of layered dimer and layered domain wall models
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Analyses are given for two three-dimensional lattice systems: A system of close-packed dimers placed in
layers of honeycomb lattices and a layered triangular-lattice interacting domain wall model, both with non-
trivial interlayer interactions. We show that both models are equivalent to a five-vertex model on the square
lattice with interlayer vertex-vertex interactions. Using the method of Bethe ansatz, a closed-form expression
for the free energy is obtained and analyzed. We deduce the exact phase diagram and determine the nature of
the phase transitions determined as a function of the strength of the interlayer interaction.
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PACS numbsdis): 05.50+q

I. INTRODUCTION Il. ALAYERED DIMER SYSTEM
AND THE EQUIVALENT FIVE-VERTEX MODEL

An important milestone in the field of exact solutions of  Consider a 3D latticeC consisting ofK layers of honey-
lattice-statistical systems is the solution of close-packe¢omb lattices stacked together as shown in Fig. 1. Each layer
dimers on planar lattices obtained by Kastel¢ghand by of £ is a honeycomb dimer lattice in which dimers with
Fisher[2]. However, there has since been very little progresgveightsu,v,w are placed in the three respective lattice di-
in extending the dimer solution to higher dimensions. To beections. The dimers are close packed within each layer and
sure, Bhattacharjeet al.[3] have studied dimers on a certain interact with an interlayer interaction shown in Table I which
three-dimensiona(3D) lattice using numerical means, and 9ives, for example_,ztrpé—:‘ interaction enerdly/2, and hence a
two of us[4] have solved a vertex model in arbitrady Boltzmann factoe , between a1 dimer in thekth layer

dimension, a solution which also solves a dimer problem iffnd @v dimer in the k+1)th layer. This completes the
gescrlptlon of our 3D dimer system. The interlayer coupling

d dimension. In the latter case, however, the dimer mc)delntroduced here is admittedly artificial and we do not conjec
involves unphysical negative statistical weights. : Caly artimcia jec-
ture about possible physical applications. However, the merit

In a recent Lette[5_], hereafter re_ferred toasl, three_ of us of the model is that it is integrable, enabling one to study its
reported on the solution of a 3D dimer system as an 'nStanCSroperties exactly

of a more gene_ral_ cla_ss of _soluble 3D lattice-statistical prob- Since a perusal of Table | shows that the negatiom of
lem. In contra@stmcuon W|th.other exactly.solved 3D sys- corresponds to the interchange of the laylemndk+ 1, we
tems [6,7] which invariably involve negative Boltzmann .. without loss of generality take=0.
weights, the formulation reported in I, which generalizes ¢ honeycomb dimer system can be formulated as a
other special cases reported elsewh8temarks the success
of solving a 3D lattice-statistical model with strictly positive
Boltzmann weights. In this paper we present details of this
solution. In addition, we show also that our solution solves a \l/
layered domain wall model with interlayer interactions. u
This paper is organized as follows. In Sec. Il we define a
layered dimer system with interlayer interactions and its

equivalent layered five-vertex model. The description of an UY
equivalent layered domain wall model is given in Sec. lIl. W k=K
The free energy of the 3D system is analyzed in Sec. IV with \(
the phase diagram obtained in Sec. V. The critical behavior
is deduced in Sec. VI. Finally in Sec. VII we discuss the
occurrence of infinite degeneracy of orders in the system. k=2
k=1

*Permanent address: Institute for Low Temperature Physics, FIG. 1. A three-dimensional lattice model consisting of layers of
Kharkov, Ukraine. honeycomb dimer lattices.
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TABLE I. Interaction energy between two dimers incident at the
same site of adjacent layers. The interaction is symmetuGuinw. 2 (3 4 ®) (8)

Layerk—k+1 u v w | i | _l E

u 0 2h/3 —2hi3 5 5 | | ]_
v —2h/3 0 2h/3

W 2h/3 —2h/3 0 w v U Nuv Nuw

FIG. 3. Vertex configurations and weights of the five-vertex

five-vertex model on a square lattif@]. This can be seen by Model.
drawing the honeycomb lattice in the form of a “brick wall” o ]
as shown in Fig. 2. The shrinking of each box containing twoFOr Simplicity, we shall assumk =3 integers. We also
lattice points connected by & edge into a point then con- assume periodic boundary conditions. _
verts the honeycomb lattice into a square lattice. By regard- To write the mterlay.er vertex |nte.ract|ons of Table Il in
ing the presence of m or v dimer on the remaining honey- the form of By, we introduce variablesy,=*1 and
comb edges as being bonds, each dimer configuration is themjk= = 1, respectively, for the horizontal and vertical edges
mapped into a vertex configuration of a five-vertex model Within thekth layer and originating from the sifen, j k} in
and vice versa. The resulting five-vertex configurations andhe direction of, say, decreasingm,j}, such that
weights[9] are shown in Fig. 3. amjk=+1(—1) corresponds to the edge having a bond
Furthermore, the interlayer dimer interaction leads to adempty. It is then straightforward to verify that the vertex-
interlayer vertex interaction. It turns out that the interlayervertex interactions in Table Il can be written as
vertex-vertex interaction corresponding to Table | is not h h
unique. To deduce a useful interlayer vertex-vertex interac- __ _ B N (e V——(R.— '
tion we first modify Table I by replacing thau and vv o= ~h(eifi=aafy) = 3@ = a) = 5B By,
entries by 2h, wheree=+1(—1) for sites in sublatticé\ ()
(B). Since two interactingiu or vv dimers are always par-
allel covering a pair oA andB sites, this replacement does
not alter the overall interaction energy. A little algebra then
shows that the dimer interaction of the modified Table |
leads to the interlayer vertex interactions shown in Table II.
Thus we have at hand a layered five-vertex model with in
terlayer interactions.
Let each square lattice be of siké&X N, with M sites in
a column andN sites in a row. This corresponds MNK
dimers onL. Label sites of the layers of square lattices by
indices {m,j,k}, with m=1,... M, j=1,... N, and o = /
k=1, ... K. Denote the vertex weight at sifen,j,k} by Brmji= XN B~ @181, ©
Whijk. and denote the interaction in Table Il between verti-which is to be used in Eq1).
ces{m,j,k} and{m,j,k+1} by By,i. Then, itis our goal to
evaluate the partition function

where we have, for convenience, suppressed the subseripts
andk by adopting the notation

Bmi1jk— B+ Bumjxi1— B (4

‘and similarly for thea's. Now the second and third terms in
Eq. (3) are cancelled upon introducing this interaction into
the overall partition function(1). This leads to an effective
Boltzmann factor

Ill. A LAYERED DOMAIN WALL MODEL

K M N In this section we show that the layered dimer and five-
Zunk= 2 LT TT 1T (BpjWnw), (1) vertex models of the preceding sections also describe a lay-
config k=1 m=1 j=1 . L . .
ered domain wall model with interlayer interactions.
where the summation is taken over all dimer, or vertex, cons: Consider a 3D lattice consisting & layers of triangular

: ; : lattices whose faces are elementéaup-pointing and down-
figurations, and th@er-dimerfree ener - . . ; d
9 ® 9y pointing triangles. Sites of the triangular lattices are occu-

f=K-! lim (MN) Ynz . 2 pied by lIsing spinsr_= + with the con;traint that, ground
M,INﬂw( ) MNK @ each face of the lattice, there are precisely two spins of the

TABLE II. Interaction energy between two vertex configura-

tions of adjacent layerso; ,i=2, . .. ,6denotes the vertex of tyge
_______ L __ 1 e in Fig. 3.
1 r w ': vor a
1 L J L d
u Layerk—k+1 Wy w3 N ws we
r T r 1 r
| H | P H [ wy 0 —4h/3 4h/3 0 0
w3 4h/3 0 —4h/3  4h/3  —8h/3
N —4h/3  4h/3 0 —4h/3  8h/3

FIG. 2. The mapping of a honeycomb lattice onto a square®s 0 8h/3  —8h/3 0 0
lattice. wg 0 —4h/3  4h/3 0 0
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TABLE lll. Interaction energy between two strip triangles of
adjacent layers. The triangle configurations are as numbered in Fig.
5.
Layerk—k+1 1 2 3 4 5 6
1 0 0 0 0 —2h 0
2 0 0 0 % 0 0
FIG. 4. The three possible orientations of a diamond. Strips aré 0 0 0 0 0 0
associated with diamonds oriented in two particular directions. 4 0 —2h 0 0 0 0
5 2h 0 0 0 0 0
same sign and one spin of the opposite sign. The allowef 0 0 0 0 0 0

spin configurations are those of the ground state of an iso=
tropic antiferromagnetic Ising model. Furthermore, if one, ) ) ) )

erases lattice edges connecting two spins of the same sigh, Fi9- 5 andBp, the interlayer interaction given by Table
one arrives at a diamon@r rhombu$ covering of the trian- . . ) . )
gular lattice. This can be interpreted as a dimer covering of 1he mapping of a domain wall configuration to a five-
the dual honeycomb lattice, by placing dimers connecting th¥ertex arrow configuration is given {i1], where the trian- -
two dual lattice points on the elongated diagonal of eactpular lattice was deformed into a square lattice by tilting it
rhombus. It is clear that the mapping between the spin corlockwise, leading to a five-vertex model withy=0 (in-
figurations and the diamond and dimer coverings is two tostead ofw;=0 as in Fig. 3 For the present paper, we de-
one. Indeed, this mapping has been used to extract the solfprmed the trlangular lattice by tilting it counterclock_W|se._
tion of the honeycomb dimer lattice from the Ising ground Then, the vertex weights reduce exactly to those given in
state[10]. Fig. _ o o _

The spin configurations can also be viewed as represent- 10 obtain an explicit form foBy,, it is straightforward
ing domain wall configuration§10,11. This mapping is O verify that the interaction of Table Ill can be written as, in
most conveniently seeflL1] from the associated diamond the language of the layered five-vertex model,
covering scheme. If one attaches strips to those diamonds ~ ~ ~ ~,
oriented in two of the three possible directions as shown in &~ —h(e;Bj —aj1B)) +h(aj—aj.1) —h(B; = Bj).

Fig. 4, then the strips form continuous lines and propagate in (6)

a zigzag but generally vertical direction, which can be inter-A
preted as representing domain wdtté Figs. 2 and 4 of11]
for a typical domain wall configurationA spin configura-
tion is thus mapped into a domain wall configuration Spe-
cifically, the triangular faces of the lattice can be in one of _ ==
the six “strip” configurations shown in Fig. 5, and the do- Brmjx=eXHN(; B}~ @j15))]. ™

main wall model is defined by associating weights t0 th&yhich differs slightly from Eq.(5) for the dimer problem.
triangles as shown in Fig. S. , , _ However, repeating precisely the same line of argument as in
_Next we introduce interlayer dc_Jmam wall interactions. I, one can show that the interlayer interactih leads to
Shlft the k+1)th layer by half lattice consta_nt_ to the left precisely the same free ener®) and(8) given below. Thus
with respect to theth layer so that the up-pointinglown-  the gomain wall problemwith interlayer interactions of

pointing triangles in the layek will be adjacent to down-  Tapje 1)) is completely equivalent to the dimer systénith
pointing (up-pointing triangles in the layek+1. Let two interlayer interactions of Table.|
adjacent triangular faces in planksandk+ 1 interact with

an energy shown in Table Ill. Together with the triangle
weights given in Fig. 5, this completely defines the layered
domain wall problem. More precisely, the partition function  In the preceding sections we have established the com-
for the domain wall problem is given by E€l) now with the  plete equivalence of the layered dimer and domain wall
summation extending over all domain wall configurations,problems, and their further equivalence with a layered five-
Wn i« representing the product of the triangle weights givenvertex model. In this section we analyze the free energy of
the layered 5-vertex problem. For simplicity we use the lan-
guage of the dimer systefi2].
/}\ /<\ Y/ \>/ It has been shown in | that the layers of five-vertex mod-
els with interlayer interactiof5) can be solved by applying
a transfer matrix in the vertical direction and a global Bethe

Jw JU Ju Jw Ju Ju ansatz consisting of the usual Bethe ansatz within each layer.
This leads to the following expression for the free energy:

gain the second and third terms in E) are cancelled in
the overall partition functionil). But the effective interaction
Boltzmann factor now assumes the form

IV. THE FREE ENERGY

w @ &6 @ e e fuow,h)= max f({yd), ®
—1lsy=<1
FIG. 5. The six strip configurations and the associated weights
of a triangle. where
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w(1-y)/2 (2) {y1.Y2,yst={—1,—1,—1}: In this case we have all
fyh)=Inu+ = 2 f yi=—1, and hence from Eq9)
In|— TR e2h<yk+1 Ye-1el?| d g. (9) —Inu+ _f + e|0 de
Here, fw, w>v, W phase
| fy, v>w, V phase. (14)

1 N 1 N
Yk N]ZI ﬁj_ N]Z]_ BJ
This gives rise to th&/ andV phases.

is a quantity conserved from row to roief vertical edgesin (3) {y1.¥2,y¥3}={1,—1,—1}: Substituting this sequence
the kth layer square lattice. Specifically, we have of y, values into Eq(9) and making use of Eq12) in the
yk=1—2n/N, wheren, is the number of vacant edges in a resulting expression, one obtains
row. Analysis leading to Eq9) has been given in | and will
not be reproduced here.

. It is clear that forllargeJ, v, Orw, the sys'gem is frozen ¢ _|n u+ i i In V_V+ v e2eif| 49
with complete ordering ofi, v, or w dimers in all layers, 6 u u
and hence the free energies
+i " n 2y Cemngit gg

fu=Inu, U phase, 6m)_, |U

fy=Inv, V phase, (10

fw=Inw, W phase. 1 2

, . fu+=fy, ve "<ve<w (19

These are frozen orderings which we refer to asiheV, 3 3

and W phases, respectively. For large it is readily seen  _ ) 1 2

from Table | that the energetically preferred state is the one §fu+ §fv, w<ve N<pet
in which each layer is occupied by one kind of dimer,v,

or w, and that the layers are ordered in the sequence of fr, ve "<w<ype®, H phase. a7
{u,w,v,u,w,v, ...}. This ordered phase is referred to as the

H phase with the free energy

(16)

szl In(uvwe*"), H phase (11  Now the free energie€l5) and(16) can be discarded since
3 they are always smaller than the larges{fof,fy ,fy}. Thus

this set of{y,} leads to a frozen ordering for sufficiently

largeh as indicated in Eq(17), which is theH phase.

@ {y1,¥2,y3}={y,y,y}: In this case aly,=y, wherey
maximizes the free enerd®). Then, substituting,=y into
Eqg. (9) and carrying out the maximization in E¢B) by a
straightforward differentiation with respect o one obtains

obtained from a perusal of Table I.

For any layer withy,= +1 the corresponding integral in
Eq. (9) vanishes, and foy,= —1 the integral can be evalu-
ated using the integration formula

1 (= .
;j In|A+Be'%/dg=maxIn|Al,In|B|}. (12
0

a(1-yo)/2
Therefore the free energ®) can be explicitly evaluated if f=fy(yo)=Inu+ ;fo
yx=*1 for all k. Further discussion of this case will be

given in Sec. VII. wov o,
We have carried out analytic as well as numerical analy- XInjo+;€7dé, Y phase, (18
ses of the free enerd®) for fixedu,v,w,h, and it was found
that the se{y,} which gives the extremum value in E) o
always repeats in multiples of 3, namely, satisfyjig] where the extremury, is given by
Yi+3= Yk- - . o U2—w2—p2 Lo
The following extremum sets dfy,} are found. 5( Yo)=cos 2wo (19

1) {y1.Y2,y¥3t={1,1,1}: In this case we have aj},=1,

h f E
and hence from Eq(9) This is a disorder phase which we refer to as Yhehase.

f=f,, U phase. (13 Note that, despite its apparent asymmetric appearance, the
free energyfy(y) is actually symmetric iu,v,w. Note that,
This gives rise to th& phase. for largev ~w, we have
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(5) {Y1,Y2,Ys}={y1,—1,—1}: This is theH phase with

a
5 (1=yo)=m=bp, (200 theu layers replaced by layers with =y, so that the layer
ordering is{y;,w,v,y1,W,v, ...}. This is a partially or-
where 6, is small and given by dered phase which we refer to as thephase. Again, the
s ) substitution of these values dfy,} into Eqg. (9) and a
0p=[u"—(w—ov)]/wo. (21)  straightforward maximization yield, after using E42),
(1
§[wa+ fy(yi0], w>vetht+yio (22
1 —2h(1+y10)
f=fi,(yiw =9 zl2fv+ vyl w<ve Y1 (23
1
\ §[|n(uwe2“<1+ym>)+fY(ylo)], ve 2Iycw<ye+y1d |, phase, (24)

w_herell;Y(ym) is defined in Eq(18), with the extremunyq 77(1 | B u2—w2e8h— ;2 29
iven —(1-y,)=cos | ————
g9 y 2 Y20 Pwoe

7T _[uPet—w?—yp? o _

5 (1=y10=cos >Wo (25) (7) {y1.,Y2,Ya} ={1,—1ys}: This is theH phase with the

v layers replaced by layers with), ,=Y3, so that the layer
ordering is{u,w,ys,u,w,ys, . ..}. We refer to this as the,
phase. Again, the free energy of thephase can be written
down by symmetry. Alternately, the substitution of these val-
ues of{y,} into Egs.(9) and(8) yields

The free energie§2) and(23) are discarded since they are
always less than the largest §fy,fy,fv(Yi0}, and we
have fy(y10 <fy(yo) by definition. Therefore the free en-
ergy of thel , phase is given by Eq24). Note that, for large
v~Ww, we have

1 1 (7(1-yz0/2
- f=f,u(y30)=§ 2fu+fw+;fo
E(l_)’m):ﬂ_@l, (26)
v W
X In Ge4h+ Ue"" dé|, 1, phase, (30
where 6, is small and given by

02=[u?e®"— (w—v)2]/wo. (27 Wwith
(6) {y1,Y2,Y3}={1y,,—1}: This is theH phase with the Z(l_ )= cos™t u?—w?—o%e® (31)
w layers replaced by layers withy, ,=Y-, so that the layer 2 Yo owp et
ordering is{u,y,,v,u,y,,v, . ..}. We refer to this as thg,
phase. Due to the intrinsic symmetry of the interlayer inter-
action, the free energy of tHe, phase is the same as that of V. THE PHASE DIAGRAM
Iy, given in Eq. (24), with the cyclic permutation of Since the phase diagram must reflect{thg ,w! symme-

u—=w-uv—u. Alternately, one can SUb‘Q.’tit.Ute _the{w} val- try of the interlayer interaction given in Table |, it is conve-
ues into Eq.(9) and carry out the maximization. It can be nient to introduce coordinates

verified that this leads to

— — -1 2
1 [r-yopi2 X=In(v/w), Y=(+3)"~ In(vw/u°) (32
2fy+fy+ —f
7Jo

1
f=f (Y20= 3]

such that any interchange of the three variables, andw
corresponds to a 120° rotation in the,Y} plane. The phase
, 1,, phase, (29 boun(_jaries are then determined by equating th_e frge energies
of adjacent phases. The results are collected in Fig. 6.
The phase diagrams depend on the valuéhaind are
with different in different regimes.

XIn do

K+ﬂe4heia
u u
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@0<h<h, (b) ho < h < hy () hy<h<hy
h = 0.250 h=0.265

(dyha <h<hg

() h>hy
h=0.275

h =0.400

FIG. 6. Phase diagram of the 3D system.

(1) h<hg: For smallh the phase diagram is the same asThus h, is obtained from EQq.(34) by settingu=v=w
that of theh=0 noninteracting 2D system, namely, the dia- (X=Y=0) where theH phase first appears. This yields
gram shown in Fig. @. The phase boundary between the 7(1—y,)/2=2/3 and
{U,V,W} phases and th¥ phase, which stays the same in
all regimes below, is obtained by settigg=*+1 in Eq.(19)
wheref, fy, or fy is equal tofy. These boundaries are 3 (273
hoz—f IN(2+2 cos6)de=0.242295 ... .
u=|v*+wl. (33 8mJo

(35)

In terms of the coordinateX and Y, u=v+w and

u=|v—w| read, respectively, (3) hy<h<h,: As h increases fronhg, thel,, I,,l,
phases appear whérnreaches a certain vallng . The result-

-2 -2 ; ) . L .
Y=— In[2 costiX/2)], Y=— In[2sink|X]|/2)]. ing phase diagram is shown in Figich Now thel , phase is
NE] V3 theH phase with theu layers(with y,=1) replaced by lay-

ers withy,=y,,, the boundary between the two regimes is

(2) hg<<h<h;: As h increases from zero, our numerical therefore given by,,=1 or, explicitly using Eq(25),
analyses indicate that th¢ phase appears whénreaches a
certain valuehy. The resulting phase diagram is shown in
Fig. 6b). The phase boundary between tHeandY phases w+o=ue*. (36)
is given byf,=fy, or, explicitly

1 The boundary between thi d theY ph isf
- ahy _ y betw g and theY phases isfy(yo)
3 In(uvwe™)=Tv(yo). (34) =f, (y10) or, explicitly,
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1 (#(1-yp)/2
Inu+ — In
mJo u

1 1 [ m(1-yi9/2
= —{In(vwe2h<1+ylo)) +Inu+ —f '
3 mTJ0

XIn

(37

vow
—+—e'f da}.
u u

The boundaries of thk, andl,, regimes can be written down

similarly.

To compute the numerical value bf, we note that thé,
phase first appears at=w (X=0) when all three phasés,
Y, andl, coincide. Thereford, is obtained by solving Egs.

(34) and(36) for v/u andh atw=v. This leads to the value

hl:Z In

2v
T =0.255249... ,

wherev/u is the solution of the equation

a(1-yg)I2

v 1 1
(1+yg)n a'f‘ §(1+3y0)ln 2= ;fo

XIn(1+cos 6)dé,
(38
with

T v
E(l—yo)zcos F_l' (39

v

(4) h,<h<hj: As h increases fronm,, it was found that
the regimed, I,, andl,, extends to infinite whem ex-

ceeds a certain vall®g,. The phase diagram is shown in Fig.

6(d). The value ofh, can be deduced from Eq37) in its
largew=uv expansion. Settiny=v in Eq. (37), introducing

Egs. (20) and (26) for largew, v, and equating the coeffi-
cients of In¢/u) on both sides of the equation, one obtains

1

~(m-00=73 , (40)

or, simply, 8= 64/3. Now from Eqs.(21), (27), andw=v,
we have the expressiortg=u/v and ;= (u/v)e*". It fol-
lows that we have

h,=(In3)/4=0.274680... .

(5) hy<h<h,: As h increases fron,, it was found that
the boundary of theH phase bulges toward thd,V,W
phases along the 30°, 150°, 270° lines, touching.the, W

boundaries in these directions whierequals a certain value
h;. For h>h;, the H phase borders directly with the

U,V,W phases with respective boundaries

u’=ovwe™, v2=wue’, wl=uve. (41)

4005

(34) touch the{Y,U} phase boundarny=w+v atw=uv (the
270° direction. Using Eq.(19) we havey,=1, and it fol-
lows that Eq.(34) becomes

%[In(203e4h)]=ln(2v)+0

from which we find[14]
h;=(In2)/2=0.346 5B5... .

(6) h>h,: As h increases further frorhs, it was found
that theY phase disappears completely wherexceeds a
certain valuen,. The phase diagram in this regime is shown
in Fig. 6(f). To determine the numerical value lof, we note
that theY phase disappears when the boundaryw+u
between thev and Y phases coincides with the boundary
(37) between the , andY phases at larger,v. Therefore we
again expand Eq(37) for large v,w but now subject to
v—w=u. Introduce Eqgs(20) and (26) for the integration
limits. But now from Egs.(21) and (27) we have 6,=0,
6,= yu/\J\wu, where

Y=L

Substituting Eqs(20) and (26) into Eq. (37) and making
use of Eq.(12) and the relatior{for v>w)

(42

1 (7061 |v W . v 1(61 |v W .
— In|—+—¢€'?/do=In———| In|———€'?de,
mJo u u u wmJo u u
one obtains

1 1 (61

— Aaho, [ 4 _
Inv 3 In(vwe )tinv 277]0
vZ w? 2vw
XIn ?+?__u2 cosd|de|. (43

Since 0, is small, we can write co=1—6¢%2 in the inte-
grand, and the integral can be simplified by introducing the
change of variable/= \wo 6/u. Introducingw=v—u and
expanding Eq.(43) for large w,v using, for example,
In(vw)=2lnv—ulv, the leading terms of the order of inare
cancelled. The next terms including the integral are of the
order ofO(u/v). Setting the coefficient of these terms equal
to zero, one obtains

1(»
dhy=7m+ EJ In(1+y?)dy
0

1 2 —1
=7r+§'y|n(1+y)—'y+tan Y,
or, after using 4 ?=e®"
y—tant y=m (44)

whose solution giveb,. Specifically, we find

The size of these borders grows while th@hase shrinks as
h increases. The phase diagram in this regime is shown in

1
= — 2 =
Fig. 6(e). To determinéhy, we let the{H,Y} phase boundary hs 8 In(1+y%)=0.3816%5... .
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Phase diagram for the domain wall mod&lince the do- This leads to a square-root singularity in the specific heat,
main wall model with weights given in Fig. 5 and interlayer which is a characteristic of the Pokrovsky-Talapov phase
interactions of Table Il is completely equivalent to the lay- transition. The key element leading to this result is the fact
ered dimer system, the phase diagram of the domain wathat the boundary of the frozen phases is given precisely by
model is the same as that of the dimer model. For exampléf,;,(y,) =0, rendering the first derivative of the free energy to
the phaseJ corresponds to a phase with no domain walls,vanish at the boundary.
and the phaséd corresponds to a sequence of triplets of Applying the same analysis to thé¢ and |, phases, the
Iayers with no domain walls, maximal densrcy of domain boundary is agam g|ven bf/l (ylo) 0. Furthermore, it is
walls consisting of elementary weightdv, and maximal also seen tha u(le) 0 |dent|cally It follows that the

density of domain walls of weightsv (cf. Fig. 5. analysis can be carried through exactly as given in the above,

and one concludes
VI. THE CRITICAL BEHAVIOR

In this section we determine the critical behavior at all f1 (Yextm = f(Y10) +Ca(U,0,w,h)t%2 (48)
phase boundaries. Since the free energies are given by dif-
ferent analytic expressions in different phase regimes, on&his gives rise again to a square-root singularity in the spe-
generally expects the first derivatives of the free enéngth cific heat. The consideration of the, I,,, and theH bound-
respect to a temperatuile say be discontinuous. This then aries can be done similarly.
leads to first-order transitions. However, if the first deriva-
tives of the free energies happen_ to vanish 0r_1_b0th sides of VIl. DEGENERACY OF ORDERED STATES
the boundary, then one has continuous transition. Applying
this analysis, we find all transitions to be of first order, ex- We discuss in this section the degeneracy of ordered
cept those between tH&),V,W} andY phases, and between states. Particularly, we show that the system has a nonzero
the{l,.l,.l,,} andH phases, which are found to be the sameper-layer entropy on the boundaries betwétandU,V,W
as the transition in the five-vertex modél, namely, a con- phases.
tinuous transition with a square-root singularity in the spe- We first establish the occurrence of a degeneracy from an
cific heat. This transition, first reported by one of us in 1967energy consideration. For this purpose it is sufficient to show
[15], is now known as the Pokrovsky-Talapov type phasehat this is the case along thel,V} boundary(41), namely,
transition[16].

Regardingu, v, w, ande™ as Boltzmann factors, the or- e"=v%wu. (49
deredU, V, W, andH phases(with y,==*1) have con-
stant free energies and hence zero first derivatives. TherdVe already know that, along the bounda#p), the follow-
fore, we focus on the boundaries of these frozen regimes. ing layer orderings of thél andV phase are degenerate,

We have seen that the transition between thg/,W

phases and th¥ phase is the same as that of the 2D system, ... 22222222 ...
which is known[9] to be of second order. This fact can also
be seen by expanding the free energy ngaas ... (132(132(132 ... . (50

Here, for convenience, we have used the notatidng,3}
for {u,v,w}. Generally, whery,=*1, each layer contains
1 dimers of only one kindy, v, orw. Letq;, i=1,2,3 denote
T(y_yo)gf'”(yo)+ (45) the numbers ofl, v, andw Iaye(s, respeqnvely, as a fraction
of K, anda, the fraction of adjacent pair af,v layers, etc.

1
fy(y) = (o) +(y = Yo) Fil¥o) + 57 (¥ = Yo) *F¥(¥o)

) ) . Then, perusal of Table | shows that this leads to the per-site
Using the expression df,(y) defined by Eq(18), one sees frge energy

that, indeed, the first derivativi,(yo), Yo= *£1, vanishes

identically on the boundary(33) which is precisely 1

fy(yo)=0. Furthermore, it is also seen that f= E(al Inu+a, Inv+asIn w)
f4(yo) ~sifm(1—yg)/2]=0. Therefore the extremum of

fv(y) (45) occurs aty =Yeum given by L 5
3 a3t agyt ax— ap— a— agy).

e+ 2f\((yo) e (46)
Yextrm™ Yo /// ' ) . . _
Yo) Here, thea's satisfy the conservation rules, + a,+ az=1,

D= a.
wheret= |T—TC|, TC being the critical temperature. Substi- CljonSKIjer the fo”owing Ordering:
tuting thisyeym into Eqg. (45), one obtains

.2(1)32221)3222221)32.. . . , (52)

¢ 2 2f3(yo)
v(Yextrm) = Y(VO)— f¥(¥o) — characterized by single layers separating strings of layers
v(Yo) )
of the typewvvvvv ... where there is at least omelayer

=fy(yo) +c(u,v,w,h)t32 (47)  in each string. It is readily seen from E@2) that we have
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1= p3=a3;=0, K—o. Note that Eq(50) is a special case of E¢52). This
degeneracy has been confirmed in our numerical analysis of
dp1= (30— 13— A1 = A3= A, a2=l—2a (53) Eq (9)

Generally ify,= =1 for all layers, the free energ®) can
be explicitly evaluated for any ordering. Lgt, ., 0==,
Itis then a simple matter to substitute E¢#9), (53) into Eq.  denote the fraction of layers witly,=—1 such that
(51), obtainingf=f,,. Thus, any layer ordering having the {y, ;,y,,Yx;1}={0,—,0'}, where for brevity we denote
structure of Eq(52) is degenerate tb, on the{V,H} bound- +1 by *. Consider, for example, the domain<w. A
ary. Obviously, the number of such structures is infinite as straightforward evaluation of E9) leads to the expression

a, Inut+a_Inw, ve M<ypet<w

- 54
a, INu+(psi+tp_s+p_)inv+p,_ Inw+4dhp_,, ve *'<w<pe" H phase. 649

The first line can be discarded since it is always smaller than 1 29 3,03\ (29 3,033
the larger of Inu and Inw. A degeneracy of states now oc- )\1=§[ (7+ T) (?— T) }
curs if the second line coincides with the free energy of any
phase. In the case of the orderifgR), for example, it is ~1465% ... .
translated to

VIll. SUMMARY

.__|_____+ ______ _|___.
(+) (+) (+) We have considered a three-dimensional layered dimer

system with interlayer interactions and its equivalent layered
domain wall model, and analyzed its exact solution. It is

+— and one— + neighbors, we havev,=p,._=p_,. found that the : .
- ; . . phase diagram, shown in Fig. 6, depends cru-
The substitution of this relation and E(®9) into EqQ. (54 ¢jay on the strength of the interlayer interactions. There

now leads tof = f,, in agreement with the energy consider- oyist orderedU,V,W,H phases corresponding to, respec-
ation. The degenerate states on tftie,U} and {H,W}  (yely, large dimer weightsi,v,w and large interlayer inter-
boundaries can be obtained by cyclic permutations,ofw.  actionsh. In addition, there also exist a disorder phasand
The entropy of the ordered stats2) can be computed. partially ordered phasds, |, ,I,,. The phase boundaries are
We note that the main feature of E2) is that layers are  determined by equating the free energies of adjacent re-
followed by eitheru or v layers, andu layers are followed gimes. Particularly, the boundary between th&/,W phases
by only w layers, andv layers byv. Then the degenerad  and theY phase assume the simple fot@8), between théd
of the sequencéb?) is given by the trace of a transfer matrix gngy phases the forr84), and between thel andI, phases
as the form (36). All transitions are found to be of first order,
KoK K K except the transitions between tbeV,W phases and th¥
S=Tr(T)=AT+AZ+NE~AT, (59  phase, and the transitions between the I, I,,, andH
phases, which are of second order with a square root singu-
where larity in the specific heat.

Now since each+ layer is associated with precisely one
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