
PHYSICAL REVIEW E JANUARY 2000VOLUME 61, NUMBER 1
Synchronization in a system of globally coupled oscillators with time delay
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We study the synchronization phenomena in a system of globally coupled oscillators with time delay in the
coupling. The self-consistency equations for the order parameter are derived, which depend explicitly on the
amount of delay. Analysis of these equations reveals that the system in general exhibits discontinuous transi-
tions in addition to the usual continuous transition, between the incoherent state and a multitude of coherent
states with different synchronization frequencies. In particular, the phase diagram is obtained on the plane of
the coupling strength and the delay time, and ubiquity of multistability as well as suppression of the synchro-
nization frequency is manifested. Numerical simulations are also performed to give consistent results.

PACS number~s!: 05.45.2a, 02.30.Ks, 05.70.Fh, 87.10.1e
h
te
iv
io
he
rs
s

io
p
t

o
a

m
m
m
l

he
im
s-
n
il-
u

n
so
re
lin
on
th

d
it
tra
e

a-
ls

ac-

an,
ob-
co-

sion
een

lay
ed
r-

rder
f the
his
hro-
rent
ow

be
ural
As

ing
ous

dis-

g

on-
yn-
iate
e-
d to
of

nts
as
ry

he
de-
lf-
I. INTRODUCTION

When a large population of limit cycle oscillators wit
slightly different natural frequencies are coupled, they of
come to oscillate with an identical frequency. Such collect
synchronization phenomena have been observed in var
oscillatory systems in physics, biology, chemistry, and ot
sciences@1–4#, attracting much interest in recent yea
@5–11#. In the Kuramoto model for those oscillator system
oscillators are coupled with each other via the interact
which depends on the phase difference between each
@5#. It describes the emergence of phase coherence with
increase of the coupling strength, elucidating interesting c
nection between the collective synchronization and a ph
transition.

Here, as in the usual dynamics of many-particle syste
sufficient attention has not been paid to the effects of ti
retardation in the oscillator system. In biological syste
such as pacemaker cells and neurons, however, tempora
lay is natural and the finite time interval required for t
information transmission between two elements may be
portant@2,3#. Time delay in the interaction may modify dra
tically dynamic behavior of the system, such as stability a
ergodicity @12#. In some types of a system of coupled osc
lators, retarded interactions have been found to result in m
tistability and suppression of the collective frequency@13–
16#. In a system of two coupled oscillators, it has been fou
that the time delay induces a multitude of synchronized
lutions. Namely, in the system with finite time delay, mo
than one stable solution are possible at given coup
strength. Among those, the most stable solution is the
with the largest synchronization frequency, as shown via
linear stability analysis@13#. Similar behaviors including fre-
quency suppression and multistability have been observe
the neural network model, where peripheral oscillators w
identical natural frequencies are coupled only with a cen
oscillator by forward and backward connections with tim
delay@14#. The two-dimensional system of identical oscill
tors with time-delayed nearest-neighbor coupling has a
been considered to reveal similar frequency suppression@15#.
PRE 611063-651X/2000/61~1!/371~11!/$15.00
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The system of nonidentical oscillators with delayed inter
tions has been studied recently@17#: In the case of a Loren-
zian distribution of natural frequencies with a nonzero me
the stability boundary of the incoherent state has been
tained and coexistence of one or more coherent and/or in
herent states has been observed in appropriate regions@17#.
However, detailed behaviors such as frequency suppres
and emergence of different coherent states have not b
addressed fully.

This paper investigates in detail the effects of time de
in the interaction on collective synchronization of coupl
oscillators with different natural frequencies. For this pu
pose, we derive the self-consistency equations for the o
parameter and examine how the characteristic features o
collective synchronization change due to time delay. T
reveals a multitude of coherent states with nonzero sync
nization frequencies, each separated from the incohe
state by a discontinuous transition. In particular, we sh
that the system with a nonzero average frequency can
reduced to the system with the vanishing average nat
frequency, which allows us to focus on the latter system.
in the system without delay, there exists the critical coupl
strength, at which the system undergoes the usual continu
transition from the incoherent state to the coherent state
playing collective synchronization~with zero synchroniza-
tion frequency!. In addition, at higher values of the couplin
strength ~beyond the critical value!, coherent states with
larger synchronization frequencies also appear via disc
tinuous transitions. Thus coherent states with different s
chronization frequencies in general coexist in the appropr
regions, leading to multistability. The synchronization fr
quency of the oscillators in a coherent state is observe
decrease with the delay time, which is similar to the result
other systems with time delay@14–16#.

There are five sections in this paper. Section II prese
the system of globally coupled oscillators with time delay,
a generalization of the Kuramoto model. The stationa
probability distribution for the system is obtained, and t
self-consistency equations for the order parameter are
rived. Section III is devoted to the analysis of the se
371 ©2000 The American Physical Society
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consistency equations, which reveals the characteristic
havior of the system as the coupling strength or the de
time is varied. In particular, the phase diagram is obtained
the plane of the coupling strength and the delay time,
ubiquity of multistability as well as suppression of the sy
chronization frequency is demonstrated. Numerical simu
tions are also performed and the results, which are in gen
consistent with the analytical ones, are presented in Sec
Finally, Sec. V summarizes the main results, while so
details of the calculations are presented in Appendixes A
B.

II. SYSTEM OF COUPLED OSCILLATORS WITH TIME
DELAY

The set of equations of motion forN coupled oscillators,
each described by its phasef i( i 51,2, . . . ,N), is given by

ḟ i~ t !5v i2
K

N (
j

8 sin@f i~ t !2f j~ t2t!#, ~1!

where the prime restricts the summation such thatj Þ i . The
first term on the right-hand side represents the natural
quency of thei th oscillator, which is distributed according t
the distribution functiong(v). Hereg(v) is assumed to be
smooth and symmetric aboutv0, which may be taken to be
zero without loss of generality~see below!, and also to be
concave atv50, i.e., g9(0),0. The second term denote
the global coupling of strengthK/N between oscillators, with
time delay, indicating that each oscillator interacts with oth
oscillators only after the retardation timet. Without time
delay, Eq.~1! exactly reduces to the Kuramoto model.

In order to describe collective synchronization of such
N oscillator system, we define the complex order parame
whose amplitude represents the degree of synchronizatio
be

C[
1

N (
j 51

N

eif j5Deiu. ~2!

Here it is convenient to introduce new variablesc i defined
by c i[f i2Vt, whereV is a constant. Note the existence
physical invariance due to the rotational symmetry of
total system. In terms of the new variables, Eq.~1! reads

ċ i5ṽ i2
K

N (
j

8 sin@c i~ t !2c j~ t2t!1Vt#, ~3!

where ṽ i[v i2V. Multiplying Eq. ~2! by e2 iVt, we also
obtain the corresponding order parameter for the new v
ables

C̃[
1

N (
j 51

N

eic j5Dei ũ, ~4!
e-
y
n
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where ũ[u2Vt. Incidentally, the order parameter define
in Eq. ~4! allows us to reduce Eq.~3! into a single decoupled
equation with time delay

ċ i5ṽ i2KD sin~c i2u0!, ~5!

where u0[ũ2Vt. Although D,V, and u0 depend on the
delay timet, they are assumed to be independent of timt,
which is possible due to the symmetry. Considering the
lation between the old order parameter and the new one

C5C̃eiVt, ~6!

we understand that the collective synchronization can be
scribed in terms of a giant oscillator rotating with the fr
quencyV which is in general nonzero. For finite delay tim
there exists a multitude of synchronized solutions with no
zero values ofV; this is in contrast to system without dela
where the rotational symmetry of the system allows us to
V50.

Instead of Eq.~5!, which may be regarded as a Langev
equation without noise, one may resort to the correspond
Fokker-Planck equation for the probability distributio
P(c,t) at zero temperature@18#:

]

]t
P~c,t !5

]

]c
@KD sin~c2u0!2ṽ#P~c,t !. ~7!

The order parameter given by Eq.~4! then obtains the form

Dei ũ5
1

N (
j 51

N

eic j

5E
2`

`

dṽg~ṽ1V!^eic& t2t;ṽ , ~8!

whereṽ5v2V has been noted, and the average ofeic is to
be taken over the distributionP(c,t2t) of Eq. ~7! with
given ṽ: ^eic& t2t;ṽ[*0

2pdcP(c,t2t)eic.
In the stationary state, we take the average over the

tionary distributionP(0)(c;ṽ) of Eq. ~7!. With the stationary
solution

P(0)~c;ṽ !5H d@c2u02sin21~ṽ/KD!# for uvu<KD

Aṽ22~KD!2

2puṽ2KD sin~c2u0!u
otherwise,

~9!

it is easy to compute the average
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^eic&ṽ[E
0

2p

dc P(0)~c;ṽ !eic

5eiu0H i ~ṽ/KD!2 iA~ṽ/KD!221, ṽ.KD,

i ~ṽ/KD!1A12~ṽ/KD!2, 2KD<ṽ<KD,

i ~ṽ/KD!1 iA~ṽ/KD!221, ṽ,2KD.

~10!
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It is thus natural to divide the system into two groups: o
satisfying uṽu<KD, which is called the synchronizatio
group, and the otheruṽu.KD, the desynchronization group
Accordingly, we write

D5Ds1Dd , ~11!

where Ds/d is the contribution from the synchronization
desynchronization group to the order parameter. The co
bution from the synchronization group is given by

Dse
iVt5KDE

21

1

dx g~V1KDx!@A12x21 ix#, ~12!

where x[ṽ/KD. Separating Eq.~12! into the real and
imaginary parts, we obtain the two coupled nonlinear eq
tions

DscosVt5KDE
21

1

dx g~V1KDx!A12x2,

DssinVt5KDE
21

1

dx g~V1KDx!x. ~13!

Similarly, the desynchronization group leads to the equa

DdeiVt5 iKDE
1

`

dx g~V1KDx!~x2Ax221!

1 iKDE
2`

21

dx g~V1KDx!~x1Ax221!

~14!

or

DdcosVt50,

DdsinVt5KDF E
1

`

dx g~V1KDx!~x2Ax221!

1E
2`

21

dx g~V1KDx!~x1Ax221!G .
~15!

Note that, unlike the Kuramoto model, the imagina
parts of Eqs.~12! and~14! do not vanish, which arises from
the fact that the nonzero collective frequency due to ti
delay breaks the symmetry of the integration interval of
distributiong(v). It is obvious in Eq.~15! that the contribu-
e

ri-

-

n

e
e

tion from the desynchronization group vanishes in the
sence of time delay (t50). Recalling that in the presence o
time delay the total order parameter is given by the sum
the two contributions, one from the synchronization gro
and the other from the desynchronization group, we fina
obtain the self-consistency equations from Eqs.~13! and
~15!:

D cosVt5KDE
21

1

dx g~V1KDx!A12x2,

D sinVt5KDF E
21

1

dx g~V1KDx!x1E
1

`

dx g~V1KDx!

3~x2Ax221!

1E
2`

21

dx g~V1KDx!~x1Ax221!G . ~16!

When the average natural frequency is not zero (v0Þ0),
we define the variablesc i[f i2(V1v0)t, and obtain ex-
actly Eq. ~16! except forV replaced byṼ[V1v0. For
example, the first equation is given by

D cosṼt̃5KDE
21

1

dx g̃~Ṽ1KDx!A12x2, ~17!

wheret̃ is the delay time and the distributiong̃(v) is sym-
metric about v5v0. Since the distributiong(v)[g̃(v
1v0) is symmetric aboutv50, we rewrite the above equa
tion in the form

D cos@~V1v0!t̃ #5KDE
21

1

dx g~V1KDx!A12x2,

~18!

which, with the identification (V1v0) t̃[Vt, just repro-
duces the first equation in Eq.~16!. Accordingly, the behav-
ior of the system withv0Þ0, which has been considered
Ref. @17#, can be obtained from that of the system withv0
50 via appropriate rescaling of parameters.

III. ANALYSIS OF THE SELF-CONSISTENCY
EQUATIONS

The nonvanishing imaginary part of the self-consisten
equation given by Eq.~16!, arising from time delay, leads to
a variety of behaviors which are not displayed by the syst
without delay. In this section, we solve the two coupl
equations in Eq.~16! to obtain the synchronization frequenc
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V and the order parameterD. We take the Gaussian distr
bution with zero mean and unit variance for the natural f
quencies:g(v)5(2p)21/2e2v2/2, and first compute numeri
cally the synchronization frequency and the order param
for various values of the coupling strengthK and the delay
time t.

Figure 1 exhibits the dependence of the synchroniza
frequency onK and t, which manifests multistability. At
small values oft, only the nontrivial solution (DÞ0) with
V50 appears forK.Kc('1.596), as in the system withou
delay. For larget, on the other hand, solutions withVÞ0
also emerge asK is increased further. In Fig. 1~a!, where the
synchronization frequency is plotted as a function of the
lay time t at K510, it is also observed that the synchron
zation frequency is suppressed as time delay is increa
This is expected since the delay tends to disturb synchr
zation @14#. In Fig. 1~b!, we plot the synchronization fre
quency as a function of the coupling strength att55. It
shows that at given values oft the synchronization fre-
quencyV depends rather weakly onK after synchronization
sets in. Among those solutions at given coupling strengthK,
the most stable solution is the one with the largest value oV
@13# although the basin of attraction in general shrinks w
V.

The phase boundaries separating the coherent stateD
Þ0) with various synchronization frequencies from the
coherent state (D50) are shown in Fig. 2, where data ha
been taken with the step widthdt50.06. Below the lowest
boundary, which is the straight lineK5Kc'1.596, only the

FIG. 1. Synchronization frequencyV ~a! as functions of the
delay timet at the coupling strengthK510, where frequency sup
pression and multistability can be observed;~b! as functions ofK at
t55. For givenK, the largest synchronization frequency belongi
to the highest stair gives the most stable solution, but the co
sponding basin of attraction is small.
-

er

n

-

d.
i-

(
-

incoherent state exists; above it, the coherent state withV
50 also exists. Similarly, above each boundary in Fig. 2~a!,
a new additional coherent state with a larger synchroniza
frequency emerges. Note here that the region of the existe
of coherent states constitutes two-dimensional~semi-infinite!
surfaces in the three-dimensional (K,t,V) space. Whereas
Figs. 1~a! and 1~b! may be regarded as the cross-sections
these surfaces at given values ofK and of t, respectively,
Fig. 2~a! represents the projection of theboundariesof these
surfaces onto theK-t plane. In Fig. 2~b! the curves of Fig.
2~a! are redrawn, with the horizontal axis rescaled:t̃ in ~b!
corresponds toVt/(V13) in ~a!. In this new scale of the
horizontal axis, unlike in Fig. 2~a!, the boundaries intersec
with each other, and only the envelope consisting of
curve segments with lowest values ofK at given t̃ is dis-
played in Fig. 2~b!. According to the discussion in Sec. I
Fig. 2~b! describes the phase boundary below which only
incoherent state exists in the system withv053. Above the
boundary, the coherent state with the appropriate~nonzero!
synchronization frequency, depending ont̃, appears and can
coexist with the incoherent state. Note that the lowest bou
ary (K5Kc'1.596) in Fig. 2~a! has no counterpart in Fig
2~b! since the zero synchronization frequency (V50) corre-
sponds to t̃50. Similar boundaries have been obtain

e-

FIG. 2. Phase diagram on theK-t plane, displaying boundarie
between the incoherent and coherent states. Whenever each b
ary in ~a! is crossed from below, a new additional coherent st
with a larger synchronization frequency emerges. Below the low
boundary, which is the straight lineK5Kc'1.596, only the inco-
herent state exists. In~b! the boundaries are redrawn, with the ho

zontal axis rescaled:t̃ in ~b! corresponds toVt/(V13) in ~a!.
Here displayed is only the envelope consisting of the curve s

ments with lowest values ofK at givent̃, which describes the phas
boundary separating the incoherent state in the system withv0

53.



a

nd

or
in
er
t
d

-
e
f
r
ly

-
Fi

ll
te

er,
nit

e

ce
r

ts

lue
ed
with
to

of

by
her
he

-

-
e of
the

ely

ition
so-

h
ch

-
to
he

PRE 61 375SYNCHRONIZATION IN A SYSTEM OF GLOBALLY . . .
through numerical simulations for the Lorenzian as well
the delta-function distributions@17#. It is of interest to com-
pare Fig. 2~b! with Fig. 4 in Ref.@17#, which indicates that
the Gaussian distribution leads to smoother stability bou
aries than the Lorenzian distribution.

In Fig. 3, the obtained order parameterD is depicted as a
function of K at t55. Each line describes the transition f
each synchronization frequency, and the critical coupl
strengthKc is shown to increase for the transition with larg
V. For example, the leftmost curve, which corresponds
V50, givesKc'1.596, whereas the next one, correspon
ing to V'1.09, givesKc'1.97. Note that asK approaches
Kc('1.596), the order parameter withV50 decreases con
tinuously to zero, indicating that the leftmost curve describ
a continuous transition atKc . On the other hand, the rest o
the curves withV.0 apparently display jumps in the orde
parameter, indicating discontinuous transitions. According
whereas the lowest boundary in Fig. 2~a! describes a con
tinuous transition, the others as well as the boundary in
2~b! correspond to discontinuous transitions.

To understand the nature of these transitions analytica
we assumeKD!1 near the transition to the coherent sta

FIG. 3. Order parameterD as a function of the coupling strengt
K at the time delayt55. Each line describes the transition for ea
synchronization frequency, and the critical coupling strengthKc is
shown to increase for largeV. The leftmost curve, which corre
sponds toV50, givesKc'1.596; the next one, corresponding
V'1.09, givesKc'1.97. The numerical results displayed by t
leftmost curve agree well with the analytical ones.

FIG. 4. Graphical solutions of Eq.~20!, displaying f (D)
[(a1K21)D1b1(KD)21c1(KD)3 versusD, for b150 with ~a!
K51.594(,Kc), ~b! K51.596(5Kc), and ~c! K51.597(.Kc).
The negative solution appearing in~c! is unphysical.
s

-

g

o
-

s

,

g.

y,

and expand Eq.~16! to the order of (KD)3, together withV
also expanded accordingly:

V'V01V1KD1V2~KD!2. ~19!

We investigate two regimes,V!KD and V@KD, which
exhibit phase transitions of different types with each oth
still taking the Gaussian distribution with zero mean and u
variance forg(v).

For V!KD(!1), the self-consistency equation for th
order parameter takes the form

D5a1KD1b1~KD!21c1~KD!31O~KD!4, ~20!

where the coefficientsa1 , b1, andc1 depend onV0 , V1,
andV2 defined in Eq.~19!. Their specific forms as well as
the details of the calculation are given in Appendix A. Sin
the conditionV!KD implies V0!1, we need to conside

Eq. ~A3! only for the range2p/2,tan21(A2/pV0eV0
2/2)

,p/2. It is then obvious that the desired solution of Eq.~A3!
is simply V05V15V250, regardless oft. Inserting these
values into Eq.~A5!, we obtain the values of the coefficien
a150.626, b150, andc1520.078. Figure 4 illustrates the
graphical solution of Eq.~20!, displaying f (D)[(a1K
21)D1b1(KD)21c1(KD)3 versusD for b150. Note that
the critical coupling strength is given byKc([a1

21)'1.595,
which indeed agrees perfectly with the numerical va
given by the leftmost curve in Fig. 3. It is thus conclud
that the system displays a continuous phase transition
V50, which is consistent with the result of the Kuramo
model.

In the opposite case ofV@KD(!1), we can still obtain
the self-consistency equation forD up to the order of (KD)3,
in a manner similar to that for the previous small-V case:

D5a2KD1b2~KD!21c2~KD!31O~KD!4, ~21!

where the coefficientsa2 , b2, and c2 again depend on
V0 , V1, andV2 ~see Appendix B!. In this case, we need to
obtain larger solutions, considering the regions (n11/2)p

,tan21(A2/pV0eV0
2/2),(n13/2)p with non-negative inte-

ger n. Interestingly, this in general yields nonzero values
V0 and accordingly, nonzero values ofb2, with which Eq.
~21! displays a jump inD at K524c2(b2

224c2a2)21, thus
indicating a discontinuous transition@9#. Such discontinuous
transitions are ubiquitous for regions with higher values ofn.
Namely, the system with delay is in general characterized
nonzero values of the synchronization frequency toget
with discontinuous transitions, which is consistent with t
numerical results displayed in Fig. 3. There the jumps inD
displayed by the curves withV.0, associated with discon
tinuous transitions, may invalidate the assumptionKD!1,
and the expansion in Eq.~21! is not expected to yield quan
titatively accurate results. Nevertheless the appearanc
such discontinuous transitions has been revealed by
above expansion, which is concluded to give a qualitativ
correct description of the nature of transitions.

For more accurate results, we investigate these trans
phenomena by examining in detail the behaviors of the
lutions of the self-consistency equations. Note thatD50 is
always a solution of Eq.~16! for all values ofV. To seek for
other solutions, we divide Eq.~16! by D and obtain



o

ith

t-

n
and

oint

wn
ere
er

-
olu-

ce

-
of

n

ca-
o-

-

nt

-

r

-

r

376 PRE 61M. Y. CHOI, H. J. KIM, D. KIM, AND H. HONG
K21cosVt5E
21

1

dx g~V1KDx!A12x2,

K21sinVt5E
2`

`

dx g~V1KDx!x

2E
1

`

dx g~V1KDx!Ax221

1E
2`

21

dx g~V1KDx!Ax221, ~22!

which may be computed numerically. The resulting values
V versusD are plotted in Figs. 5–7 fort55. The solid and
the dotted lines represent solutions of the first~real part! and
the second~imaginary part! equations of Eq.~22!, respec-
tively. In each figure, the point where the two lines meet w
each other provides the synchronization frequencyV and the
order parameterD. Figure 5~a! shows the absence of a mee

FIG. 5. Synchronization frequencyV versus the order param
eter D obtained from Eq.~16! for t55 at ~a! K51.58, ~b! K
51.596,~c! K51.60,~d! K51.75. Solid and dotted lines represe
solutions of the first equation and the second equation of Eq.~16!.
A continuous transition forV50 can be observed atK51.596.

FIG. 6. Synchronization frequencyV versus the order param
eter D obtained from Eq.~16! for t55 at ~a! K51.89, ~b! K
51.97, ~c! K52.10, ~d! K53.00. A discontinuous transition fo
V'1.09 can be observed atK51.97.
f

ing point for K51.58, which implies that synchronizatio
does not set in yet. In contrast, the meeting of the solid
dotted lines is obvious forK51.60 shown in~c!; ~b! reveals
a continuous transition~for V50) at K5Kc'1.596, which
coincides with the previous result. The value ofD grows
continuously asK is increased beyondKc ~see Fig. 6!. When
K reaches the value 1.97, as displayed in Fig. 6~b!, there
emerges via a tangent bifurcation an additional meeting p
at finite values ofD('0.08) andV('1.09), giving rise to a
discontinuous transition, in agreement with the result sho
in Fig. 3. As the coupling strength is increased further, th
appear two meeting points, giving two values of the ord
parameter for the pair of the lines~i.e., with almost the same
value ofV), as shown in Fig. 6~c!. Such a tangent bifurca
tion in general produces a pair of stable and unstable s
tions; here the solution with the smaller value ofD, decreas-
ing with K, should be unstable. Figure 7~c! shows that the
unstable solution becomes null (D50) at V'1.257 asK
approachesK0'3.515. Figure 7 also reveals the occurren
of the third transition atKc'3.46, which is of the same
nature as the second.

The values ofKc'1.596 andK0'3.515 can also be ob
tained analytically since they are given by the solutions
Eq. ~22! in the limit D→0. In this limit, the right-hand side
of the second equation vanishes, yieldingV5np/t with n
integer. The first one, which reduces toK21cosVt
5(p/2)g(V), then gives

K5
2

pg~2np/t!
, ~23!

where it has been noted thatK.0. Takingn50 andn51 in
Eq. ~23!, whereg(v) is given by the Gaussian distributio
with unit variance, we obtainK5Kc5A8/p'1.596 ~with
V50) and K5K05A8/pe2(p/t)2

'3.515 ~with V52p/t
'1.257) fort55, respectively.

To examine how the stability changes at these bifur
tions, we now consider a small perturbation from the inc
herent state, for which the stationary distribution in Eq.~9! is
simply given by 1/2p, and write

FIG. 7. Synchronization frequencyV versus the order param
eter D obtained from Eq.~16! for t55 at ~a! K53.30, ~b! K
53.46, ~c! K53.515, ~d! K54.00. A discontinuous transition fo
V'2.25 can be observed atK53.46.
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P~c,t !5
1

2p
1eh~c,t !, ~24!

where e!1. Upon substitution into Eq.~7! and with D
5D1e1O(e2), we obtain, to the lowest order ine,

]h

]t
52ṽ

]h

]c
1

K

2p
D1cos~c2u0! ~25!

and seek solutions of the form

h~c,t !5c~ t;ṽ !eic1c* ~ t;ṽ !e2 ic, ~26!

where higher harmonics have been neglected. Equations~25!
and ~26!, together with Eq.~8!, lead to the amplitude equa
tion for c(t;ṽ):

]c~ t,ṽ !

]t
52 i ṽc~ t,ṽ !1

K

2
eiVt

3E
2`

`

dṽ g~ṽ1V!c~ t2t,ṽ !, ~27!

FIG. 8. Results of numerical simulations on 5000 coupled
cillators: ~a! Synchronization frequency versus the delay tim
Crosses are results of numerical simulations and solid lines re
sent the solutions of Eq.~16!, displaying perfect agreement wit
each other.~b! Order parameter versus the coupling strength, d
playing continuous transitions~with zero synchronization fre-
quency! for t50 ~plus signs! and t55 ~crosses!. The solid line
represents analytic results fort55, displaying reasonable agree
ment with the numerical ones. Slight suppression of synchron
tion by time delay can be observed near the transition region.
size of the error bars estimated by the standard deviation is a
that of the symbols and lines are merely guides to the eye.
which in general possesses both discrete and continu
spectra. To find out the discrete spectrum, we put

c~ t;ṽ !5b~ṽ !elt, ~28!

where the eigenvaluel is independent ofṽ, and obtain the
equation

e2(l2 iV)t
K

2E2`

`

dv
g~v!

l1 i ~v2V!
51, ~29!

which has been examined for a Lorenzian distribution@17#.
Here we investigate Eq.~29! for a Gaussian distribution

The stability of the incoherent state depends on whether
roots of Eq.~29! possess negative real parts, i.e., Rel,0.
This is the case forK less thanKs , where the incoheren
state is neutrally stable~since the continuous spectrum
pure imaginary!. Beyond Ks , there appears an eigenvalu
with a positive real part, giving rise to instability. The valu
of Ks can be computed from Eq.~29! with Rel50 imposed;
this yields the coupled equations forKs and Iml

cosgt5KsAp

8
e2g2/2,

singt52
Ks

2
ge2g2/2(

k50

`
g2k

2k~2k11!k!
, ~30!

where g[V2Im l. Unlike the system without delay, Eq
~30! has an infinite number of solutions, among which t
lowest value ofKs should be taken. It is obvious thatg50 is
the desired solution~regardless of time delay!, leading to the
lowest valueKs5A8/p'1.596. Note also that this value o
Ks coincides exactly with that ofKc , implying that the in-
coherent state becomes unstable simultaneously with the
pearance of the~stable! coherent state withV50.

These results reveal that the order parameter exhibi
supercritical bifurcation atK5Kc along the leftmost curve
(V50) in Fig. 3. Namely, the emergence of a nontrivi
solution (D.0) is accompanied by the loss of stability o
the null solution (D50) at Kc(V50)'1.596. For the rest
(V.0), on the other hand, the unstable solution, genera
together with the stable one by a tangent bifurcation
Kc(V), decreases asK is raised further and vanishes to ze
at a larger value,K5K0(V). For example, the unstable so
lution for V'1.09, emerging atK'1.97, decreases to zer
at K'3.515 @see Fig. 7~c!#. It is thus concluded that forV
.0 the bifurcation atK0 is subcritical: BetweenKc andK0
there exist an unstable coherent state in addition to the st
coherent states~and the incoherent one! although the un-
stable states have not been displayed in Fig. 3.

The general features of the synchronization behavior
tained here are similar to those in Ref.@17#, and it is thus
concluded that the difference in the distribution of natu
frequencies does not change results qualitatively. On
other hand, we have examined additional interesting p
nomena such as frequency suppression and details of m
stability. In particular, unlike in the system withv0Þ0 con-
sidered mostly in Ref.@17#, here the phase boundaries wi
different values of the synchronization frequency do not
tersect with each other on theK-t plane.@Compare Figs. 2~a!
and 2~b!.# Accordingly, the system withv050 does not un-
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dergo a discontinuous transition directly from thestable in-
coherent state and the coherent one with a nonzero sync
nization frequency, and the associated hysteresis may no
observed. Further, in order to confirm these results, we h
also performed numerical simulations, the results of wh
are presented in the next section.

IV. NUMERICAL SIMULATIONS

We have studied directly the equations of motion giv
by Eq. ~1! via numerical simulations. The globally couple
system of sizeN55000, where natural frequencies are d
tributed according to the Gaussian distribution with unit va
ance, has been considered, and the Euler method with
crete time steps ofdt50.01 has been employed. At each ru
we have discarded the first 105 time steps per oscillator to
eliminate transient effects and taken the next 105 time steps
per oscillator to investigate synchronized solutions. Fina
independent runs with 30 different realizations of the natu
frequency distribution and initial conditions have been p
formed, over which the averages have been taken. In
simulations, the synchronization frequency is given by
average phase speed, i.e., the average rate of the p
change, and the obtained data at the coupling strengtK
510 are represented by crosses in Fig. 8~a!. Note that both
the incoherent state and the coherent one are found t
stable at the same value oft, indicating multistability; fre-
quency suppression with increasing delay is also manifes
For comparison, the results shown in Fig. 1~a!, obtained
from Eq. ~16!, are also displayed, and perfect agreemen
observed. Notice here that the basin of attraction shrinks
idly with the synchronization frequencyV, which makes it
quite difficult in numerical simulations to find the coheren
state solutions with large values ofV. Figure 8~b! shows the
behavior of the order parameterD as a function of the cou
pling strengthK for t50 ~plus signs! andt55 ~crosses!. In
both cases the system displays a continuous transition to
coherent state~with zero synchronization frequency!. Slight
suppression of synchronization by time delay can be
served. The error bars have been estimated by the stan
deviation and the lines are guides to the eye. To make c
parison of the analytical results obtained from Eq.~16! and
the simulation results, we have also included in Fig. 8~b! the
analytical results fort55, which are represented by th
solid line. Good overall agreement between the two can
observed.
ro-
be
ve
h

-
-
is-
,

,
l
-
e

e
ase

be

d.

is
p-

he

-
ard

-

e

V. SUMMARY

We have studied analytically and numerically the colle
tive synchronization phenomena in a set of globally coup
oscillators with time retarded interaction. In order to und
stand the effects of time delay on the synchronization,
have derived the self-consistency equations for the order
rameter, which describe synchronization in the system.
detailed analysis of the self-consistency equations has
vealed a multitude of coherent states with nonzero synch
nization frequencies, each separated from the incohe
state by a discontinuous transition. At the critical coupli
strength, the system exhibits the usual continuous transi
from the incoherent state to the coherent one, displaying
lective synchronization with zero synchronization frequen
As the coupling strength is increased further, coherent st
with larger synchronization frequencies have also be
shown to appear via discontinuous transitions from the in
herent state. Thus a multitude of coherent states with dif
ent synchronization frequencies have been found to coe
in the appropriate regions, leading to multistability. The sy
chronization frequency of the oscillators in a coherent st
has been observed to decrease with the delay time.

To confirm the analytical results, we have also perform
numerical simulations, the results of which indeed disp
multistability and suppression of the synchronization f
quency. For detailed comparison, however, one sho
search the solution space extensively, with varying init
conditions, to obtain solutions with various values of t
synchronization frequency. This requires more extens
simulations, which is left for future study. Finally, one ma
also include stochastic noise in the system and study its
fects on synchronization behavior. In particular, the interp
between the external driving and noise poses the possib
of stochastic resonance@19#, and it is of interest to examine
how the collective synchronization together with the tim
delay affects the possible resonance phenomena.
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APPENDIX A

In the caseV!KD(!1), we approximate the integral appearing in Eq.~16!:

E
1

`

dx g~V1KDx!~x2Ax221!1E
2`

21

dx g~V1KDx!~x1Ax221!

5E
1

`

dx@g~V1KDx!2g~V2KDx!#~x2Ax221!

'E
1

`

dx 2Vg8~KDx!~x2Ax221!, ~A1!

and expand Eq.~16! to the order (KD)3. This yields
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D cos$@~V01V1~KD!1V2~KD!2#t%

5
1

2
Ap

2
e2V0

2/2H KD2V0V1~KD!21F ~V0
221!S V1

2

2
1

1

8D 2V0V2G~KD!3J ,

D sin$@~V01V1~KD!1V2~KD!2#t%

52
V0

2
KD1FV0

3
A2

p
~12e2V0

2/2!2
V1

2 G~KD!21H V0

8
1

V1

3
A2

p
@11~V0

221!e2V0
2/2#2

V2

2 J ~KD!3, ~A2!

where Eqs.~19! and the Gaussian distributiong(v) have been used. After a tedious calculation, we obtain from Eq.~A2!

V0t52tan21SA2

p
V0eV0

2/2D ,

V1t5A8

p
eV0

2/2S 11
2

p
V0

2eV0
2D 21FA 2

9p
V0~12e2V0

2/2!2
V1

2
2

V0
2V1

2 G ,
V2t5A2

p
e2V0

2/2S 11
2

p
V0

2eV0
2D 21H ~11V0

2!S V0

8
2V2D

1
8

p
V0eV0

2/2S 11
2

p
V0

2eV0
2D 21FA 2

9p
V0~12e2V0

2/2!2
V1

2
2

V0
2V1

2 G2

2
1

2
V0V1

2~V0
213!1A 8

9p
V1~11V0

22e2V0
2/2!J ~A3!

together with

D5a1KD1b1~KD!21c1~KD!31O~KD!4, ~A4!

which is just Eq.~20!. The coefficients depend onV0 , V1, andV2 according to

a15S V0
2

4
1

p

8
e2V0

2D 21/2

,

b15S V0
21

p

2
e2V0

2D 21/2F2A 2

9p
V0

2~12e2V0
2/2!1

V0V1

2 S 12
p

2
e2V0

2D G ,
c15S V0

21
p

2
e2V0

2D 21/2H S 2

9p
2

1

8DV0
21

V0V1

2
1

V1
2

4
2A 2

9p
V0V1~21V0

2!

2S V0
21

p

2
e2V0

2D 21FA 2

9p
V0

2~12e2V0
2/2!2

V0V1

2 S 12
p

2
e2V0

2D G2

2S 4

9p
V0

22A 8

9p
V0V1D e2V0

2/21F 2

9p
V0

21
p

4 S V0
2

8
2

1

8
1V0

2V1
22

V1
2

2
2V0V2D Ge2V0

2J . ~A5!

APPENDIX B

In the caseV@KD(!1), we approximate the integral in Eq.~16! as follows:

E
1

`

dx g~V1KDx!~x2Ax221!1E
2`

21

dx g~V1KDx!~x1Ax221!

5E
1

`

dx@g~V1KDx!2g~V2KDx!#~x2Ax221!

'2E
1

`

dx g~V2KDx!~x2Ax221!, ~B1!
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which, upon expansion to the order (KD)3, gives Eq.~16! in the form

D cos$@V01V1~KD!1V2~KD!2#t%5
1

2
Ap

2
e2V0

2/2H KD2V0V1~KD!21F ~V0
221!S V1

2

2
1

1

8D 2V0V2G~KD!3J ,

D sin$@V01V1~KD!1V2~KD!2#t%

52
~11V0

2!

4V0
3 @11F~V0/A2!#KD1

1

12V0
4H 2A2

p
e2V0

2/2~4V0
513V0

313V0V1!13V1~31V0
2!@11F~V0/A2!#J ~KD!2

1
1

48V0
5 HA2

p
e2V0

2/2@16V0
7V112V0

5~3214V113V1
2!212V0

4V216V0
3~2122V113V1

2!19V0~114V1
2!

212V0
2V2#23@6124V1

21V0
2~114V1

2!212V0V224V0
3V2#@11F~V0 /A2!#J ~KD!3 ~B2!

with the error functionF(y)[(2/Ap)*0
ydz e2z2

. After a tedious calculation, we obtain from Eq.~B2!

V0t52tan21H 1

A2p
S 11V0

2

V0
3 D eV0

2/2@11F~V0 /A2!#J 1p,

V1t5H 11
1

2p

~11V0
2!2

V0
6 eV0

2
@11F~V0 /A2!#2J 21H 2

4V0

3p
2

V121

pV0
2

V1

pV0
31

1

A2p

V1

V0
4~32V0

4!eV0
2/2@11F~V0 /A2!#J ,

V2t5H 1

A2p
S 11V0

2

V0
3 D eV0

2/2@11F~V0 /A2!#J H 11
1

2p

~11V0
2!2

V0
6 eV0

2
@11F~V0 /A2!#2J 22

3H 2
4V0

3p
2

V121

pV0
2

V1

pV0
31

1

A2p

V1

V0
4~32V0

4!eV0
2/2@11F~V0 /A2!#J

2H 1

A2pV0
3 F1

8
~12V0

4!2
V1

2

2
~52V0

4!1V0V2~11V0
2!GeV0

2/2@11F~V0 /A2!#

1
1

12pV0
4 @16V0

6V112V0
4~3214V113V1

2!212V0
3V226V0

2~112V123V1
2!212V0V219~114V1

2!#

2
1

4A2pV0
5 @6124V1

21V0
2~114V1

2!212V0V224V0
3V2#eV0

2/2@11F~V0 /A2!#J ~B3!

and

D5a2KD1b2~KD!21c2~KD!31O~KD!4, ~B4!

which is Eq.~21!. Again the coefficients depend onV0 , V1, andV2 via

a25H p

8
e2V0

2
1

~11V0
2!2

16V0
6 @11F~V0 /A2!#2J 21/2

,

b25H p

2
e2V0

2
1

~11V0
2!2

4V0
6 @11F~V0 /A2!#2J 21/2

3H 2
p

4
V0V1e2V0

2
1

11V0
2

8V0
6 @11F~V0 /A2!#F 2

p
e2V0

2/2S 4

3
V0

41V0
2~V121!1V1D2~31V0

2!V1@11F~V0 /A2!#G J ,
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c25H p

2
e2V0

2
1

~11V0
2!2

4V0
6 @11F~V0 /A2!#2J 23/2

3H 2
p

4
V0V1e2V0

2
1

11V0
2

8V0
6 @11F~V0 /A2!#FA2

p
e2V0

2/2S 4

3
V0

41V0
2~V121!1V1D

2~31V0
2!V1@11F~V0 /A2!#G J 2

1H p

2
e2V0

2
1

~11V0
2!2

4V0
6 @11F~V0 /A2!#2J 21/2

3H p

8
e2V0

2S 2V0
2V1

21
V0

2

4
2V1

222V0V22
1

4D
1

1

144V0
7FA2

p
e2V0

2/2S 4

3
V0

41V0
2~V121!1V1D2~31V0

2!V1@11F~V0 /A2!#G2

2A2

p
e2V0

2/2
11V0

2

96V0
7 @16V0

6V112V0
4~3214V113V1

2!212V0
3V226V0

2~112V123V1
2!212V0V219~114V1

2!#

3@11F~V0 /A2!#2
1

4A2pV0
5 @6124V1

21V0
2~114V1

2!212V0V224V0
3V2#J . ~B5!
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