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Extended universality of the surface curvature in equilibrium crystal shapes
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We investigate the universal property of curvatures in surface models that display a flat phase and a rough
phase whose criticality is described by the Gaussian model. Earlier we derived a relation between the Hessian
of the free energy and the Gaussian coupling constant in the six-vertex model. Here we show its validity in a
general setting using renormalization group arguments. The general validity of the relation is confirmed
numerically in the restricted solid-on-solid model by comparing the Hessian of the free energy and the
Gaussian coupling constant in a transfer matrix finite-size-scaling study. The Hessian relation gives a clear
understanding of the universal curvature jump at roughening transitions and facet edges and also provides an
efficient way of locating the phase boundarig31063-651X97)12007-4

PACS numbgs): 05.70.Fh, 68.35.Rh, 82.65.Dp

I. INTRODUCTION place[8]. Below the roughening temperatufg, the system
is ordered with zero polarization when the field is small but
The theory of equilibrium crystal shapg€ECS is well it becomes rough with nonzero polarization beyond a critical

established 1-4]. Consider a macroscopic amount of solid value of the electric field. This transition is in the Pokrovsky-
in coexistence with and surrounded by its own fluid phaseTalapov (PT) transition universality clas§7,10. The PT
The shape of the solid region is obtained by minimizing thetransition is characterized by the specific heat exponent
total free energy of the solid-fluid interface subject to thea=1/2 [10], which implies that the free energy scales as
fixed-volume constraint. This leads to the Wulff constructionf ~ |h—h|*2.

for ECS. Especially if one focuses on a particular direction, Equation(1) enables one to identify the ordered and the
say thez direction, the crystal surface is defined by thedisordered phases to facet and rounded regions in ECS, re-
height z(r) of the surface with respect to the position spectively. Below T a facet appears surrounded by a
r=(x,y) in a reference plane. If the surface with slome rounded vicinal surface. The rounded region in the ECS is
costs a free energy(m) per unit base area, the ECS is given rough in the sense that the height-difference correlation func-
by [2] tion behaves as

Nz(r)=f(—A\r), (1)

([2(r)=2z(r") ]}~

Injr—r’].
2
where 2 is the pressure difference between the two phases 2mg

[1] andf(h) is the Legendre transform @f(m): The PT transition line corresponds to the facet edge and the

£(h)=minfo(m —h-mt. 2 crystal profile near the facet edge is given by
() {m}{a( ) i @ z~(x, —x, )%, wherex, is a coordinate perpendicular to
the facet edge an)ziLO is the facet-edge position.

A measurable quantity of physical importance is the sur-
aface curvaturec= 'z, ,z, ,— 2 2 where the subscripts de-
Jrote partial derivatives. From E@l), the surface curvature
Is related to the Hessian of the free energy as

Here, h is the surface-tilting field conjugate to the surface
slope. Equation(1) states that the surface free energy as
function of the surface-tilting field is itself the height of the

ordinates.

Using this connection, the thermal evolution of the equi-
librium shape of a face-centered-cubifcc) crystal or a k=\VH[F(h=—Xr)]= A 3)
body-centered-cubi¢bco crystal has been studied through VH[o(m)]

the body-centered solid-on-soliCSOS model, which is

equivalent to the six-vertex modpt—6]. The surface slope The Hessian of a functioR (x) is defined by
and the surface-tilting field in the BCSOS model correspond

to the polarization and the electric field in the six-vertex Fo v, Fy x
model, respectively. The six-vertex model displays several H[F(x)]=de ot 12
ordered phases with ferroelectric or antiferroelectric order Fa, %, Fxpx,

and a disordered phaf®,8]. The disordered phase is a criti-

cal phase. Its scaling behavior is described by the Gaussiarhe second equality in Eq3) follows from the identity
model, and is parametrized by the Gaussian coupling corH[ f(h)JH[ o(m)]=1. It has been predicteld 1] and mea-
stant g or the stiffness constarik [9]. At zero fields a sured experimentally12] that the curvature displays a uni-
Kosterlitz-Thouless(KT) type roughening transition takes versal jump at the roughening transition with discontinuity
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(@) (b) (c)

FIG. 1. Shown are the sc crystal on a substrate parallel t¢0® plane(a), the bcc crystal on a substrate parallel to (B@1) plane
(b), and the sc crystal on a substrate parallel to(itigl) plane(c). The projected lattice points on to the substrates form two-dimensional
lattices and their sublattice structure is shown.

2 ad? where " is the imaginary part of the anisotropy factor,
(AK)KT:; KeTr' (4) (N.N) a non-negative set of integers, ana, @) the level
index, which takes integer valuésee[9,14] for detail9. If
whered is the distance between the crystal planes. It is als@ne combines Eqs3) and(6), one gets
expected 13] that, for T<Tg, there is universal curvature

jump at the facet edge with discontinuity _ 2)d? 1
K= - (8
7TkBT g
1 Ad?
(AK)PT_; kB_T' ®) It was found thag=1 at the KT-type roughening transition

in the fcc (110) surface angl=2 at the PT-type facet edges

These universal jumps are attributed to the universal naturg]. If one uses them in Ed8), the universal jumps in Egs.
of the roughening transition and the PT transition. Surfacé4) and(5) are obtained. Relatiof6) or equivalently(8) is
fluctuations without surface-tilting field are assumed to bequite general in the sense that it does apply to the entire
described by the Gaussian model and the universal jumpough phase as well as at the phase transition points of the
(AK)r is related to the jump of the stiffness constant at thesix-vertex model. A natural question that arises is whether
KT transition [11]. On the other hand, fluctuations of the such a general relation is universal, in other words, whether
vicinal surface near the facet edge are described by the oné-holds in other model systems too. This paper addresses this
dimensional free fermion model where the world lines ofquestion, and the results are affirmative.
fermions are interpreted as step excitations in the surface In Sec. Il we introduce general models for crystal surfaces
[13]. It explains the universal jump\k) e at the facet edge. that display phase transitions between flat and rough phases,

In a recent papef9] on the six-vertex model, an exact and present renormalization grodRG) arguments that the
relation has been found between the Hessian of the sixHessian of the free energy is the scale-invariant quantity. It
vertex model free energy and the Gaussian coupling constaditelds the relation between the Hessian of the free energy
g in the rough phase. The relation is given asand the Gaussian coupling constant in the rough phase. The
H[f(h)]=(2/7g)2 whereH is the Hessian of the six-vertex result is given in Eq(27). Combining it with the theory of
model free energy in units 6T with respect to the dimen- the ECS, we obtain the relation between the surface curva-

sionless surface-tilting field. When one restores the diment'® @nd the Gaussian coupling constant. To check the gen-

sions. this relation becomes eral theory, we present numerical results for the restricted
' solid-on-solid(RSOS model in Sec. Ill. The Gaussian cou-

d2 \2 pling constants, obtained in the FSS study from the transfer

H[f(h)]= ( kBTTrg) . (6)  matrix spectra, is compared with the value obtained from the

Hessian of the free energy. This confirms the validity of the

) ) ) ) universal relation. In Sec. IV, we discuss implications of the
The Gaussian coupling constant determines the scaling e¥asyits and give a brief summary.

ponents of various correlations and controls the finite-size-
scaling (FSS behaviors, i.e., a set of excitation energies
AE of the transfer matrix, defined for a system with strip of IIl. RENORMALIZATION GROUP THEORY

width N, satisfies the FSS form Consider a solid-on-solidSOS type model for a two-

ot 12 5 dimensional crystal surface, where the surface is defined by
m n . _ " ;
Re(AE) = 7l ( + 92 +N+/\ﬁ, @) heightz; at each sité on a substrate of size; X L, parallel

N E to one of its crystal planes. The sites consist of projections of



56 EXTENDED UNIVERSALITY OF THE SURFAE . .. 357
all lattice points on the substrate and form a two-dimensional

lattice. Figure 1 shows three examples of such substrates for Z=J [Dgle Prent 4D, (12
sc (001, bcc(001), and sc(111) surfaces, respectively. In a sBC
SOS type model the height is a single-valued function; ther
are no overhangs. The height at a given site can change by
integer multiple of the lattice constaag in the z direction.
Due to the crystal structure there maymdigtin_ct classes of BHeHZEf d?r|V ¢|2+ BH' (13)
crystal planes parallel to the substrate, with interplane spac- 2

ing d=a3/p. In that case substrate sites are separated into

p sublattices and; takes the valued {d+integeix as) if the  with

sitei belongs to thd;th sublattice [[=1,2,...,p). For ex-

e . S
gy{]ere the effective Hamiltonian is given by

amples shown in Fig. Ip=1, p=2, andp=3 in Figs. 1a), ) 2mne(r)
1(b), and 1c), respectively. fcc(110 surfaces also have BH =—; VnJ d?rco —a +BH[H(r)]. (14
p=2.

At low temperatures the surface will be in a flat phase. . . . . '
Steps that separate domains of flat regions are the basic e;he functional integral in Eq(12) is taken over the field

citations and thermodynamic properties of the surface argansfymg the SBC

described by a general Hamiltoni&fy which consists of the B

step-creation energyHs), the interaction energy between o(r+Lig)=g(r)+miL;, (15)
steps #,), and the surface-tilting energyH), which con-

trols the average slope of the surface. They are given by Whereey(e,) is the unit vector in thd (2) direction. Here we
assume for simplicity that the substrate is a square lattice

whose lattice constants in 1 and 2 directions are the same so

HSZJZ |Zi_ZJ|2- (9 that the stiffness constat= 2BJ is a scalar. We will dis-
. cuss later the more general case where the stiffness constant
Hr=—hy(AZ),L,—hy(AZ),L, (10  is atensor. The sine-GorddB8G) termsVcos(2me/d) ac-
count for the discreteness of heights.
where(i,j) denotes the pair of nearest neighbor sitess The effective Hamiltoniartg is the starting point of our

the step energy, Xz),[(Az),] is the total difference in RG arguments for the universal relation between the Hessian
height across the lattice in tHg2) direction, i.e., the differ- of the free energy and the Gaussian coupling constant. The
ence in height between two sités-(L,,y) andi=(0y) RG theory forHe; with m=0 and in the absence 61, is
[i=(x,L,) andi=(x,0)] of the substrate, and=(h,,h,) is  well established16-18. At high temperatures where the
the surface-tilting field. The explicit form df{, is not im-  surface is rough, all SG terms are irrelevant and hence
portant in the following analysis. Since long-wavelengthV,’'s renormalize to zero anild renormalizes to a fixed-point
fluctuations are dominant in the rough surface, we neglectalue K*. And at low temperatures the leading harmonics
height fluctuations inside the unit cell of the two-dimensionalbecomes relevant and the surface is flat. At the roughening
lattice and introduce a coarse-grained heigt which is the ~ transitionK* takes the universal value af/2. The RG trans-
average height inside the unit cell containing sitemound ~ formation for e in the presence df{, and nonzeran can

the sitej. [The coarse-graining scheme for the(&¢1) sur- be performed similarly in the following way(i) first intro-

L . — : . duce a field variableby(r)= ¢(r) —m-r, which satisfies the
La}c(;e is given in Ref[15].] Then{ z;} takes integer multiples periodic boundary conditionPBO) ¢o(r + L&) = do(r).

The free energy as a function of the surface SlopeThe partition function is then rewritten as a functional inte-

m=(m,,m,) per unit base area is given by gral over the fieldg, as

kBT _ 2 K
= Z=e (V2K|m| L1L2f D exp[ - —f d?r|V ¢g|?
o(m)=— 52 (11) Sod Do] 5 | a7Vl
i iti ionZ=3'— e~ BHs+H) ,
with the partition functionZ E{Zi}e st where the —BH [¢o(r)+m-r]}.
prime denotes the sum over all surface configurations satis-

fying the shifted boundary conditioSBC) (Az_)i=miLi
(i=1,2). m and h are related ah=V,,0(m). Using the
Poisson sum formula

(i) The field ¢ is expended in a Fourier integral as

2

dp ~ .
¢o(r)=fp<A(2—z¢o(p)e'p'r,

S =3 [ Lrgens ™

ne dézZ nezZ J -«

where A is the ultraviolet cutoff, and is separated into two
one can replace the discrete sum oweby an integral over parts ¢o(r) and ¢y(r) such thatgo(r) = ¢o(r) + ¢o(r) and
the continuous fieldp with additional harmonic terms. The ¢{(¢3) has only O<|p|<A’(A’<|p|<A) components of
partition function in the continuum limit is then put in the the Fourier modes. Then the partition function is decom-
form posed as
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isolated to be K*|m|%/(28) from a transformation
d(r)—¢(r)—m-r so that the Hessian af(m) is simply
given by (K*/B)2. Thus from the scale-invariant property in
Eq. (20), the Hessian of the original system is also given by

z:e—<1/2>K\m\2L1L2J [Dgyle (KRIa*T 4l
PBC

K
XJPBC[Dﬁbo]eXP[_EJ d?r|V ¢gl?— BH'[ $o(r) .

Hlo(m)]=

B

In general, the stiffness constant in Efj3) may be a tensor
(iii) A partial integration over the fluctuations @f; is per-  Kap (@,8=1,2). Following the same analysis, one can eas-
formed and the remaining fielg) is transformed back to 1 find that 7" andG in Eq. (19) do not couple tan either

@' (r)=¢g(r)+m-r, which corresponds to the long- and Eq.(21) is replaced by

wavelength fluctuation part ap(r). (iv) The RG transfor- 1 i\ o

mation is completed by rescaling the momenta or the coor- BH* =§f d2r2ﬁ K’;‘B( )( ) (23

(22

+m~r+¢g(r)]].

dinate and the field as X\ IXp
p—bp or r—r/b, whereK?, ; is the fixed-point value oK, ;. The Hessian of
the free energy is also obtained from the scale-invariant
@' ()= L Prenlr/b) (16 property, which yields that
with the scale factob=A/A’. The scale facto¢ for the de(Kj;'ﬁ)
field will be taken to be 1 to describe the Gaussian fixed H[‘T(m)]:—ﬁz : (24)
point for the rough phase. Combining E¢55) and(16), one
can see that,,, satisfies the SBC, The stiffness constant is not a good quantity since it depends
L L on the scale of the field. So it is convenient to use the
i o =il Gaussian coupling constagt which is defined as the cou-
r+ = ry+bm , 1 ¢ - , - L8
¢new( b q) Preal 1) '( b) @7 pling constant of the Gaussian model with the Hamiltonian
which implies that the slope is renormalized to g
BHa=| @IVl 25
m’=bm. (18 ™

where the periodicity of the fiel@ is set to 27 [19]. The
periodicity of the field¢ is az. So it is converted to 2 by
rescalinge =2 ¢/az. After a rotation and rescale of coor-
o(P,m)=b " 20(P",m")+G, (19  dinates, the Hamiltoniaf23) is transformed to the form of
Eq. (25 with the Gaussian coupling constant given by

Under the RG transformation the free energy is trans
formed as

whereP denotes a set of model paramet&®sis the analytic a
background depending oR and possibly orm, and P’ is _ Harw* | 538
the set of the renormalized model parameters. Let us focus g=2m de(K“'ﬁ)<27r
on step(iii) where the partial integration ovep; is per- ) )

formed, which results in the renormalization of model pa-Using Eq.(26) in Eq. (24) andH[f(h)]=1/H[o(m)], one
rameters. However, the difference betweenrthe0 case is obtains_; that the_ Hessian of the free energy is given by the
that the argument of{’ is replaced byg,— (s+m-r), ~ Gaussian coupling constant as

which does not participate in the integral. Thereféreand 2\ 4
the functional form of/{’ renormalize in the same way as at H[f(h)]= <_3)_

m=0, and the renormalized values Bf andG are only a ksT/2mg

function of P independent ofn. As a consequence, one can , ) )

readily see that the Hessian of the free energy is the scald"€ €xact result of the six-vertex model in &) is recov-

2
(26)

2

. (27)

invariant quantity ered sinceaz=2d in that case.
Combining Eqgs(3) and(27), one finally obtains the uni-
H[o(m)]=H[a(m")]. (20) versal relation between the surface curvature of the ECS and
the Gaussian coupling constant in the entire rough phase
After successive applications of the RG transformation -
infinitely many times, the Hamiltonian is renormalized to 2 Ad7(p
k==1—| |, (28)
1
_ 2 2
BH* _Ef drK*|V ¢| (22) wherea;=pd is used. Equation&7) and(28) are the main

results of this paper. For fcc (110) surfaces there are two
with the renormalized stiffness constait provided the sur- equivalent crystal planespé& 2). Insertingp=2 into Egs.
face is in the rough phase. When the Hamiltonian is given by27) and (28), one reproduces the exact results of E@s.
Eq. (21), the slope-dependent part of the free energy is easiland (8).



56 EXTENDED UNIVERSALITY OF THE SURFACE . .. 359

IIl. NUMERICAL STUDIES OF THE RSOS MODEL N,M—c, the free energye(m,,h,) as a function of the

In the previous section, we presented RG arguments fohorlzontal slopem;=Q/N and the vertical surface-tilting

the relation between the Gaussian coupling constant and t 'ee'd h is given by

Hessian of the free energy. It is obtained from the observa- E,. n(N)

tion that the Hessian of the free energy is a scale-invariant e(my,h,) = lim M

quantity. In this section we test the validity of EQ7) in the Now N

RSOS model on a square lattit@enoted byl) by compar-

ing the Gaussian coupling constant obtained from the FS8 is related to the free energf(h) through the Legendre
amplitudes of the transfer matrix spectra and the value obtransform

tained from the Hessian of the free energy, using @@).

The RSOS model describes the surface of sc crystals f(hy="min {e(mq,hy)—h;m,}
viewed from the[001] direction. The Hamiltonian for the —l=m=1
RSOS del with th face-tilting field=(hq,h,) i I
given bymo e e surface-tiiting fielti=(hy,h,) is and equilibrium values ofm; and h; are related by

h1=o7€(m1,h2)/o"m1.
It is well known that for a rough surface with average

HRSOS:KZ 5(|Zi_zj|_1)_h12 (Zive—Z) horizontal slopem; the transfer matrix spectra follow the
(i i ' FSS form
_ — "c
ho2 (Zie,~2), (29 EQ(N)=Ne(m1,h2)—776LN, (30)
wherez; is the integer-valued height variable at siten £, 2" n%gy
K is the step energy(i,j) denotes the pair of nearest- EQtn(N)zEQinhl(ml,hz)JrT - (32)

neighbor sites, ana@; (e,) is the unit vector in thel(2)
direction. The height differences between nearest-neighb
sites are restricted to 0 antd1l. (In this section, length and
energy are measured in units of lattice constant kgif,
respectively. So all quantities are dimensionle$se RSOS
model with h=0 displays a roughening transition at
K=K.~0.633 andg=1/4 at the roughening transitid20].
There is one equivalent crystal plane parallel to (B61)
surface. This means that the RSOS model represents
p=1 case among the general cases discussed in Sec. Il.

Height configurations of the RSOS model can be mappe
to arrow configt_Jrations on bonds of the dual lattice denoted N(NZ—N’2)/ Eq1(N)+Eq_1(N)—2Eq(N)
by Lp . If there is no step across a bonddg , no arrow is  gesdN)= NN’ ; — ;
assigned to the bond. And if there is a step, an arrow is 1NN N'Eq(N)—=NEq/(N")
assigned in such a way that the height at the right-hand side (32
of the arrow is _higher than the othe_r side by 1. Since there 5 the other hand, if the relatiof27) holds, it can be
are no dislocations, the number of inward and outward al'yptained from the relation
rows at each vertex should be equile so-called ice rule
There are nineteen vertex configurations satisfying the ice 1
rule. So the RSOS model is equivalent to the 19-vertex gu(N) = ————
model. The verticalhorizonta) slope corresponds to a net 2w H[f(h)]
imbalance between left-riglitip-down arrows.

A row-to-row transfer matrixt is easily constructed. The as Well, whereH is the Hessian of the free energy in dimen-
partition function on a lattice of siZe X M can be written as  sionless form. The Hessian &fis directly obtained from the
Z=TrT™. If one uses the PBC for the arrow variables in thepartial derivatives of:

N direction, the net numbe® of up arrows in each row of
vertical bonds is the same in all rows due to the ice rule. So €h,.h,

Where Q=mN, c=1 is the central charge for the rough
phase” is the imaginary part of the anisotropy factor, and
g is the Gaussian coupling constd®]. To obtain an esti-
mate forg, one has to know the value ¢f'. It can be ob-
tained from Eq.(30) using the two ground state energies
Eo(N) and Eq/(N’) for two values of strip widthN and
N’ chosen to satisfy the condition®Q=m;N and
(3’:m1N’. Combining Eqs(30) and (31), one can obtain
(tjhe following estimateyes{ N) for g:

(33

the transfer matrix is separated into blocks of the form HEf(h)]=— P—
171
T= EBethTQ’ The partial derivatives are evaluated numerically as
Q
5e
where T, operates on th@th sector, defined by the set of e =N(Eq4+11+Eq-1—2Eq),

arrow configurations with net numbe® of up arrows
(Q=—N,—N+1,... N). The largest eigenvalue &%, will 2 . _
be denoted by\ o= exf{ — Eo(N)] and Eq(N) will be called 7 _[Eqlhz+ ohy)+ Eqhz— o) ~ 2Eq(ha)]
the ground-state energy in the sect@. In the limit ahy N(sh2)
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FIG. 2. The Gaussian coupling constants obtained from two

different methods ain;=h,=0, andK=0.2, 0.4, and 0.6a) and at
m;=1/2,K=0.4, andh,=0.1, 0.15, 0.2, 0.25, and 0(B) are com-
pared. The data are obtained from numerical diagonalizations of the
transfer matrix for strip widttN=4,5,...,10 in(a) and N=6,8,

and 10 in(b). The inset in(a) showsgy andggssatm;=h,=0, and
K=In[(\5+1)/2] where the exact value af is known to be 1/5,

FIG. 3. The Gaussian coupling constagiss(a) andgy (b) are

shown atm;=0.0 andK=1.0>K_ for several values oh,. The
insets show the estimates for the critical valueshgfwhich are

obtained by solvingg=1/2 numerically. The extrapolated values

whose location is indicated by the arrow. They show the convergingor h, are marked by arrows. The lines are guides to the eye
behaviors to the exact value. The lines are guides to eyes. ¢ ' '

matesgy(N) for g. We use the subscripts snto show how

they are obtained.

F|g 2, where a data point represents a pair of Va|ue§l0|d$ in the RSOS model. Furthermore, as can be seen in

Figure Za) shows the
m;=h,=0.0, and K=0.2, 0.4, and 0.6. Form;=0,
grsd N) is obtained from Eq(32) by choosingQ=Q’'=0
and N'=N-1. For eachK, data shown are for the strip
widths N=4,5,...,10 from left to right. A similar plot is
shown in Fig. 2b) for m;=1/2, K=0.4, andh,=0.1, 0.15,
0.2, 0.25, and 0.3. For these casds,in Eq. (32 is chosen
to beN—2 and the strip width are 6, 8, and 10 from left

(9H(N),grsdN)).

the data points approach the ligg=grssdenoted by a bro-
ken line asN increases. The inset in Fig(&) shows the

results for

estimates form;=h,=0.0, andK=In[(5+1)/2], where
where we choosesh,=0.001. This procedure gives esti- the exact value o§ is known to be 1/5 from the self-dual
property of the RSOS mod¢R0]. Both quantities converge
excellently to the exact value. The fact thgt and gegs

Estimates foig obtained in these two ways are shown in converge to the same value implies that the rela(idn

Fig. 2,94 shows better convergence thgys. In addition to
the better convergence property,; provides a more conve-

nient way of estimating than the standard FSS study of the

transfer matrix spectra. To obtain the estimate f6rone

should have two ground-state energies at different strip

widths with the same value of; = Q/N. But it is difficult to
find a set of integer values ™ andQ that gives the same
value ofm;. On the other hand, to obtam,, one needs to
to right. In all cases, they converge to the same values, i.eevaluate the largest eigenvalues for a single valubl.o60

the relation(27) presents an efficient and convenient method

to study the scaling behavior of the rough phase.
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IV. DISCUSSIONS AND SUMMARY facet boundary. In Fig. 3 we presemisd N) andgy(N) for

In this paper, we introduce general models for crystal sur? surface whose horizontal slope is fixed tord, €0) for

faces and derive, using the RG arguments, the reld@@n sevferal values dhﬁ beLovlv the roughelningl tem;}zerﬁture.f‘rhe

P . ’ : rface remains flat below a critical value of the surface-
between the G_aussmn cogpllng constant that determines tlﬁ#ing field h,. Above h; the surface becomes tilted rough.
strength of critical fluctuations of the rough surface and th he critical value ofh, can be accuratelv determined from
Hessian of the free energy. Combined with the theory of thq 2 y

; : he condition thagy=1/2 at the transition. The insets of Figs.
ECS, it relates the surface curvature of the rounded region tg(a) and 3b) show the estimates,(N) for h, obtained from
the Gaussian coupling constant. In particular when applied t y

the phase transition point, it explains the universal curvatur%iectzgdggzgg%f\g;l/”zn ag%ggﬁ;gg?ﬁ)/zégg Si'ﬁggt'f\:ﬁ%'
jump (Ax)gt at the roughening transition. The roughening ping

N . gy have fewer FSS corrections than those frgms. The
transition takes place when the SG term in BB becomes critical value h, at K=1.0 is estimated as 0.300.01

relevant. The RG calculations for that Hamiltonian shows(marked by arrows in the insets of Fig @sing polynomial

4 ; : S i i
'gz)a?; gshgsa?tﬁzarl:)nug ﬂlemsnnSItcr)gn_s irt)i o/rEZ?) [16]’2’“'2‘;2 bSeo fitting in 1/N, which is consistent with a value obtained from
g g , 185 Qer=p/4. an alternative way23].

one obtains the universal curvature jump In summary, we derived the universal relation between
2 \d? p? 2 A2 the Hessian of the free energy and the Gaussian coupling
= (39 constant in the rough phase of general surface model using
RG arguments. It relates the surface curvature at the rounded

As examples, the RSOS modep£1), the BCSOS model region of the ECS to the universal quantity. Especially if it is
(p=2), and 'the triangular-Ising S(,)Iid—on-solidTISOS applied to the phase transition points, it gives a clear under-
model '@:3) [21] have the Gaussian coupling constantsStanding of the universal curvature jumps. The validity of the

g=1/4, 1, and 9/4, respectively, at the roughening transitior€lation is checked in the RSOS model numerically. From

points [20,9,19 and hence in each the universal curvaturethe numerical results, it was found that the values of the
. Hessian have fewer finite-size corrections than the scaling

jump by the same amount. . : ) .
Below the roughening transition, there appears a facet thfﬂlmensmns obtained from the standard FSS theory. So, in

is separated from the rounded regions by the PT transitioR"actical points of view, this fact provides a better way to
line. Near the PT transition systems become extremely arptudy the scaling behaviors of the rough phase and the phase

isotropic[22] and no conventional RG theory has been de-ransitions in crystal surfaces.

veloped for the value off at the transition points. Instead,
the surface near the PT transition is studied using a random
walk or free-fermion mod€]l13], which predicts the univer- We thank M. den Nijs for a critical reading of the manu-
sal curvature jumpX& «)p7 in Eq. (5). Combining it with Eq.  script and comments and M. Y. Choi for discussions. This
(28), one can see that the Gaussian coupling constant showdork was supported by Korea Science and Engineering
be gpr=2gkr at the PT transition points. Using that prop- Foundation through the Center for Theoretical Physics,
erty, the PT transition point can be located accurately. In th&eoul National University, by Ministry of Education Grant
RSOS model case, it is expected that 1/2 at the sd001) BSRI 96-2420 and by SNU Daewoo Research Fund.

(Ar)er=" keTr 4gx; 7 KgTr|
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