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Extended universality of the surface curvature in equilibrium crystal shapes

Jae Dong Noh and Doochul Kim
Department of Physics and Center for Theoretical Physics, Seoul National University, Seoul 151-742, Korea

~Received 19 March 1997!

We investigate the universal property of curvatures in surface models that display a flat phase and a rough
phase whose criticality is described by the Gaussian model. Earlier we derived a relation between the Hessian
of the free energy and the Gaussian coupling constant in the six-vertex model. Here we show its validity in a
general setting using renormalization group arguments. The general validity of the relation is confirmed
numerically in the restricted solid-on-solid model by comparing the Hessian of the free energy and the
Gaussian coupling constant in a transfer matrix finite-size-scaling study. The Hessian relation gives a clear
understanding of the universal curvature jump at roughening transitions and facet edges and also provides an
efficient way of locating the phase boundaries.@S1063-651X~97!12007-4#

PACS number~s!: 05.70.Fh, 68.35.Rh, 82.65.Dp
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I. INTRODUCTION

The theory of equilibrium crystal shapes~ECS! is well
established@1–4#. Consider a macroscopic amount of so
in coexistence with and surrounded by its own fluid pha
The shape of the solid region is obtained by minimizing
total free energy of the solid-fluid interface subject to t
fixed-volume constraint. This leads to the Wulff constructi
for ECS. Especially if one focuses on a particular directi
say thez direction, the crystal surface is defined by t
height z(r ) of the surface with respect to the positio
r5(x,y) in a reference plane. If the surface with slopem
costs a free energys(m) per unit base area, the ECS is give
by @2#

lz~r !5 f ~2lr !, ~1!

where 2l is the pressure difference between the two pha
@1# and f (h) is the Legendre transform ofs(m):

f ~h!5min
$m‰

$s~m!2h•m%. ~2!

Here, h is the surface-tilting field conjugate to the surfa
slope. Equation~1! states that the surface free energy a
function of the surface-tilting field is itself the height of th
surface from the base plane up to appropriate scaling of
ordinates.

Using this connection, the thermal evolution of the eq
librium shape of a face-centered-cubic~fcc! crystal or a
body-centered-cubic~bcc! crystal has been studied throug
the body-centered solid-on-solid~BCSOS! model, which is
equivalent to the six-vertex model@4–6#. The surface slope
and the surface-tilting field in the BCSOS model correspo
to the polarization and the electric field in the six-vert
model, respectively. The six-vertex model displays seve
ordered phases with ferroelectric or antiferroelectric or
and a disordered phase@7,8#. The disordered phase is a crit
cal phase. Its scaling behavior is described by the Gaus
model, and is parametrized by the Gaussian coupling c
stant g or the stiffness constantK @9#. At zero fields a
Kosterlitz-Thouless~KT! type roughening transition take
561063-651X/97/56~1!/355~8!/$10.00
.
e

,

es

a

o-

-

d

al
r

an
n-

place@8#. Below the roughening temperatureTR , the system
is ordered with zero polarization when the field is small b
it becomes rough with nonzero polarization beyond a criti
value of the electric field. This transition is in the Pokrovsk
Talapov ~PT! transition universality class@7,10#. The PT
transition is characterized by the specific heat expon
a51/2 @10#, which implies that the free energy scales
f;uh2hcu3/2.
Equation~1! enables one to identify the ordered and t

disordered phases to facet and rounded regions in ECS
spectively. BelowTR a facet appears surrounded by
rounded vicinal surface. The rounded region in the ECS
rough in the sense that the height-difference correlation fu
tion behaves as

^@z~r !2z~r 8!#2&;
1

2p2g
lnur2r 8u.

The PT transition line corresponds to the facet edge and
crystal profile near the facet edge is given
z;(x'2x'0

)3/2, wherex' is a coordinate perpendicular t

the facet edge andx'0
is the facet-edge position.

A measurable quantity of physical importance is the s
face curvaturek[Azx,xzy,y2zx,y

2, where the subscripts de
note partial derivatives. From Eq.~1!, the surface curvature
is related to the Hessian of the free energy as

k5lAH@ f ~h52lr !#5
l

AH@s~m!#
. ~3!

The Hessian of a functionF(x) is defined by

H@F~x!#5detUFx1 ,x1
Fx1 ,x2

Fx2 ,x1
Fx2 ,x2

U .
The second equality in Eq.~3! follows from the identity
H@ f (h)#H@s(m)#51. It has been predicted@11# and mea-
sured experimentally@12# that the curvature displays a un
versal jump at the roughening transition with discontinuit
355 © 1997 The American Physical Society
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FIG. 1. Shown are the sc crystal on a substrate parallel to the~001! plane~a!, the bcc crystal on a substrate parallel to the~001! plane
~b!, and the sc crystal on a substrate parallel to the~111! plane~c!. The projected lattice points on to the substrates form two-dimensi
lattices and their sublattice structure is shown.
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~Dk!KT5
2

p

ld2

kBTR
, ~4!

whered is the distance between the crystal planes. It is a
expected@13# that, for T,TR , there is universal curvatur
jump at the facet edge with discontinuity

~Dk!PT5
1

p

ld2

kBT
. ~5!

These universal jumps are attributed to the universal na
of the roughening transition and the PT transition. Surfa
fluctuations without surface-tilting field are assumed to
described by the Gaussian model and the universal ju
(Dk)KT is related to the jump of the stiffness constant at
KT transition @11#. On the other hand, fluctuations of th
vicinal surface near the facet edge are described by the
dimensional free fermion model where the world lines
fermions are interpreted as step excitations in the sur
@13#. It explains the universal jump (Dk)PT at the facet edge

In a recent paper@9# on the six-vertex model, an exac
relation has been found between the Hessian of the
vertex model free energy and the Gaussian coupling cons
g in the rough phase. The relation is given
H̄@ f (h)#5(2/pg)2, whereH̄ is the Hessian of the six-verte
model free energy in units ofkBT with respect to the dimen
sionless surface-tilting field. When one restores the dim
sions, this relation becomes

H@ f ~h!#5S 2d2

kBTpgD
2

. ~6!

The Gaussian coupling constant determines the scaling
ponents of various correlations and controls the finite-s
scaling ~FSS! behaviors, i.e., a set of excitation energi
DE of the transfer matrix, defined for a system with strip
width N, satisfies the FSS form

Re~DE!5
2pz9

N Sm2

2g
1
gn2

2
1N1N̄D , ~7!
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where z9 is the imaginary part of the anisotropy facto
(N,N̄) a non-negative set of integers, and (m,n) the level
index, which takes integer values~see@9,14# for details!. If
one combines Eqs.~3! and ~6!, one gets

k5
2ld2

pkBT

1

g
. ~8!

It was found thatg51 at the KT-type roughening transitio
in the fcc (110) surface andg52 at the PT-type facet edge
@9#. If one uses them in Eq.~8!, the universal jumps in Eqs
~4! and ~5! are obtained. Relation~6! or equivalently~8! is
quite general in the sense that it does apply to the en
rough phase as well as at the phase transition points of
six-vertex model. A natural question that arises is whet
such a general relation is universal, in other words, whet
it holds in other model systems too. This paper addresses
question, and the results are affirmative.

In Sec. II we introduce general models for crystal surfac
that display phase transitions between flat and rough pha
and present renormalization group~RG! arguments that the
Hessian of the free energy is the scale-invariant quantity
yields the relation between the Hessian of the free ene
and the Gaussian coupling constant in the rough phase.
result is given in Eq.~27!. Combining it with the theory of
the ECS, we obtain the relation between the surface cu
ture and the Gaussian coupling constant. To check the g
eral theory, we present numerical results for the restric
solid-on-solid~RSOS! model in Sec. III. The Gaussian cou
pling constants, obtained in the FSS study from the tran
matrix spectra, is compared with the value obtained from
Hessian of the free energy. This confirms the validity of t
universal relation. In Sec. IV, we discuss implications of t
results and give a brief summary.

II. RENORMALIZATION GROUP THEORY

Consider a solid-on-solid~SOS! type model for a two-
dimensional crystal surface, where the surface is defined
heightzi at each sitei on a substrate of sizeL13L2 parallel
to one of its crystal planes. The sites consist of projection
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56 357EXTENDED UNIVERSALITY OF THE SURFACE . . .
all lattice points on the substrate and form a two-dimensio
lattice. Figure 1 shows three examples of such substrate
sc ~001!, bcc ~001!, and sc~111! surfaces, respectively. In
SOS type model the height is a single-valued function; th
are no overhangs. The height at a given site can change b
integer multiple of the lattice constanta3 in the z direction.
Due to the crystal structure there may bep distinct classes of
crystal planes parallel to the substrate, with interplane sp
ing d5a3 /p. In that case substrate sites are separated
p sublattices andzi takes the values (l id1 integer3a3) if the
site i belongs to thel i th sublattice (l i51,2, . . . ,p). For ex-
amples shown in Fig. 1,p51, p52, andp53 in Figs. 1~a!,
1~b!, and 1~c!, respectively. fcc~110! surfaces also have
p52.

At low temperatures the surface will be in a flat pha
Steps that separate domains of flat regions are the basi
citations and thermodynamic properties of the surface
described by a general HamiltonianH, which consists of the
step-creation energy (HS), the interaction energy betwee
steps (HI), and the surface-tilting energy (HT), which con-
trols the average slope of the surface. They are given by

HS5J(
^ i , j &

uzi2zj u2, ~9!

HT52h1~Dz!1L22h2~Dz!2L1 , ~10!

where ^ i , j & denotes the pair of nearest neighbor sites,J is
the step energy, (Dz)1@(Dz)2# is the total difference in
height across the lattice in the1(2) direction, i.e., the differ-
ence in height between two sitesi5(L1 ,y) and i5(0,y)
@i5(x,L2) and i5(x,0)# of the substrate, andh5(h1 ,h2) is
the surface-tilting field. The explicit form ofHI is not im-
portant in the following analysis. Since long-waveleng
fluctuations are dominant in the rough surface, we neg
height fluctuations inside the unit cell of the two-dimension
lattice and introduce a coarse-grained heightz̄ j , which is the
average height inside the unit cell containing sitesi around
the sitej . @The coarse-graining scheme for the sc~111! sur-
face is given in Ref.@15#.# Then$ z̄ j% takes integer multiples
of d.

The free energy as a function of the surface slo
m5(m1 ,m2) per unit base area is given by

s~m!52
kBT

~L1L2!
lnZ ~11!

with the partition functionZ5(
$ z̄ i %
8 e2b(HS1HI), where the

prime denotes the sum over all surface configurations s
fying the shifted boundary condition~SBC! (D z̄ ) i5miLi
( i51,2). m and h are related ash5¹ms(m). Using the
Poisson sum formula

(
nPdZ

F~n!5 (
nPZ

E
2`

` df

d
F~f!e2p inf/d,

one can replace the discrete sum overz̄ by an integral over
the continuous fieldf with additional harmonic terms. Th
partition function in the continuum limit is then put in th
form
al
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Z5E
SBC

@Df#e2bHeff[f~r …‡, ~12!

where the effective Hamiltonian is given by

bHeff5
K

2E d2r u¹fu21bH8 ~13!

with

bH852(
n

VnE d2rcosS 2pnf~r !

d D1bHI@f~r !#. ~14!

The functional integral in Eq.~12! is taken over the field
satisfying the SBC

f~r1Liei !5f~r !1miLi , ~15!

wheree1(e2) is the unit vector in the1(2) direction. Here we
assume for simplicity that the substrate is a square lat
whose lattice constants in 1 and 2 directions are the sam
that the stiffness constantK52bJ is a scalar. We will dis-
cuss later the more general case where the stiffness con
is a tensor. The sine-Gordon~SG! termsVncos(2pnf/d) ac-
count for the discreteness of heights.

The effective HamiltonianHeff is the starting point of our
RG arguments for the universal relation between the Hes
of the free energy and the Gaussian coupling constant.
RG theory forHeff with m50 and in the absence ofHI is
well established@16–18#. At high temperatures where th
surface is rough, all SG terms are irrelevant and he
Vn’s renormalize to zero andK renormalizes to a fixed-poin
value K* . And at low temperatures the leading harmon
becomes relevant and the surface is flat. At the roughen
transitionK* takes the universal value ofp/2. The RG trans-
formation forHeff in the presence ofHI and nonzerom can
be performed similarly in the following way:~i! first intro-
duce a field variablef0(r )[f(r )2m•r , which satisfies the
periodic boundary condition~PBC! f0(r1Liei)5f0(r ).
The partition function is then rewritten as a functional int
gral over the fieldf0 as

Z5e2~1/2!Kumu2L1L2E
PBC

@Df0#expH 2
K

2E d2r u¹f0u2

2bH8@f0~r!1m•r #J .
~ii ! The fieldf0 is expended in a Fourier integral as

f0~r !5E
upu,L

d2p

~2p!2
f̃0~p!eip•r,

whereL is the ultraviolet cutoff, and is separated into tw
partsf08(r ) andf09(r ) such thatf0(r )5f08(r )1f09(r ) and
f08(f09) has only 0,upu,L8(L8,upu,L) components of
the Fourier modes. Then the partition function is deco
posed as
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358 56JAE DONG NOH AND DOOCHUL KIM
Z5e2~1/2!Kumu2L1L2E
PBC

@Df08#e2~K/2!*d2r u¹f08u2

3E
PBC

@Df09#expH 2
K

2E d2r u¹f09u
22bH8@f08~r !

1m•r1f09~r !#J .
~iii ! A partial integration over the fluctuations off09 is per-
formed and the remaining fieldf08 is transformed back to
f8(r )[f08(r )1m•r , which corresponds to the long
wavelength fluctuation part off(r ). ~iv! The RG transfor-
mation is completed by rescaling the momenta or the co
dinate and the field as

p→bp or r→r /b,

f8~r !→zfnew~r /b! ~16!

with the scale factorb5L/L8. The scale factorz for the
field will be taken to be 1 to describe the Gaussian fix
point for the rough phase. Combining Eqs.~15! and~16!, one
can see thatfnew satisfies the SBC,

fnewS r1 Li
b
ei D5fnew~r !1bmi S Lib D , ~17!

which implies that the slope is renormalized to

m85bm. ~18!

Under the RG transformation the free energy is tra
formed as

s~P,m!5b22s~P8,m8!1G, ~19!

whereP denotes a set of model parameters,G is the analytic
background depending onP and possibly onm, andP8 is
the set of the renormalized model parameters. Let us fo
on step~iii ! where the partial integration overf09 is per-
formed, which results in the renormalization of model p
rameters. However, the difference between them50 case is
that the argument ofH8 is replaced byf08→(f081m•r ),
which does not participate in the integral. ThereforeK and
the functional form ofH8 renormalize in the same way as
m50, and the renormalized values ofP8 andG are only a
function ofP independent ofm. As a consequence, one ca
readily see that the Hessian of the free energy is the sc
invariant quantity

H@s~m!#5H@s~m8!#. ~20!

After successive applications of the RG transformat
infinitely many times, the Hamiltonian is renormalized to

bH*5
1

2E d2rK* u¹fu2 ~21!

with the renormalized stiffness constantK* provided the sur-
face is in the rough phase. When the Hamiltonian is given
Eq. ~21!, the slope-dependent part of the free energy is ea
r-
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isolated to be K* umu2/(2b) from a transformation
f(r )→f(r )2m•r so that the Hessian ofs(m) is simply
given by (K* /b)2. Thus from the scale-invariant property i
Eq. ~20!, the Hessian of the original system is also given

H@s~m!#5SK*b D 2. ~22!

In general, the stiffness constant in Eq.~13! may be a tensor
Ka,b (a,b51,2). Following the same analysis, one can e
ily find thatP8 andG in Eq. ~19! do not couple tom either
and Eq.~21! is replaced by

bH*5
1

2E d2r(
a,b

Ka,b* S ]f

]xa
D S ]f

]xb
D , ~23!

whereKa,b* is the fixed-point value ofKa,b . The Hessian of
the free energy is also obtained from the scale-invari
property, which yields that

H@s~m!#5
det~Ka,b* !

b2 . ~24!

The stiffness constant is not a good quantity since it depe
on the scale of the fieldf. So it is convenient to use th
Gaussian coupling constantg, which is defined as the cou
pling constant of the Gaussian model with the Hamiltonia

bHG5
g

4pE d2r u¹wu2, ~25!

where the periodicity of the fieldw is set to 2p @19#. The
periodicity of the fieldf is a3. So it is converted to 2p by
rescalingw52pf/a3. After a rotation and rescale of coor
dinates, the Hamiltonian~23! is transformed to the form o
Eq. ~25! with the Gaussian coupling constant given by

g52pAdet~Ka,b* !S a32p D 2. ~26!

Using Eq.~26! in Eq. ~24! andH@ f (h)#51/H@s(m)#, one
obtains that the Hessian of the free energy is given by
Gaussian coupling constant as

H@ f ~h!#5F S a3
2

kBT
D 1

2pgG
2

. ~27!

The exact result of the six-vertex model in Eq.~6! is recov-
ered sincea352d in that case.

Combining Eqs.~3! and~27!, one finally obtains the uni-
versal relation between the surface curvature of the ECS
the Gaussian coupling constant in the entire rough phas

k5
2

p

ld2

kBT
S p24gD , ~28!

wherea35pd is used. Equations~27! and~28! are the main
results of this paper. For fcc (110) surfaces there are
equivalent crystal planes (p52). Insertingp52 into Eqs.
~27! and ~28!, one reproduces the exact results of Eqs.~6!
and ~8!.
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III. NUMERICAL STUDIES OF THE RSOS MODEL

In the previous section, we presented RG arguments
the relation between the Gaussian coupling constant and
Hessian of the free energy. It is obtained from the obser
tion that the Hessian of the free energy is a scale-invar
quantity. In this section we test the validity of Eq.~27! in the
RSOS model on a square lattice~denoted byL) by compar-
ing the Gaussian coupling constant obtained from the F
amplitudes of the transfer matrix spectra and the value
tained from the Hessian of the free energy, using Eq.~27!.

The RSOS model describes the surface of sc crys
viewed from the@001# direction. The Hamiltonian for the
RSOS model with the surface-tilting fieldh5(h1 ,h2) is
given by

HRSOS5K(
^ i , j &

d~ uzi2zj u21!2h1(
i

~zi1e1
2zi !

2h2(
i

~zi1e2
2zi !, ~29!

wherezi is the integer-valued height variable at sitei in L,
K is the step energy,̂ i , j & denotes the pair of neares
neighbor sites, ande1 (e2) is the unit vector in the1(2)
direction. The height differences between nearest-neigh
sites are restricted to 0 and61. ~In this section, length and
energy are measured in units of lattice constant andkBT,
respectively. So all quantities are dimensionless.! The RSOS
model with h50 displays a roughening transition
K5Kc;0.633 andg51/4 at the roughening transition@20#.
There is one equivalent crystal plane parallel to the~001!
surface. This means that the RSOS model represen
p51 case among the general cases discussed in Sec. I

Height configurations of the RSOS model can be map
to arrow configurations on bonds of the dual lattice deno
by LD . If there is no step across a bond inLD , no arrow is
assigned to the bond. And if there is a step, an arrow
assigned in such a way that the height at the right-hand
of the arrow is higher than the other side by 1. Since th
are no dislocations, the number of inward and outward
rows at each vertex should be equal~the so-called ice rule!.
There are nineteen vertex configurations satisfying the
rule. So the RSOS model is equivalent to the 19-ver
model. The vertical~horizontal! slope corresponds to a ne
imbalance between left-right~up-down! arrows.

A row-to-row transfer matrixT is easily constructed. The
partition function on a lattice of sizeN3M can be written as
Z5TrTM. If one uses the PBC for the arrow variables in t
N direction, the net numberQ of up arrows in each row o
vertical bonds is the same in all rows due to the ice rule.
the transfer matrix is separated into blocks of the form

T5 %

Q
eh1QTQ ,

whereTQ operates on theQth sector, defined by the set o
arrow configurations with net numberQ of up arrows
(Q52N,2N11, . . . ,N). The largest eigenvalue ofTQ will
be denoted byLQ5exp@2EQ(N)# andEQ(N) will be called
the ground-state energy in the sectorQ. In the limit
or
he
a-
nt

S
b-

ls

or

a

d
d
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e
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e
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N,M→`, the free energye(m1 ,h2) as a function of the
horizontal slopem15Q/N and the vertical surface-tilting
field h2 is given by

e~m1 ,h2!5 lim
N→`

Em1N
~N!

N
.

It is related to the free energyf (h) through the Legendre
transform

f ~h!5 min
21<m1<1

$e~m1 ,h2!2h1m1%

and equilibrium values ofm1 and h1 are related by
h15]e(m1 ,h2)/]m1.

It is well known that for a rough surface with averag
horizontal slopem1 the transfer matrix spectra follow th
FSS form

EQ~N!5Ne~m1 ,h2!2
pz9c

6N
, ~30!

EQ6n~N!5EQ6nh1~m1 ,h2!1
2pz9

N

n2g

2
, ~31!

whereQ5m1N, c51 is the central charge for the roug
phase,z9 is the imaginary part of the anisotropy factor, an
g is the Gaussian coupling constant@9#. To obtain an esti-
mate forg, one has to know the value ofz9. It can be ob-
tained from Eq.~30! using the two ground state energie
EQ(N) and EQ8(N8) for two values of strip widthN and
N8 chosen to satisfy the conditionsQ5m1N and
Q85m1N8. Combining Eqs.~30! and ~31!, one can obtain
the following estimategFSS(N) for g:

gFSS~N!5
N~N22N82!

12NN8 SEQ11~N!1EQ21~N!22EQ~N!

N8EQ~N!2NEQ8~N8! D .
~32!

On the other hand, if the relation~27! holds, it can be
obtained from the relation

gH~N!5
1

2pAH@ f ~h!#
~33!

as well, whereH is the Hessian of the free energy in dime
sionless form. The Hessian off is directly obtained from the
partial derivatives ofe:

H@ f ~h!#52
eh2 ,h2
em1 ,m1

.

The partial derivatives are evaluated numerically as

]2e

]m1
2 5N~EQ111EQ2122EQ!,

]2e

]h2
2 5

@EQ~h21dh2!1EQ~h22dh2!22EQ~h2!#

N~dh2!
2 ,
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360 56JAE DONG NOH AND DOOCHUL KIM
where we choosedh250.001. This procedure gives est
matesgH(N) for g. We use the subscripts ing to show how
they are obtained.

Estimates forg obtained in these two ways are shown
Fig. 2, where a data point represents a pair of val
„gH(N),gFSS(N)…. Figure 2~a! shows the results fo
m15h250.0, and K50.2, 0.4, and 0.6. Form150,
gFSS(N) is obtained from Eq.~32! by choosingQ5Q850
and N85N21. For eachK, data shown are for the stri
widths N54,5, . . . ,10 from left to right. A similar plot is
shown in Fig. 2~b! for m151/2, K50.4, andh250.1, 0.15,
0.2, 0.25, and 0.3. For these cases,N8 in Eq. ~32! is chosen
to beN22 and the strip widthsN are 6, 8, and 10 from lef
to right. In all cases, they converge to the same values,
the data points approach the linegH5gFSSdenoted by a bro-
ken line asN increases. The inset in Fig. 2~a! shows the

FIG. 2. The Gaussian coupling constants obtained from
different methods atm15h250, andK50.2, 0.4, and 0.6~a! and at
m151/2,K50.4, andh250.1, 0.15, 0.2, 0.25, and 0.3~b! are com-
pared. The data are obtained from numerical diagonalizations o
transfer matrix for strip widthN54,5, . . . ,10 in ~a! andN56,8,
and 10 in~b!. The inset in~a! showsgH andgFSSatm15h250, and
K5 ln@(A511)/2# where the exact value ofg is known to be 1/5,
whose location is indicated by the arrow. They show the converg
behaviors to the exact value. The lines are guides to eyes.
s

.,

estimates form15h250.0, andK5 ln@(A511)/2#, where
the exact value ofg is known to be 1/5 from the self-dua
property of the RSOS model@20#. Both quantities converge
excellently to the exact value. The fact thatgH and gFSS
converge to the same value implies that the relation~27!
holds in the RSOS model. Furthermore, as can be see
Fig. 2,gH shows better convergence thangFSS. In addition to
the better convergence property,gH provides a more conve
nient way of estimatingg than the standard FSS study of th
transfer matrix spectra. To obtain the estimate forz9 one
should have two ground-state energies at different s
widths with the same value ofm15Q/N. But it is difficult to
find a set of integer values ofN andQ that gives the same
value ofm1. On the other hand, to obtaingH , one needs to
evaluate the largest eigenvalues for a single value ofN. So
the relation~27! presents an efficient and convenient meth
to study the scaling behavior of the rough phase.

o

he

g

FIG. 3. The Gaussian coupling constantsgFSS~a! andgH ~b! are
shown atm150.0 andK51.0.Kc for several values ofh2. The
insets show the estimates for the critical values ofh2 which are
obtained by solvingg51/2 numerically. The extrapolated value
for hc are marked by arrows. The lines are guides to the eye.
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IV. DISCUSSIONS AND SUMMARY

In this paper, we introduce general models for crystal s
faces and derive, using the RG arguments, the relation~27!
between the Gaussian coupling constant that determine
strength of critical fluctuations of the rough surface and
Hessian of the free energy. Combined with the theory of
ECS, it relates the surface curvature of the rounded regio
the Gaussian coupling constant. In particular when applie
the phase transition point, it explains the universal curvat
jump (Dk)KT at the roughening transition. The rougheni
transition takes place when the SG term in Eq.~13! becomes
relevant. The RG calculations for that Hamiltonian sho
that it has a scaling dimensionxp5p2/(2g) @16#, which be-
comes 2 at the roughening transition, i.e.,g5gKT[p2/4. So
one obtains the universal curvature jump

~Dk!KT5
2

p

ld2

kBTR

p2

4gKT
5
2

p

ld2

kBTR
. ~34!

As examples, the RSOS model (p51), the BCSOS mode
(p52), and the triangular-Ising solid-on-solid~TISOS!
model (p53) @21# have the Gaussian coupling constan
g51/4, 1, and 9/4, respectively, at the roughening transit
points @20,9,15# and hence in each the universal curvatu
jump by the same amount.

Below the roughening transition, there appears a facet
is separated from the rounded regions by the PT transi
line. Near the PT transition systems become extremely
isotropic @22# and no conventional RG theory has been d
veloped for the value ofg at the transition points. Instead
the surface near the PT transition is studied using a ran
walk or free-fermion model@13#, which predicts the univer-
sal curvature jump (Dk)PT in Eq. ~5!. Combining it with Eq.
~28!, one can see that the Gaussian coupling constant sh
be gPT52gKT at the PT transition points. Using that pro
erty, the PT transition point can be located accurately. In
RSOS model case, it is expected thatg51/2 at the sc~001!
.

.
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the
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facet boundary. In Fig. 3 we presentgFSS(N) andgH(N) for
a surface whose horizontal slope is fixed to 0 (m150) for
several values ofh2 below the roughening temperature. Th
surface remains flat below a critical value of the surfa
tilting field hc . Abovehc the surface becomes tilted roug
The critical value ofh2 can be accurately determined fro
the condition thatg51/2 at the transition. The insets of Fig
3~a! and 3~b! show the estimateshc(N) for hc obtained from
the conditiongFSS(N)51/2 andgH(N)51/2, respectively.
Like the Gaussian coupling constant,hc(N) obtained from
gH have fewer FSS corrections than those fromgFSS. The
critical value hc at K51.0 is estimated as 0.3060.01
~marked by arrows in the insets of Fig. 3! using polynomial
fitting in 1/N, which is consistent with a value obtained fro
an alternative way@23#.

In summary, we derived the universal relation betwe
the Hessian of the free energy and the Gaussian coup
constant in the rough phase of general surface model u
RG arguments. It relates the surface curvature at the roun
region of the ECS to the universal quantity. Especially if it
applied to the phase transition points, it gives a clear und
standing of the universal curvature jumps. The validity of t
relation is checked in the RSOS model numerically. Fro
the numerical results, it was found that the values of
Hessian have fewer finite-size corrections than the sca
dimensions obtained from the standard FSS theory. So
practical points of view, this fact provides a better way
study the scaling behaviors of the rough phase and the p
transitions in crystal surfaces.
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