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Localization of two interacting particles in a one-dimensional random potential
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~Received 9 May 1997!

We investigate the localization of two interacting particles in a one-dimensional random potential. Our
definition of the two-particle localization length,j, is the same as that of von Oppenet al. @Phys. Rev. Lett.76,
491 ~1996!#. j’s for chains of finite lengths are calculated numerically using the recursive Green’s function
method for several values of the strength of the disorder,W, and the strength of interaction,U. WhenU50,
j approaches a value larger than half the single-particle localization length as the system size tends to infinity
and behaves asj;W2n0 for smallW with n052.160.1. WhenUÞ0, we use the finite size scaling ansatz and
find the relationj;W2n with n52.960.2. Moreover, data show the scaling behaviorj;W2n0g(buUu/WD)
with D54.060.5. @S0163-1829~97!07543-7#
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Recently, there has been intensive attention1–10 focused
on the problem of the localization of two interacting particl
in a one-dimensional~1D! random potential. With a few as
sumptions on the statistical nature of single-particle locali
states, Shepelyansky1 has mapped the problem approx
mately to a random band matrix model and obtained an
pression for the two-particle localization length,j, as

j.U2
j1

2

32
, ~1!

where U is the on-site interaction in unit of the hoppin
energy between nearest neighbor pair sites, andj1 the single-
particle localization length. This expression is surprising
cause it implies thatj can exceedj1 at sufficiently small
disorder, i.e., sufficiently largej1 . Later Imry2 has provided
a support for Eq.~1! by invoking the Thouless scaling argu
ment. However, the methods employed in Refs. 1 and 2
partly approximate and the strict validity of the expression
Eq. ~1! is questionable as discussed in, e.g., Refs. 3–8
10.

Many authors3–6 have tried to find more refined expre
sions than Eq.~1! by improving the assumptions of Shep
lyansky. However, at this stage, there exist controversies
as to the quantitative expression forj like Eq. ~1!. Frahm
et al.3 obtained the relationj;j1

1.65 by the transfer matrix
method while an approximate calculation of Green funct
by von Oppen et al.5 leads to the hypothesi
j5j1/21cuUuj1

2, wherec is a constant depending on th
statistics of the particles. With the assumption that the le
statistics of two interacting particles is described by a Gau
ian matrix ensemble, Weinmann and Pichard6 argued thatj
increases initially asuUu before eventually behaving asU2.
Moreover, very recently, Ro¨mer and Schreiber have claime
the disappearance of the enhancement as the system
grows ~see Refs. 7 and 8!.

Some of these discrepancies, especially between num
cal studies, are due to different definitions for two-partic
localization length between authors and also to lack of ca
ful analysis of the finite size effect of the system size. T
system under study is a ‘‘quantum mechanical two-bo
problem’’ in a sense. Motion of the two particles can
560163-1829/97/56~19!/12217~4!/$10.00
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decomposed into the motion of the center of mass~CM! and
that of the relative coordinate. We are interested in the C
motion since the wave function describing the relative m
tion would not be different from that arising from the singl
particle localization problem in the thermodynamic limit
the interaction is short ranged. Therefore, in this paper,
use the same definition forj as introduced by von Oppe
et al.5 for the measure for localization length of the CM:

1

j
52 lim

un2mu→`

1

un2mu
lnz^n,nuGum,m& z. ~2!

Here,G is the Green function andu i , j & is a two-particle state
in which the particle 1~2! is localized at a sitei ( j ). The
above definition is reasonable for a description of the C
motion as long asU is smaller than or of the order of th
hopping energy between sites.5 In practice, we calculatejN
defined below in Eq.~4! for chains of finite lengthswithout
any approximationfor several values ofW andU. We then
estimatej by extrapolatingjN using the finite size scaling
ansatz. WhenU50, we find j;W2n0 with n052.160.1.
Data for UÞ0 lead to the relation j;W2n, with
n52.960.2. Also the data lead us to propose a scaling fo
j;W2n0g(buUu/WD), whereg(y) is a scaling function with
the propertyg(y→0)5const andg(y→`);y(n2n0)/D. D is
given as 4.060.5.

We work within the tight-binding equation given by

cm11,n1cm21,n1cm,n111cm,n21

5~E2em2en2Udm,n!cm,n , ~3!

wherec i , j5^ i , j uc&, E is the energy of the two particles, an
dm,n the Kronecker delta.m and n are the site indices of a
chain of lengthN and range from 1 toN, em is the random
site energy chosen from a box distribution with interv
@2W/2,W/2# ~Ref. 11!, and the hard wall boundary cond
tion, i.e., c0,n50 and so on, is used. As was previous
noted,3,7 if one interprets (m,n) as Cartesian coordinates of
square lattice of sizeN3N, the Hamiltonian describes
single particle in a two-dimensional random potential. In E
12 217 © 1997 The American Physical Society
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~2!, the thermodynamic limit is first taken and then the lim
un2mu→`. To estimate this quantity, we define a sequen
jN as

1

jN
52 K K 1

N21
lnz^1,1uGNuN,N& zL L , ~4!

whereGN represents the Green function for a chain of len
N and the double brackets represent the configurational
erage. To be specific, calculation ofGN amounts to evalua
tion of the inverse of the matrix, (E2H), the size of which
is N23N2. One can calculate several elements ofGN , i.e.,
the elements involving the sites of two opposite edges of
square lattice, very efficiently using the recursive algorith
of MacKinnon and Kramer.12 We assume thatjN approaches
j asN→`.

The on-site interaction of the Hamiltonian given by E
~3! is relevant only to the spatially symmetric states, wh
would be realized, say, for a pair of electrons with total s
zero. One can easily see that the contributions to Eq.~2! are
only from the spatially symmetric states from the followin
consideration. The Green’s function represents the trans
amplitude from an initial state to a final state and since
Hamiltonian, Eq.~3!, is invariant under the exchange oper
tion of two particles, the parity of the wave function is co
served during the time evolution. Since the initial state of E
~2! is a doubly occupied state, i.e., a spatially symme
state, we are treating only the contributions from symme
states.

Numerical calculations ofjN for various values ofW, U,
andN are performed forE50 without approximation.N is
varied within the range 10<N<200 and for a given param
eter set, the configurational average is performed over s
ciently many different realizations to control the uncerta
ties of jN within 1%.

We first examine the case ofU50, i.e., the noninteracting
two particles. In this case, when the total energy of the s
tem is fixed toE, the two-particle wave function is a supe
position of the products of two single-particle states of e
ergy E8 andE2E8, and the Green function is given by th
convolution of two single-particle Green functions as

^ i ,i uG~E!u j , j &;E dE8^ i uG0~E8!u j &^ i uG0~E2E8!u j &.

~5!

It is a nontrivial problem to calculatej(U50) since there
exist contributions from various energies. Some author4,5

have assumed the relationj(U50)5j1/2, i.e., half the
single-particle localization length, which should be, ho
ever, seriously examined. Our numerical data presente
Fig. 1 show that the assumption is not strictly valid. T
filled symbols on theN5` axis representj1/2 calculated
from the expressionj1.105/W2,13 while the empty symbols
are our numerical results forjN . Taking into account the fac
that the uncertainty of each data point is smaller than
symbol size,jN does not seem to extrapolate toj1/2 asN
tends to infinity. Moreover, the discrepancy between the
quantities becomes larger asW gets smaller. Therefore, w
conclude that within the definition of Eq.~2!, the single-
particle localization length is not an adequate parameter,
is qualitatively, for a quantitative description of two-partic
e

h
v-

e

.

n

n
e
-

.
c
c

fi-
-

s-

-

-
in

e

o

it

localization problem. From the data ofN5200, we get
j(U50).70/Wn0 with n052.160.1.

Next, we discuss the case ofUÞ0. Figure 2~a! shows the
results forU51.0 andW ranging from 0.5 to 10.0. They
axis label represents the renormalized localization leng
i.e., jN divided by the system size. For larger values ofW
and N, jN /N behaves as;1/N, which implies the conver-
gence ofjN’s to their constant limiting values. This mean
that the conditionN@j is well satisfied for these data. How
ever, for smaller values ofW, i.e., forW ranging from 0.5 to
1.5, it is not easy to deduce the value ofj sincejN’s increase
steadily within the range of theN presented. Therefore w
rely on the scaling idea,12 which states thatjN /N is given by
a function of a single parameter, i.e.,N/j:

jN /N5 f ~N/j!. ~6!

The implication of Eq.~6! is that on a log-log plot all data
points of Fig. 2~a! fall on a single curve when translated b
ln j(W) along thex axis. As a result,j(W)’s can be obtained
as fitting parameters. The result of data collapsing is sho
in Fig. 2~b! for the data setN>50. j(W55.0) has been
obtained to be 2.8760.01 by fitting the data set forW55.0
andN>50 to the formulajN5j2A/N,14 whereA is a con-
stant. Other remaining values ofj(W)’s are obtained by ex-
amining the amount of relative translations with respect
the data set ofW55.0. The scaling plot is quite good an
one can see that the scaling functionf (x) behaves as

f ~x!;H 1/Ax if x!1,

1/x if x@1.
~7!

As was previously mentioned, the asymptotic behavior
x@1 represents the convergence ofjN’s to j. On the other
hand, the behavior forx!1 is very interesting since the sam
asymptotic behavior has been found for noninteracting d
ordered 1D systems.13 For the noninteracting case, the res

FIG. 1. jN ~open symbols! as a function of 1/N for U50 and
j1/2 ~filled symbols! calculated from the expressionj1.105/W2:
W51.0 ~box!, 1.5 ~circle!, 2.0 ~uptriangle!, 3.0 ~downtriangle!, 4.0
~diamond!, and 5.0~pentagon!, from top to bottom. The uncertainty
of each data point is less than the symbol size.
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tance rN
0 of a chain of lengthN is related to the single

particle localization lengthjN
0 as13

rN
0 5@cosh~2N/jN

0 !21#/2. ~8!

For N/jN
0 !1, the right hand side of Eq.~8! reduces to

;(N/jN
0 )2;N/j1 . Therefore for the noninteracting case, t

asymptotic behavior forN!j1 represents the metallic be
havior of the resistance, i.e., the linear increase of the re
tance as the chain length in the metallic regime. Though
explicit expression like Eq.~8! is present for the system un
der study in this paper, we believe that the same asymp
behavior for the two cases found here is a strong indica
that the definition in Eq.~2! is a physically reasonable one

The j’s thus obtained as a function ofW are plotted in
Fig. 2~c!.15 For 0.5<W<5.0 they are reasonably well fitte
to the form of;W2n, wheren is given by 2.960.1. Within

FIG. 2. ~a! jN /N as a function ofN for U51.0. ~b! Scaling plot
constructed from the data of~a! for N>50. j(W)’s are obtained as
fitting parameters by this procedure.~c! j as a function ofW. The
data forW<5.0 fit well to a straight line of;W22.9 as shown.
is-
o

tic
n

the error, this value forn is different fromn052.160.1, i.e.,
the critical exponent forU50, and from 4.0, which is the
value expected by Eq.~1!.

Further calculations and similar scaling analyses h
been performed for other values ofU, i.e., 0.2, 0.5, 0.7, and
1.5 up to system sizeN5200. It is difficult to determinej
for W,1.5 andU,1.0 since the corresponding data ofjN’s
do not show scaling behaviors due to the fact that sufficien
large system sizes have not been reached for these pa
eters. The resultingj’s ~for 1.5<W<5.0 if U,1.0 and for
0.7<W<5.0 if U.1.0! give n52.7, 3.0, 2.9, and 3.1 for
U50.2, 0.5, 0.7, and 1.5, respectively. Since we do not
pect thatn depends onU, we interpret the variation of the
values forn as resulting from numerical uncertainties. Ther
fore our final result for the critical exponent ofj is 2.960.2.

Our result forn implies that introduction of nonzeroU
changes the critical behavior ofj and, in analogy with ther-
mal critical phenomena, the pointW5U50 may be re-
garded as a multicritical point and the lineW50 as a critical
line in the W2U plane. Then, one may assume a scal
form for j as follows:

j5W2n0g~buUu/WD!, ~9!

where g(y) is a scaling function,D a crossover exponent
and b a constant. Here, we used the fact that Eq.~3! is
symmetric forE50 so thatj depends only on the absolut
value of U. The scaling function should satisf
g(y→0)5const andg(y→`);y(n2n0)/D for consistency.
We obtain reasonably good scaling plots within the ran
D54.060.5. The scaling plot forD54.0 is shown in Fig. 3,
wherejW2.1 is plotted againstU/W4 for various values ofW
andU. Although the data forW,1.5 may appear to deviat
from the scaling curve, taking into account rather large n
merical uncertainties of these data, one can expect that
are consistent with the scaling behavior of other data poi
We expect that the crossover between the two asympt

FIG. 3. The scaling plot ofjWn0 versusU/WD with n052.1 and
D54.0. The typical uncertainty of data forW,1.5 (W>1.5) is
shown for the rightmost~leftmost! data point. The straight line is
;x0.23.
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12 220 56P. H. SONG AND DOOCHUL KIM
behaviors occurs aty;1 so that the constantb is estimated
to be of the order of 100 from Fig. 3. Data within the ran
0.01,U/WD,1.0 (1,y,100) approximately obey the
form .y0.23, which is shown as a straight line. Since w
expect the asymptotic behavior;y(n2n0)/D for this regime,
we obtain (n2n0)/D.0.23, i.e.,n.3.0, which is in good
agreement with our previous estimate, i.e.,n52.960.2. At
this stage, we have not found a physical mechanism reg
ing the scaling parameter,U/WD with D54.060.5.
The quantity j(U)2j(U50) might be also of interest
Our data show that this is consistent with a for
j(U)2j(U50);W22.1(U/W4)1/2 in the region
bU/WD,1.0. This behavior shows that the first correction
g(y) for y!1 is given as;y1/2. On the other hand, ou
result confirms the enhancement of localization lengths
to the interaction. The arrow of Fig. 3 represents the value
jWn0 for U50, so that it is clearly seen thatj monotonically
increases with respect toU.

Finally, we point out differences between our work a
some of those previously reported. References 3 and 7
with exactly the same system as ours but use a diffe
definition for the two-particle localization length. As me
tioned before, the problem can be considered as that
noninteracting single particle in a two-dimensional potent
These authors study the evolution of a state along one of
,
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edges of the square lattice. However, in this paper, we
concerned with the ‘‘pair propagation,’’ more generally, t
propagation of the CM of the two particles. The definitio
for j given by Eqs.~2! and ~4! describes the propagatio
along one of the diagonals of the square lattice, instead
that along the edge. Our definition ofj is exactly the same a
that of von Oppenet al.5 However it should be noted that i
their work, calculation ofj involves an approximation; the
approximation scheme used in Ref. 5 fails for small values
U while our results are valid for all values ofU.

In summary, we have investigated numerically the loc
ization of two interacting particles in 1D random potent
using the definition introduced previously for the tw
particle localization length. While we find the enhanceme
of j by the interaction, critical properties ofj are different
from those reported in previous studies. We ascribe the
ferences to the approximation used in one case and, in
other cases, to a different definition ofj. Further works are
needed to connect the resistance and the two-particle lo
ization length and to elucidate the relation betweenj andj1 .
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