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Localization of two interacting particles in a one-dimensional random potential
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We investigate the localization of two interacting particles in a one-dimensional random potential. Our
definition of the two-particle localization length, is the same as that of von Oppeinal.[Phys. Rev. Lett76,
491 (1996)]. &s for chains of finite lengths are calculated numerically using the recursive Green’s function
method for several values of the strength of the disordérand the strength of interactiob,, WhenU =0,
& approaches a value larger than half the single-particle localization length as the system size tends to infinity
and behaves a&~W™ "0 for smallW with »;=2.1+0.1. WhenU # 0, we use the finite size scaling ansatz and
find the relationsi~W ™" with v=2.9+0.2. Moreover, data show the scaling behaderw™*og(b|U|/W*)
with A=4.0+0.5. [S0163-18207)07543-1

Recently, there has been intensive atterftithfocused decomposed into the motion of the center of m@s!) and
on the problem of the localization of two interacting particlesthat of the relative coordinate. We are interested in the CM
in a one-dimensiondllD) random potential. With a few as- motion since the wave function describing the relative mo-
sumptions on the statistical nature of single-particle localizedion would not be different from that arising from the single-
states, Shepelyanskyhas mapped the problem approxi- particle localization problem in the thermodynamic limit if
mately to a random band matrix model and obtained an exthe interaction is short ranged. Therefore, in this paper, we
pression for the two-particle localization lengt,as use the same definition faf as introduced by von Oppen
et al® for the measure for localization length of the CM:
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where U is the on-site interaction in unit of the hopping ¢ In—m|—e [n—m|

energy between nearest neighbor pair sites,&rte single-
particle localization length. This expression is surprising be-Here,G is the Green function anld, j) is a two-particle state
cause it implies that can exceedt; at sufficiently small in which the particle 1(2) is localized at a sité (j). The
disorder, i.e., sufficiently largé; . Later Imry has provided above definition is reasonable for a description of the CM
a support for Eq(1) by invoking the Thouless scaling argu- motion as long asJ is smaller than or of the order of the
ment. However, the methods employed in Refs. 1 and 2 arBopping energy between sitésn practice, we calculatéy
partly approximate and the strict validity of the expression ofdefined below in Eq(4) for chains of finite lengthsvithout
Eg. (1) is questionable as discussed in, e.g., Refs. 3—8 an@ny approximatiorfor several values oW andU. We then
10. estimate¢ by extrapolatingéy using the finite size scaling
Many author$™® have tried to find more refined expres- ansatz. Wherd=0, we find é&~W~"0 with v,=2.1+0.1.
sions than Eq(1) by improving the assumptions of Shepe- Data for U#0 lead to the relationé~W™", with
lyansky. However, at this stage, there exist controversies yet=2.9+0.2. Also the data lead us to propose a scaling form
as to the quantitative expression forike Eq. (1). Frahm  é~W~"og(b|U|/W"), whereg(y) is a scaling function with
et al® obtained the relatio~ £1'% by the transfer matrix the propertyg(y— 0)=const andg(y— =)~y "0/4 A is
method while an approximate calculation of Green functiongiven as 4.6:0.5.
by von Oppen etal’® leads to the hypothesis We work within the tight-binding equation given by
£=&/2+c|U|&2, wherec is a constant depending on the

statistics of the particles. With the assumption that the level s 1nt Yme1nt Umns1t Umn-1
statistics of two interacting particles is described by a Gauss- ' ' ' '
ian matrix ensemble, Weinmann and PicKaacgued that =(E—em—en—Udmn) ¥mn, ()

increases initially a$U| before eventually behaving &$2.
Moreover, very recently, Roer and Schreiber have claimed wherey; j=(i,j|#), E is the energy of the two particles, and
the disappearance of the enhancement as the system sigg, the Kronecker deltam andn are the site indices of a
grows (see Refs. 7 and)8 chain of lengthN and range from 1 td&N, e, is the random
Some of these discrepancies, especially between numegite energy chosen from a box distribution with interval
cal studies, are due to different definitions for two-particle[ —W/2,W/2] (Ref. 1J), and the hard wall boundary condi-
localization length between authors and also to lack of caretion, i.e., o,=0 and so on, is used. As was previously
ful analysis of the finite size effect of the system size. Thenoted®’ if one interprets fn,n) as Cartesian coordinates of a
system under study is a “quantum mechanical two-bodysquare lattice of siz&NX N, the Hamiltonian describes a
problem” in a sense. Motion of the two particles can besingle particle in a two-dimensional random potential. In Eq.
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(2), the thermodynamic limit is first taken and then the limit

100 .
|[n—m|—o. To estimate this quantity, we define a sequence E o ]
g as [ Ealo] opd ]
N ] i
1 1 - ‘
f_N:_ m'ﬂl(l,llGNlN,NH , (4) $ %0 o o o ©
whereGy represents the Green function for a chain of length | Aee a a a 4

N and the double brackets represent the configurational av- .5 19 L 4
erage. To be specific, calculation Gfy amounts to evalua- :
tion of the inverse of the matrix §—H), the size of which ' v v v v
is N>X N2, One can calculate several elementsGgf, i.e.,

the elements involving the sites of two opposite edges of the p X000 °© © °
square lattice, very efficiently using the recursive algorithm 4 OO o o o R
of MacKinnon and Kramet? We assume thaty approaches
EasN—oo, .
The on-site interaction of the Hamiltonian given by Eq. 1 0 0.05 04
(3) is relevant only to the spatially symmetric states, which 1N

would be realized, say, for a pair of electrons with total spin
zero. One can easily see that the contributions to(Bgare

only _f(;om t_he S_ﬁ?tlid;ly Syr,nn]?etrlq states from theh fOIIOWIr_‘g 1/2 (filled symbols calculated from the expressiaf=105MW?:
consideration. The Green’s function represents the transitiof},_ ; g (bo), 1.5 (circle), 2.0 (uptriangle, 3.0 (downtriangle, 4.0

amplitude from an initial state to a final state and since the{diamond, and 5.0(pentagol, from top to bottom. The uncertainty
Hamiltonian, Eq.(3), is invariant under the exchange opera- ot oach data point is less than the symbol size.

tion of two particles, the parity of the wave function is con-

served during the time evolution. Since the initial state of Eqyocalization problem. From the data d=200, we get
(2) is a doubly occupied state, i.e., a spatially symmetrici(uzo):m,wvo with vo=2.1+0.1.

state, we are treating only the contributions from symmetric Next, we discuss the case 0 0. Figure 2a) shows the

FIG. 1. &\ (open symbolsas a function of I for U=0 and

states. _ _ results forU=1.0 andW ranging from 0.5 to 10.0. Thg
Numerical calculations ofy for various values ofV, U, axis |abel represents the renormalized localization length,
andN are performed foE=0 without approximationN is e ¢ divided by the system size. For larger valuesvef

varied within the range 28N<200 and for a given param- g4 N, &y/N behaves as-1/N, which implies the conver-
eter set, the configurational average is performed over SUﬁbence oféy’s to their constant limiting values. This means
ciently many different realizations to control the uncertain-that the conditioNs> ¢ is well satisfied for these data. How-
ties of &y within 1%. _ _ _ever, for smaller values a#, i.e., forW ranging from 0.5 to
We first examine the case bf=0, i.e., the noninteracting 1 5 it is not easy to deduce the valuetafince&y’s increase
two particles. In this case, when the total energy of the SySgieadily within the range of thél presented. Therefore we

tem i_s fixed toE, the two-particle wave fun(_:tion is a super- rely on the scaling ide which states thag, /N is given by
position of the products of two single-particle states of en-, ,nction of a single parameter, i.&l/¢:

ergy E’ andE—E’, and the Green function is given by the
convolution of two single-particle Green functions as EnIN=T(N/§). (6)

The implication of Eq.(6) is that on a log-log plot all data
(i,i|G(E)|j ,j>~f dE'(i|Go(E")|j){i|Go(E—E")|j). points of Fig. 2a) fall on a single curve when translated by
In &W) along thex axis. As a result¢(W)’s can be obtained
) W A

as fitting parameters. The result of data collapsing is shown
It is a nontrivial problem to calculaté(U=0) since there in Fig. 2(b) for the data seN=50. £(W=5.0) has been
exist contributions from various energies. Some aufltors gptained to be 2.870.01 by fitting the data set foV=5.0
have assumed the relatiof(U=0)=¢,/2, i.e.,, half the andN=50 to the formulaty=&—A/N,** whereA is a con-
Single-particle localization Iength, which should be, hOW-Stant_ Other remaining values é(W)’S are obtained by ex-
ever, seriously examined. Our numerical data presented igmining the amount of relative translations with respect to
Fig. 1 show that the assumption is not strictly valid. Thethe data set ofW=5.0. The scaling plot is quite good and

filled symbols on theN=x axis represent;/2 calculated one can see that the scaling functifix) behaves as
from the expressiog; = 105MW7?,® while the empty symbols

are our numerical results f@g, . Taking into account the fact 1x if x<1,
that the uncertainty of each data point is smaller than the f(x)~ K if x>1
symbol size,&y does not seem to extrapolate §¢/2 asN '
tends to infinity. Moreover, the discrepancy between the twgAs was previously mentioned, the asymptotic behavior for
guantities becomes larger 8¢ gets smaller. Therefore, we x>1 represents the convergence&fs to & On the other
conclude that within the definition of Ed2), the single- hand, the behavior for<1 is very interesting since the same
particle localization length is not an adequate parameter, if insymptotic behavior has been found for noninteracting dis-
is qualitatively, for a quantitative description of two-particle ordered 1D systents.For the noninteracting case, the resis-
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FIG. 2. (a) &y /N as a function o for U=1.0. (b) Scaling plot
constructed from the data ¢f) for N=50. £(W)'s are obtained as
fitting parameters by this procedur) ¢ as a function ofW. The
data forw=5.0 fit well to a straight line of~W~2° as shown.

tancepﬁ of a chain of lengthN is related to the single-
particle localization lengti, as

pd=[cosh2N/&3)—1]/2.

)

For N/&)<1, the right hand side of Eq(8) reduces to
~(N/§ﬁ)2~N/§l. Therefore for the noninteracting case, the symmetric forE=0 so that{ depends only on the absolute

asymptotic behavior foN<¢; represents the metallic be- value of U.
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FIG. 3. The scaling plot ofW"° versusU/W* with v,=2.1 and
A=4.0. The typical uncertainty of data faW<1.5 (W=1.5) is

shown for the rightmostleftmos) data point. The straight line is
~x023

the error, this value for is different fromvy=2.1+0.1, i.e.,
the critical exponent fotJ=0, and from 4.0, which is the
value expected by Eql).

Further calculations and similar scaling analyses have
been performed for other values df i.e., 0.2, 0.5, 0.7, and
1.5 up to system sizbl=200. It is difficult to determinet
for W<1.5 andU < 1.0 since the corresponding data&fs
do not show scaling behaviors due to the fact that sufficiently
large system sizes have not been reached for these param-
eters. The resulting’s (for 1.5<W=5.0 if U<1.0 and for
0.7<=W=5.0 if U>1.0) give »=2.7, 3.0, 2.9, and 3.1 for
U=0.2, 0.5, 0.7, and 1.5, respectively. Since we do not ex-
pect thaty depends orlJ, we interpret the variation of the
values forv as resulting from numerical uncertainties. There-
fore our final result for the critical exponent éis 2.9+ 0.2.

Our result forv implies that introduction of nonzert
changes the critical behavior gfand, in analogy with ther-
mal critical phenomena, the poiW/=U=0 may be re-
garded as a multicritical point and the lié=0 as a critical
line in the W—U plane. Then, one may assume a scaling
form for £ as follows:

€)

whereg(y) is a scaling functionA a crossover exponent,
and b a constant. Here, we used the fact that ER). is

E=W""og(b|U[/W*),

The scaling function should satisfy

havior of the resistance, i.e., the linear increase of the resigy(y—0)=const andg(y— )~y "/ for consistency.
tance as the chain length in the metallic regime. Though n@We obtain reasonably good scaling plots within the range
explicit expression like Eq8) is present for the system un- A=4.0=0.5. The scaling plot foA =4.0 is shown in Fig. 3,
der study in this paper, we believe that the same asymptotiwhere£W?1 is plotted against)/W* for various values ofV
behavior for the two cases found here is a strong indicatiomndU. Although the data foWW< 1.5 may appear to deviate
that the definition in Eq(2) is a physically reasonable one. from the scaling curve, taking into account rather large nu-
The ¢s thus obtained as a function &¥ are plotted in
Fig. 2(c).X® For 0.5<W=5.0 they are reasonably well fitted are consistent with the scaling behavior of other data points.
to the form of ~W™", wherev is given by 2.9-0.1. Within

merical uncertainties of these data, one can expect that they

We expect that the crossover between the two asymptotic
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behaviors occurs at~1 so that the constafit is estimated edges of the square lattice. However, in this paper, we are
to be of the order of 100 from Fig. 3. Data within the rangeconcerned with the “pair propagation,” more generally, the
0.01<U/WA<1.0 (1<y<100) approximately obey the propagation of the CM of the two particles. The definitions
form =y%2 which is shown as a straight line. Since we for ¢ given by Egs.(2) and (4) describes the propagation
expect the asymptotic behaviery(*~*9’2 for this regime,  along one of the diagonals of the square lattice, instead of
we obtain ¢—vy)/A=0.23, i.e.,»=3.0, which is in good that along the edge. Our definition &fs exactly the same as
agreement with our previous estimate, i#=2.9+0.2. At  that of von Opperet al> However it should be noted that in
this stage, we have not found a physical mechanism regargheir work, calculation of¢ involves an approximation; the
ing the scaling parameterU/W* with A=4.0:05.  approximation scheme used in Ref. 5 fails for small values of
The quantity £(U)—£(U=0) might be also of interest. j while our results are valid for all values bf.
Our data show t_hf} th'34 Is consistent with a form |5 symmary, we have investigated numerically the local-
f(U)_Ag(UZO)N,W H(U/w) inthe  T€GION  j;a4i0n of two interacting particles in 1D random potential
bU/W=<1.0. Th|s pehawor shows that the first correction tousing the definition introduced previously for the two-
g(y) for y<1 is given as~yY2 On the _oth_er hand, our particle localization length. While we find the enhancement
result confirms the enhancement of localization lengths dugg ¢ by the interaction, critical properties @fare different
to the interaction. The arrow of Fig. 3 represents the value ofrom those reported in previous studies. We ascribe the dif-
§Wr for U=0, so that it is clearly seen thamonotonically  ferences to the approximation used in one case and, in the
increases with respect td. other cases, to a different definition &f Further works are
Finally, we point out differences between our work andpeeded to connect the resistance and the two-particle local-

some of those previously reported. References 3 and 7 deglation length and to elucidate the relation betwéemdé; .
with exactly the same system as ours but use a different

definition for the two-particle localization length. As men-  This work has been supported by the KOSEF through the
tioned before, the problem can be considered as that of @TP and by the Ministry of Education through BSRI both at
noninteracting single particle in a two-dimensional potential.Seoul National University. We also thank SNU Computer
These authors study the evolution of a state along one of th€enter for the computing times on SP2.
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