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Effect of anisotropy on the localization in a bifractal system
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Department of Physics and Center for Theoretical Physics, Seoul National University, Seoul 151–742, Korea

~Received 1 November 1996!

A bifractal is a highly anisotropic structure where planar fractals are stacked to form a three-dimensional
lattice. The localization lengths along a fractal structure for the Anderson model defined on a bifractal are
calculated. The critical disorder and the critical exponent of the localization lengths are obtained from the
finite-size scaling behavior. The numerical results are in a good agreement with previous results which have
been obtained from the localization lengths along the perpendicular direction. This suggests that the anisotropy
of the embedding lattice structure is irrelevant to the critical properties of the localization.
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Recently, there has been much attention focused1–6 on the
critical properties of the localization in anisotropic syste
For a three-dimensional cubic system with anisotropic h
ping matrix, it seems now that there is a general agreem6

that both the critical disorder (Wc) and the critical exponen
(n) of the localization length are independent of direction
measurement and that such a model belongs to the un
sality class of the isotropic Anderson model.

On the other hand, bifractals7,8 are constructed by stack
ing planar fractal lattices along thez direction so that they
are of Euclidean structure only in thez direction. Anisotropy
in these systems arises from the lattice structure itself. Th
fore, it is by no means obvious whether the critical propert
obtained from the localization lengths along thexy plane
(lxy) are the same as those from the localization leng
along thez axis (lz). There is the possibility that even
mobility edge, one of the useful concepts in localizati
theory, may not exist in this intrinsically anisotropic syste

Therefore, in this paper, we study the critical disorder a
the critical exponent along the fractal structure, i.e., along
xy plane, for a bifractal system. Our results are in excell
agreement with those obtained fromlz’s, which have been
reported in previous studies,8,9 suggesting that the anisotrop
of the embedding lattice structure is irrelevant to the criti
properties of the localization. In our study, one of the bifra
tals introduced in Ref. 8 is used as the model. We cons
the Anderson Hamiltonian given as

H5(
i

e i u i &^ i u1(
^ i , j &

V~ u i &^ j u1u j &^ i u!, ~1!

where the random site energiese i are chosen from a box
distribution of widthW. The hopping energiesV are set to 1
throughout this work and the second sum is over near
neighbor pairs of sites on the bifractal lattice. In Fig. 1~a!,
the lattice is schematically depicted. The cross section
pendicular to thez axis is a variant of the Sierpinski gask
andL is the number of fractal lattices that have been stack
The number of iteration processes for the fractal lattice
denoted byn, e.g.,n 5 2 for Fig. 1~a!. This is exactly the
model called bifractal I in Ref. 8. The Green’s function co
pling two corner sites of the largest triangle,r and r 8, is
550163-1829/97/55~17!/11022~3!/$10.00
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denoted asGr ,r8(n,L). Then the localization length along th
xy plane,lxy(L), can be defined as follows:

1

lxy~L !
52 lim

n→`

1

ur2r 8u
lnuGr ,r8~n,L !u, ~2!

wherer and r 8 have the samez coordinates.
The main point of the calculation is to findGr ,r8(n,L)’s

for a sufficiently large value ofn, which means that one
should calculate elements of the inverse of a very large r

FIG. 1. ~a! Schematic diagram of the lattice with the iteratio
numbern52 andL55. Each vertex is a lattice site of the Hami
tonian given by Eq.~1!. ~b! Schematic diagram of the decimatio
process. The amplitudes of the sites represented by the em
circles are eliminated to modify the forms of the equations for
sites represented by the solid circles.
11 022 © 1997 The American Physical Society
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dom matrix, (E2H). This is essentially the same problem
encountered in the transfer matrix method for quasi-o
dimensional systems.10 However a different recursive algo
rithm should be devised since we are considering a ‘‘qu
two-dimensional system.’’

One can handle the problem by decimating recursively
amplitudes of the sites characterized by the largest itera
number, as shown in Fig. 1~b!. The following scheme is for
the case ofL51 but the extension of the method forL>2 is
straightforward. Letx ~y! be a vector, the elements of whic
are the amplitudes of the sites represented by the s
~empty! circles in Fig. 1~b!. Then a matrix equation forx and
y can be constructed in the form,

S Hx~E! Vxy~E!

Vxy
t ~E! Hy~E! D S xyD 5S z0D , ~3!

whereHx(E),Hy(E), andVxy(E) are matrices and contribu
tions from remaining sites other than shown in Fig. 1~b! are
contained in a vectorz. The vector0 in the right-hand side of
Eq. ~3! represents the fact thaty is directly coupled only with
x. Initially, when the sites have been indexed as in Fig. 1~b!,
the explicit forms of the three matrices are as follows:~i!
Hx,i j5d i j (E2exi), ~ii ! Hy,i i5E2eyi, Hy,125Hy,215Hy,13

5Hy,315Hy,255Hy,525Hy,345Hy,435Hy,465Hy,645Hy,56
5Hy,6552V, and Hy,i j50, otherwise, ~iii ! Vxy,11
5Vxy,125Vxy,235Vxy,245Vxy,355Vxy,3652V, and Vxy,i j
50, otherwise. Eliminating the amplitudes of the intern
sites, i.e.,y, we get

~Hx2VxyHy
21Vxy

t !x5z. ~4!

By performing the decimation process of Eq.~4! for every
triangle consisting of nine sites, the number of the wh
eigenvalue equations reduces by a factor of 3. The 333
matrix in the left-hand side of Eq.~4! defines the renormal
ized hopping energies within the smallest triangles of
new lattice and the renormalized on-site terms. Since
hopping energies are modified only within the smallest
angle one can cast the matrix equation for the remaining s
again in the form of Eq.~3!. It should be also noted that a
the first step of the iteration, the elements ofVxy are inde-
pendent ofE as can be seen from~iii !, while after the deci-
mation process, i.e., Eq.~4!, they become functions ofE, in
general. Therefore, the problem has been reduced to an
eigenvalue equation problem on the Sierpinski gasket w
the iteration number smaller than the original by 1. Now
can iterate the above procedure until three linear equat
for the amplitudes of the three outermost sites are left in
case ofL51. For generalL, we have 33L linear equations
instead of 3. Then the inverse of the matrix constructed
the coefficients of the amplitudes is the Green’s function
the outermost sites.

In principle, this algorithm can be iterated infinitel
However, one of the technical problems in the real calcu
tion is that some off-diagonal elements of the matrix beco
very small compared with, say,O(1) diagonal elements, a
the iteration proceeds. In general, these small elements
tain the essential information for our problem since they
directly related to the Green’s function connecting two d
ferent sites far away from each other. For example, let
-
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assume that the localization length is of the order of un
and the distance between two sites is, say, 10003 ~lattice
constant!. Then the Green’s function connecting the two sit
is of ordere21000;102430, while the diagonal elements o
the Green’s function are of the order of unity. Therefore o
is investigating an asymptotic behavior of vanishingly sm
matrix elements, while the order of magnitudes of so
other elements of the matrix is by far much larger than the
Direct manipulation of such matrix leads to loss of inform
tion on the smaller elements. One of the possible techniq
to overcome this difficulty is to decompose the matrix in
two parts as

A5A01e2aA8, ~5!

where the matrix elements of bothA0 andA8 are within the
range safely handled by computers.a is a number and
should be modified whenever the matrix is manipulat
When a matrix is decomposed as above, the inverse of
matrix can be calculated by the formula

~A01e2aA8!215A0
211A0

21(
n51

`

~2e2aA8A0
21!n. ~6!

For our calculation, it turns out to be sufficient to reta
terms up to second order ine2a.

We calculatelxy(L)’s for E50 and several values o
W in the range 4.0<W<9.0. In our calculation, the Sierpin
ski gasket withn511 (312 sites/cross section! is used and
L is varied within the range 3<L<15. For a given set of
parameters, configurational averages are performed
4–70 different realizations to control the uncertainty
lxy(L) within 1%. A periodic boundary condition is im
posed in thez direction. The results are shown in Fig. 2. A
L increases, the renormalized localization length,lxy(L)/L,
increases for smaller values ofW, while for larger values it
keeps decreasing. This implies that in the macroscopic lim
i.e.,L→`, there exists a transition from an extended state
a localized state asW varies, e.g., from 5.0 to 6.0. Estimate
of Wc and n are obtained by fitting the data to the scalin
form

ln„lxy~L !/L…5a1b~W2Wc!L
1/n, ~7!

FIG. 2. Log-log plot of the renormalized localization leng
along the Sierpinski gasket as a function ofL for various values of
W. The uncertainty of each data point is less than the symbol s
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where a and b are constants. Several sets of data
4.5<W<7 and 7<L<15, have been fitted to Eq.~7! and
finally we getWc55.7960.04 andn52.9260.14. The er-
rors are the dispersions between different sets of data.

FIG. 3. Scaling behavior of ln(lxy /L) versus (W2Wc)L
1/n with

Wc55.79 andn52.92.
st

e
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he

scaling plot with these values is shown in Fig. 3. Our n
merical results are in good agreement with those obtai
from the analysis oflz’s, i.e., Wc55.8 and n53.060.2
~Ref. 9! for the same model. This supports the idea thatWc

and n are independent of the direction of measurement
this bifractal system.

ThatWc’s are the same along the two directions indica
that there exists a well-defined mobility edge in spite of t
intrinsic anisotropy in this model. In addition we can expe
that the anisotropy is irrelevant to the localization transiti
in a somewhat strong sense, that is,the critical properties of
the localization are insensitive not only to the anisotropy
the energy parameters but also to that of the embedd
lattice structure.
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