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Effect of anisotropy on the localization in a bifractal system
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A bifractal is a highly anisotropic structure where planar fractals are stacked to form a three-dimensional
lattice. The localization lengths along a fractal structure for the Anderson model defined on a bifractal are
calculated. The critical disorder and the critical exponent of the localization lengths are obtained from the
finite-size scaling behavior. The numerical results are in a good agreement with previous results which have
been obtained from the localization lengths along the perpendicular direction. This suggests that the anisotropy
of the embedding lattice structure is irrelevant to the critical properties of the localization.
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Recently, there has been much attention foctiSash the  denoted as, ,/(n,L). Then the localization length along the

critical properties of the localization in anisotropic system.xy plane,\,y(L), can be defined as follows:
For a three-dimensional cubic system with anisotropic hop-

ping matrix, it seems now that there is a general agreément 1 1
that both the critical disordey,) and the critical exponent WIS |imm In|G; /(n,L)], 2
(v) of the localization length are independent of direction of i n—ee
measurement and that such a model belongs to the univer—h dr' h h dinat
sality class of the isotropic Anderson model. wherer andr- have he same coordinates. ,

On the other hand, bifractdl§ are constructed by stack- ; The ”]lf"?"F‘ pcl)lntl of the clzalculztlonhlg, ;0 f'rﬁ"r’(?]’l‘) N
ing planar fractal lattices along thedirection so that they or a sufficiently large value oh, which means that one
are of Euclidean structure only in tizedirection. Anisotropy should calculate elements of the inverse of a very large ran-
in these systems arises from the lattice structure itself. There-
fore, it is by no means obvious whether the critical properties
obtained from the localization lengths along tkg plane
(Axy) are the same as those from the localization lengths
along thez axis (A,). There is the possibility that even a
mobility edge, one of the useful concepts in localization
theory, may not exist in this intrinsically anisotropic system.

Therefore, in this paper, we study the critical disorder and
the critical exponent along the fractal structure, i.e., along the
xy plane, for a bifractal system. Our results are in excellent
agreement with those obtained fram's, which have been
reported in previous studiés,suggesting that the anisotropy
of the embedding lattice structure is irrelevant to the critical
properties of the localization. In our study, one of the bifrac-
tals introduced in Ref. 8 is used as the model. We consider
the Anderson Hamiltonian given as

N>

H=Z ei|i><i|+<i2j> V([GI+GD, D)

X3

where the random site energies are chosen from a box
distribution of widthW. The hopping energieg are set to 1
throughout this work and the second sum is over nearest-
neighbor pairs of sites on the bifractal lattice. In Figa)l (b)

the lattice is schematically depicted. The cross section per-

pendicular to the axis is a variant of the Sierpinski gasket  rig. 1. (3) Schematic diagram of the lattice with the iteration
andL is the number of fractal lattices that have been stackedyympern=2 andL =5. Each vertex is a lattice site of the Hamil-
The number of iteration processes for the fractal lattice igonian given by Eq(1). (b) Schematic diagram of the decimation
denoted byn, e.g.,n = 2 for Fig. X(a). This is exactly the process. The amplitudes of the sites represented by the empty
model called bifractal | in Ref. 8. The Green’s function cou-circles are eliminated to modify the forms of the equations for the
pling two corner sites of the largest triangle.andr’, is  sites represented by the solid circles.
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dom matrix, € —H). This is essentially the same problem as 2 r r

encountered in the transfer matrix method for quasi-one-

dimensional system. However a different recursive algo- - W=f5 ; .

rithm should be devised since we are considering a “quasi- . et 5 x

two-dimensional system.” < ' %o M x X000 5é5 B

One can handle the problem by decimating recursively the < X o NI 65 o

amplitudes of the sites characterized by the largest iteration < 1R . o oooutEm 7 e ]

number, as shown in Fig.(i). The following scheme is for k<4 : : ® e ceccene, 8 a

the case of. =1 but the extension of the method foe2 is Ors . f LT TN CE

straightforward. Lek (y) be a vector, the elements of which | faa faaa, |

are the amplitudes of the sites represented by the solid *

(empty circles in Fig. 1b). Then a matrix equation for and 1 . .

y can be constructed in the form, 1 2 nL 3 4
H(E) Vy(E)\ (x\ [z , o
V;y(E) Hy(E) yl=lo] ©) FIG. 2. Log-log plot of the renormalized localization length

along the Sierpinski gasket as a functionLofor various values of

W. The uncertainty of each data point is less than the symbol size.
whereH,(E), H,(E), andV,,(E) are matrices and contribu-

tions from remaining sites other than shown in Figo)lare  assume that the localization length is of the order of unity
contained in a vectar. The vectol0 in the right-hand side of and the distance between two sites is, say, 180Qattice

Eq. (3) represents the fact thgtis directly coupled only with  constank Then the Green'’s function connecting the two sites
x. Initially, when the sites have been indexed as in F(Q),l is of ordere—1000_ 10*430, while the diagona| elements of
the explicit forms of the three matrices are as followis:  the Green’s function are of the order of unity. Therefore one
Hyij= 8ij(E—ex), (i) Hyi=E—e,, Hy12=Hy21=Hy13 s investigating an asymptotic behavior of vanishingly small
=Hy31=Hys=Hysp=Hy3s=Hy s3=H, 46=H,ss.=H, 56  matrix elements, while the order of magnitudes of some
=H,es=—V, and Hy;=0, otherwise, (ii) V,;; Other elements of the matrix is by far much larger than them.

=Vyy.12= Viy,25= Viy24= Vyy35= Vyy36= — V, and V,yj Direct manipulation of such matrix leads to loss of informa-
=0, otherwise. Eliminating the amplitudes of the internaltion on the smaller elements. One of the possible techniques
sites, i.e.y, we get to overcome this difficulty is to decompose the matrix into

two parts as
(Hy= Vi Hy Vi )x=2. (4)
_ ] A=Ay+e “A’, (5)
By performing the decimation process of Eg) for every
triangle consisting of nine sites, the number of the wholewhere the matrix elements of bo#ky andA’ are within the
eigenvalue equations reduces by a factor of 3. The33 range safely handled by computers. is a number and
matrix in the left-hand side of Ed4) defines the renormal- should be modified whenever the matrix is manipulated.
ized hopping energies within the smallest triangles of theVhen a matrix is decomposed as above, the inverse of the
new lattice and the renormalized on-site terms. Since the&atrix can be calculated by the formula
hopping energies are modified only within the smallest tri-
angle one can cast the matrix equation for the remaining sites
again in the form of Eq(3). It should be also noted that at
the first step of the iteration, the elements\gf, are inde-
pendent ofE as can be seen frofiii ), while after the deci- For our calculation, it turns out to be sufficient to retain
mation process, i.e., E@4), they become functions d, in  terms up to second order &1 “.
general. Therefore, the problem has been reduced to another We calculate\,,(L)’s for E=0 and several values of
eigenvalue equation problem on the Sierpinski gasket withV in the range 4.& W=9.0. In our calculation, the Sierpin-
the iteration number smaller than the original by 1. Now weski gasket withn=11 (3'? sites/cross sectigris used and
can iterate the above procedure until three linear equations is varied within the range 8L<15. For a given set of
for the amplitudes of the three outermost sites are left in thgparameters, configurational averages are performed over
case ofL=1. For general, we have XL linear equations 4-70 different realizations to control the uncertainty of
instead of 3. Then the inverse of the matrix constructed bw, (L) within 1%. A periodic boundary condition is im-
the coefficients of the amplitudes is the Green'’s function forposed in thez direction. The results are shown in Fig. 2. As
the outermost sites. L increases, the renormalized localization lengthy,(L)/L,

In principle, this algorithm can be iterated infinitely. increases for smaller values W, while for larger values it
However, one of the technical problems in the real calculakeeps decreasing. This implies that in the macroscopic limit,
tion is that some off-diagonal elements of the matrix becomé.e.,L—«, there exists a transition from an extended state to
very small compared with, say)(1) diagonal elements, as a localized state a4/ varies, e.g., from 5.0 to 6.0. Estimates
the iteration proceeds. In general, these small elements conf W, and v are obtained by fitting the data to the scaling
tain the essential information for our problem since they ardorm
directly related to the Green’s function connecting two dif-
ferent sites far away from each other. For example, let us In()\xy(L)/L):a+ b(W- WC)L”V, (7)

o

(Agte “AN) I=A 1+ ALY (e *A’AgH". (6)
n=1
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scaling plot with these values is shown in Fig. 3. Our nu-

2 T T T
L=g M merical results are in good agreement with those obtained
T, 2o from the analysis of\,'s, i.e., W.=5.8 and v=3.0=0.2
. L % noe | (Ref. 9 for the same model. This supports the idea hat
= % 13 o and v are independent of the direction of measurement for
3 ® . P this bifractal system.
£ ’@m ThatW_'s are the same along the two directions indicates
0r g, ] that there exists a well-defined mobility edge in spite of the
I %% | intrinsic anisotropy in this model. In addition we can expect
that the anisotropy is irrelevant to the localization transition
4 . . . in a somewhat strong sense, thattig critical properties of
10 5 0 5 10 the localization are insensitive not only to the anisotropy in
(W-W) L the energy parameters but also to that of the embedding
FIG. 3. Scaling behavior of liaf,/L) versus W— WC)Ll’” with lattice structure

We=5.79 andv=2.92. We are thankful to M. Schreiber and H. Grussbach for
where a and b are constants. Several sets of data forS€Nding their numerical data. This work has been supported
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