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Possibility of direct Mott insulator-to-superfluid transitions in weakly disordered boson systems
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We study the zero-temperature phase transitions of a two-dimensional disordered boson Hubbard model at
incommensurate boson densities. Via matrix diagonalization and quantum Monte Carlo simulations, we con-
struct the phase diagram and evaluate the correlation length expanknthe presence of weak disorder, we
obtainv=0.5+0.1, the same value as that in the pure model, near the tip of a Mott insulator lobe, using the
dynamical critical exponertt=2. As the strength of disorder is increased beyond a certain value, however, the
value of v is found to change to 090.1. This result strongly suggests that there exist direct Mott insulator-
to-superfluid transitions around the tip of a Mott insulator lobe in the weak disorder regime.
[S0163-182609)08513-9

Two-dimensional2D) interacting boson systems display =~ We consider the boson Hubbard model with disorder, de-
quantum phase transitionfom an insulating state to a su- scribed by the Hamiltonian
perfluid (SP state at zero temperature. Physical realization
of this transition may include disordered thin-film supercon- H= u
ductors, Josephson-junction arrays, granular supercon- 2
ductors? and “He films adsorbed in porous medidn the ; _ _
absence of disorder the insulating state is a Mott insulatofhereb; andb; are the boson creation and de.:,tru.ctlon op-
(MI), which has a commensurate value of the boson densit§rators at sité on anL. X L square lattice, and; =b; b; is the
since, otherwise, excessive bosons or holes will move freelffumber operator. In Ed1), U is the strength of the on-site
to yield a superfluid. The excessive bosons or holes can J&Pulsion,u is the chemical potential;; is the random on-
localized, on the other hand, in the presence of disorder, t§it€ Potential distributed uniformly betweenA andA, and
make an incommensurate insulator. The resulting Bose gladd"'easures the hopping strength between nearest-neighboring

(BG) insulating phase has attracted considerable interest r tes. In the limit of the Iarge n%meer of particles, we may
cently. In the mean-field theofyit has been argued that in ake the phase-only approximat csnd reduce Eqd) to the
the presence of disorder the transition from a Mott insulatorquantum phase Hamiltonian

to a superfluid occurs only through the BG phase. However, U

a recent quantum Monte Carlo stutigerformed at the tip of H= 52 n?—> (p+odn—t>, coddi—¢;), (2)

an Ml lobe(i.e., at a commensurate value of the boson den- ! ! (.5

sity), has demonstrated the existence of a direct MI-SF tranWhereqSi is the phase of the bosons condensed ati sited
sition. The subsequent renormalization group stubigs satisfies the relatiofin; ,;]=i5;; . Note that in this repre-
been interpreted to suggest that the direct MI-SF transitiogentation,n; denotes the deviation from the mean-integer
occurs around the tip Qf the MI Iobq in hlgh dimensiows ( numbern, (around the mean numbébb;)).
>4) but only at the tip in lower dimensions £d<4). In order to determine the phase boundary, we first use the
These results raise an interesting question as to whether sugilatrix diagonalization method with a truncated basis set.
a direct MI-SF transition occurs even at incommensurate valThe zero-temperature phase boundary between the MI phase
ues of the boson density. and the SF/BG phase is determined by comparing the
This paper investigates the possibility of the direct MI-SFground-state energy of the system at commensurate boson
transition off the tip of an Ml lobe in two dimensions. We density and that of the system containing an extra hole or
perform both matrix diagonalization and quantum Monteparticle. The basis set is chosen to include the lowest-energy
Carlo simulations, and find evidences for the direct transitiorstates of the Hamiltonian given by the first and the second
around the tip of an Ml lobe in the weak disorder limit. The term in Eq.(2) (i.e., the zeroth order in) and the states
superfluid onset points are identified and the correlatiorcoupled to these by hopping up tor(2 1)th order int,
length critical exponents are estimated at various disordewhere we sen=1 in this paper. We identify the lowest-
strengths. The corresponding phase diagram for weak disoenergy state among the states of which the total boson num-
der is constructed. ber is zero as the MI state and the lowest one among the

2 =3 (urvom—t3 (b +bb)). @)
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FIG. 1. Phase diagram in thet, ) plane for the disorder FIG. 2. Scaling plot of the participation ratip_near the MI-
strengthA =0.2. Each line gives an estimate of the phase boundargggg phase boundary, which yields=0.12, y=0.92, andv
between the MI state and the SF or BG state, as determined by ; g ' ' '

matrix diagonalization.

) ) . useful to determine the critical point very close to the Ml
states with the total boson number being unity as the SF/B%hase i.e., on the phase boundary in Fig. 1.

state, and determine the phase boundary by locating the val- Figure 2 presents the finite-size scaling of the participa-

ues ofu (>0) andt at which the energies of the two states tjop, ratio of the SF/BG state. From this scaling behavior, we

become equal. obtainy=0.92+0.03, »=1.5+0.3, andt,=0.12+0.02; the
Since the basis set includes those states coupled up to thgier separates the SF state from the BG oneé (@s u) is

third order int, the result will be the same as that from the 5 jeq along the phase boundary in Fig. 1. Accordingly, the

energy perturbation to the same order. The numbers of Stalggstem undergoes a direct MI-SF transition as the phase
involved in this calculation arel4'~9L and 4.+ 1 inthe  poundary is crossed for small (<0.18 in Fig. 1, i.e., near

cases of the BG/SF state and of the Ml state, respectivelyhe tip of an MI lobe. Note that the possible origin of this
We adopt the Lanczos methiddo obtain the lowest eigen- giract MI-SF transition, as discussed later, is the abundance
value and the corresponding eigenstate, and take 2000 disQ§¢ particle-hole excitations around the tip of a lobe. This
der realizations for each system size. In the pure case (g,ggests that the size of the basis set including the states up
=0), we find the phase diagram, which is consistent with thgq the third order irt might not be sufficient to determine the
previous perturbation result of Freericks and Morfl%n. _phase boundary unambiguously and to compute the corre-
Figure 1 shows the zero-temperature phase diagram with,onding exponents accurately. Such abundance of particle-
the disorder strength=0.2 up to the system size=10  poe excitations is expected to forbid the perturbation calcu-
obtained from the truncated basis set. The shape of the Mhtion to be accurate, possibly causing the discrepancy

lobe constructed from the previous perturbation result in thgyetween the perturbative resdftsaind the quantum Monte
pure cas¥ should be round and shorter than that obtainedcario result® in the pure case without disorder.

here. In the absence of hopping=0), where no SF state is |t js thus needed to investigate the transition via quantum
possible, the phase bounddhetween the Ml and BG stafes \jonte Carlo simulations, which are in general more reliable.

approaches, as the system sizes increased, 054, as it For that purpose, we follow the standard procefire

should. transform the 2D quantum phase Hamiltonian in E2).to
To distinguish the SF phase from the BG phase, we USghe (2+1)-dimensional classical action

localization argument, and define the participation ratio as

1V:3=0
2 2 r
S=— =30 = (u+v)dii s 5
I
PL= . ' (3 where the integer current vectdyi = (J(i 1) Iy JIGiy) 1S
Ei Pi divergenceless on each lattice sitet) as indicated. The
av coupling constank, corresponding roughly tgt/U, takes

wherep; is the probability that particles are found at sife the\Ar/c;Ie Z:f?r%temugﬁ'[s&lr?\)lonte Carlo simulations on the
and[ - - - ], denotes the average over different disorder real- P q

izations. At the generic SF-BG transition, the participationglla(s)?i'fharlr? 2?102|aé2ic§ﬁ£é?%' eerg?cﬁllzy,lf-r\]r? intnheortgﬁ?t ut;?]t_h
ratio satisfies the scaling relation 9 P P d

tity in the analysis is the zero-frequency superfluid stiffness

%ﬂ*yﬁ(au’”), () p:Li[<n’2‘>]aU’ ©

where ;= (t—t;)/t. is the distance from the critical poitt wherenxz(1/L)E(i't)\]z‘i’t) is the winding number along the
and v is the correlation length exponent. Here the scaling(spatia) x direction. The finite-size scaling behavior of the
function p and an additional exponeny have been Superfluid stiffness'® reads

introducec®*? Note that since we just consider the states in

which the total number of bosons is unity, this method is p=L"@+Z= 2L W s L /L), (7)
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FIG. 3. Behavior of the stiffness for ©=0.3 andA=0.1, with FIG. 5. Critical pointK as a function of the disorder strength
the aspect ratio kept constant fp¥=2. The inset shows a scaling for x=0.3. The solid dots indicate the direct MI-SF transition
plot with K.=0.257 andv=0.5. points and the open dots the BG-SF transition points.

wheres= (K —K_)/K. is the distance from the critical point Vious results of the BG-SF transitién.° These demonstrate
K., the spatial dimensiod is two in this paper, andis the  that in the weak disorder regime a direct MI-SF transition
dynamical critical exponent. takes place not only at the tip but also off the tip of the Ml

In order to investigate the scaling behavior, the value of lobe. Figure 5 presents the critical temperatigeas a func-
should be known in advance. At the very tip of an Ml lobe, tion of the disorder strengtiA for x=0.3, displaying the
the direct MI-SF transition in the presence of weak disordedirect MI-SF transition occurring foA <0.16. It is of inter-
shows the same behavior as the pure system: the dynamicest that the point on which the value of the correlation length
critical exponentz=1 and the correlation exponent exponentr changes appears to have the maximum slope on
=0.67> Off the tip, we expect the dynamical exponent theK.-A curve.
=2 in the disordered system since the compressibility is fi- Figure 6 summarizes the phase diagram of the disordered
nite at the transition poirft;the same number is expected boson Hubbard model at the disorder strength0.2. The
even in the pure case. We, thus, set the dynamical exponephase boundary between the MI and the BG phases is esti-
z=2, and measure the correlation length exponenthe mated by means of the matrix diagonalization in the system
value of which was estimated in the previous studies to b@f sizeL=10. Here, we have used the results in Refs. 5 and
0.9+0.1 in the BG-SF transitioff and 0.5-0.1 in the 10 to scaleK as a function of, which is valid only for small
MI-SF transition*® t.

KeepingL ,/L? constant, we simulate the systems of sizes Finally, we discuss the possible origin of the direct MI-SF
LXLXL,=6X6x9, 8x8x16, and 1k10x25. To tune transition around the tip of an Ml lobe. One might think that
the transition, we vary the temperatutewhile fixing x and ~ Off the tip the BG phase intervenes very slimly between the
A. We further take the average over-6200 disorder real- MI and SF phases and that our results supporting the direct
izations and, for each disorder realization, perform typica"yMl—SF transition merely reflect finite-size effects. Be this the
4000-80000 Monte Carlo sweeps for equilibration, fol- case, the localization length would be large near the tip and
lowed by equally many sweeps for measurement. The equilthe BG phase would manifest itself only on the length scale
bration is checked through the use of the standard equilibrs&xceeding the system size. Then, as pointed out in Ref. 6, an
tion test techniqué!* anomalous behavior is expected to occur to change the cor-

In Fig. 3, we show the results with=2 at x=0.3 and relation exponentr, suggesting continuous change of the
A=0.1. One can identify clearly the common crossing pointeXxponent with the thickness of the BG phase near the tip. On
of L% atK.=0.257+0.003 as the critical point. The inset of the other hand, our results in Figs. 5 and 6 indicate that the
Fig. 3 shows a scaling plot, which yields=0.5+0.1, the €xponent changes quite abruptly, making the above scenario
same value as the pure modeDn the other hand, in the rather unlikely. Near the tip, the particle-hole excitations are
strong-disorder caseA(=0.3) shown in Fig. 4, the scaling

behavior yieldsy=0.9=0.1, which agrees well with the pre- 0-5 ' T BoSF o
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dotted line(without symbol$ corresponds to the rescaled data from
FIG. 4. Behavior of the stiffness for x=0.3 andA =0.3, with the matrix diagonalization method, while the solid and dashed lines
the aspect ratio kept constant for2. The inset shows a scaling (with symbolg are the results of quantum Monte Carlo simulations.
plot with K.=0.223 andv=0.9. The two points marked by crosses represent the results in Ref. 5.
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ubiquitous and presumably tend to suppress the disorder efdonte Carlo simulations and found that as the disorder
fects, allowing the possibility of an extended state for thestrength is varied, the value of the correlation exponent
extra boson. Thus the resulting direct MI-SF transitionchanges rather abruptly from the weak disorder value 0.5 to
around the tip may reflect the peculiar nature of boson localthe strong disorder one 0.9. This indicates that the direct
ization. MI-SF transition occurs for weak disorder at an incommen-
In summary, we have studied the disordered boson Hubsurate density. The possible origin of this transition could be
bard model by means of the matrix diagonalization with re-the abundance of the particle-hole excitations around the tip
stricted basis states, which include those states overlappingf an MI lobe, which suggests the peculiar nature of boson
with each other through nearest-neighbor hopping up to thécalization.
third order. The finite-size scaling of the participation ratio at
A=0.2 gives evidence for the direct MI-SF transition at an S.Y.P. would like to thank H. Rieger, G. G. Batrouni, and
incommensurate value of the boson density. To investigat8. Kisker for helpful discussions. This work was supported in
this direct transition more clearly, we have investigated thepart by the Korea Research Foundation made in the program
scaling behavior of the superfluid stiffness via quantumyear of 1998 and by the KOSEF through the SRC Program.
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