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Possibility of direct Mott insulator-to-superfluid transitions in weakly disordered boson systems
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We study the zero-temperature phase transitions of a two-dimensional disordered boson Hubbard model at
incommensurate boson densities. Via matrix diagonalization and quantum Monte Carlo simulations, we con-
struct the phase diagram and evaluate the correlation length exponentn. In the presence of weak disorder, we
obtainn50.560.1, the same value as that in the pure model, near the tip of a Mott insulator lobe, using the
dynamical critical exponentz52. As the strength of disorder is increased beyond a certain value, however, the
value ofn is found to change to 0.960.1. This result strongly suggests that there exist direct Mott insulator-
to-superfluid transitions around the tip of a Mott insulator lobe in the weak disorder regime.
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Two-dimensional~2D! interacting boson systems displa
quantum phase transitions1 from an insulating state to a su
perfluid ~SF! state at zero temperature. Physical realizat
of this transition may include disordered thin-film superco
ductors, Josephson-junction arrays, granular super
ductors,2 and 4He films adsorbed in porous media.3 In the
absence of disorder the insulating state is a Mott insula
~MI !, which has a commensurate value of the boson den
since, otherwise, excessive bosons or holes will move fre
to yield a superfluid. The excessive bosons or holes can
localized, on the other hand, in the presence of disorde
make an incommensurate insulator. The resulting Bose g
~BG! insulating phase has attracted considerable interes
cently. In the mean-field theory,4 it has been argued that i
the presence of disorder the transition from a Mott insula
to a superfluid occurs only through the BG phase. Howe
a recent quantum Monte Carlo study,5 performed at the tip of
an MI lobe~i.e., at a commensurate value of the boson d
sity!, has demonstrated the existence of a direct MI-SF tr
sition. The subsequent renormalization group study6 has
been interpreted to suggest that the direct MI-SF transi
occurs around the tip of the MI lobe in high dimensionsd
.4) but only at the tip in lower dimensions (2<d,4).
These results raise an interesting question as to whether
a direct MI-SF transition occurs even at incommensurate
ues of the boson density.

This paper investigates the possibility of the direct MI-S
transition off the tip of an MI lobe in two dimensions. W
perform both matrix diagonalization and quantum Mon
Carlo simulations, and find evidences for the direct transit
around the tip of an MI lobe in the weak disorder limit. Th
superfluid onset points are identified and the correlat
length critical exponents are estimated at various diso
strengths. The corresponding phase diagram for weak d
der is constructed.
PRB 590163-1829/99/59~13!/8420~4!/$15.00
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We consider the boson Hubbard model with disorder,
scribed by the Hamiltonian

H5
U

2(
i

ni
22(

i
~m1v i !ni2t(

^ i , j &
~bi

†bj1bibj
†!, ~1!

wherebi
† andbi are the boson creation and destruction o

erators at sitei on anL3L square lattice, andni[bi
†bi is the

number operator. In Eq.~1!, U is the strength of the on-site
repulsion,m is the chemical potential,v i is the random on-
site potential distributed uniformly between2D andD, and
t measures the hopping strength between nearest-neighb
sites. In the limit of the large number of particles, we m
take the phase-only approximation7 and reduce Eq.~1! to the
quantum phase Hamiltonian

H5
U

2(
i

ni
22(

i
~m1v i !ni2t(

^ i , j &
cos~f i2f j !, ~2!

wheref i is the phase of the bosons condensed at sitei and
satisfies the relation@ni ,f j #5 id i j . Note that in this repre-
sentation,ni denotes the deviation from the mean-integ
numbern0 ~around the mean number^bi

†bi&).
In order to determine the phase boundary, we first use

matrix diagonalization method with a truncated basis s
The zero-temperature phase boundary between the MI p
and the SF/BG phase is determined by comparing
ground-state energy of the system at commensurate b
density and that of the system containing an extra hole
particle. The basis set is chosen to include the lowest-ene
states of the Hamiltonian given by the first and the seco
term in Eq. ~2! ~i.e., the zeroth order int) and the states
coupled to these by hopping up to (2n11)th order in t,
where we setn51 in this paper. We identify the lowest
energy state among the states of which the total boson n
ber is zero as the MI state and the lowest one among
8420 ©1999 The American Physical Society
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states with the total boson number being unity as the SF
state, and determine the phase boundary by locating the
ues ofm (.0) andt at which the energies of the two stat
become equal.

Since the basis set includes those states coupled up t
third order int, the result will be the same as that from th
energy perturbation to the same order. The numbers of s
involved in this calculation are 4L429L2 and 4L211 in the
cases of the BG/SF state and of the MI state, respectiv
We adopt the Lanczos method11 to obtain the lowest eigen
value and the corresponding eigenstate, and take 2000 d
der realizations for each system size. In the pure caseD
50), we find the phase diagram, which is consistent with
previous perturbation result of Freericks and Monien.10

Figure 1 shows the zero-temperature phase diagram
the disorder strengthD50.2 up to the system sizeL510
obtained from the truncated basis set. The shape of the
lobe constructed from the previous perturbation result in
pure case10 should be round and shorter than that obtain
here. In the absence of hopping (t50), where no SF state i
possible, the phase boundary~between the MI and BG states!
approaches, as the system sizeL is increased, 0.52D, as it
should.

To distinguish the SF phase from the BG phase, we
localization argument, and define the participation ratio a

pL5F S (
i

pi
2D 2

(
i

pi
4 G

av

, ~3!

wherepi is the probability that particles are found at sitei,5

and@•••#av denotes the average over different disorder re
izations. At the generic SF-BG transition, the participati
ratio satisfies the scaling relation

pL

L2
5L2yp̃~d tL

1/n!, ~4!

whered t5(t2tc)/tc is the distance from the critical pointtc
and n is the correlation length exponent. Here the scal
function p̃ and an additional exponenty have been
introduced.5,12 Note that since we just consider the states
which the total number of bosons is unity, this method

FIG. 1. Phase diagram in the (t,m) plane for the disorder
strengthD50.2. Each line gives an estimate of the phase bound
between the MI state and the SF or BG state, as determine
matrix diagonalization.
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useful to determine the critical point very close to the M
phase, i.e., on the phase boundary in Fig. 1.

Figure 2 presents the finite-size scaling of the partici
tion ratio of the SF/BG state. From this scaling behavior,
obtainy50.9260.03, n51.560.3, andtc50.1260.02; the
latter separates the SF state from the BG one ast ~or m) is
varied along the phase boundary in Fig. 1. Accordingly,
system undergoes a direct MI-SF transition as the ph
boundary is crossed for smallm (&0.18 in Fig. 1!, i.e., near
the tip of an MI lobe. Note that the possible origin of th
direct MI-SF transition, as discussed later, is the abunda
of particle-hole excitations around the tip of a lobe. Th
suggests that the size of the basis set including the state
to the third order int might not be sufficient to determine th
phase boundary unambiguously and to compute the co
sponding exponents accurately. Such abundance of part
hole excitations is expected to forbid the perturbation cal
lation to be accurate, possibly causing the discrepa
between the perturbative results10 and the quantum Monte
Carlo results8 in the pure case without disorder.

It is thus needed to investigate the transition via quant
Monte Carlo simulations, which are in general more reliab
For that purpose, we follow the standard procedure8,9 to
transform the 2D quantum phase Hamiltonian in Eq.~2! to
the ~211!-dimensional classical action

S5
1

K (
~ i ,t !

¹•J50 F1

2
J~ i ,t !

2 2~m1v i !J~ i ,t !
t G , ~5!

where the integer current vectorJ( i ,t)5(J( i ,t)
x ,J( i ,t)

y ,J( i ,t)
t ) is

divergenceless on each lattice site (i ,t) as indicated. The
coupling constantK, corresponding roughly toAt/U, takes
the role of the temperature.

We perform quantum Monte Carlo simulations on t
classical action in Eq.~5!, employing the heat bath
algorithm9 at a classical temperatureK. An important quan-
tity in the analysis is the zero-frequency superfluid stiffne

r5
1

Lt
@^nx

2&#av , ~6!

wherenx5(1/L)( ( i ,t)J( i ,t)
x is the winding number along the

~spatial! x direction. The finite-size scaling behavior of th
superfluid stiffness9,13 reads

r5L2~d1z22!r̃~L1/nd,Lt /Lz!, ~7!

ry
by

FIG. 2. Scaling plot of the participation ratiopL near the MI-
SF/BG phase boundary, which yieldstc50.12, y50.92, andn
51.5.
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whered5(K2Kc)/Kc is the distance from the critical poin
Kc , the spatial dimensiond is two in this paper, andz is the
dynamical critical exponent.

In order to investigate the scaling behavior, the value oz
should be known in advance. At the very tip of an MI lob
the direct MI-SF transition in the presence of weak disor
shows the same behavior as the pure system: the dynam
critical exponent z51 and the correlation exponentn
50.67.5 Off the tip, we expect the dynamical exponentz
52 in the disordered system since the compressibility is
nite at the transition point;4 the same number is expecte
even in the pure case. We, thus, set the dynamical expo
z52, and measure the correlation length exponentn, the
value of which was estimated in the previous studies to
0.960.1 in the BG-SF transition5,9 and 0.560.1 in the
MI-SF transition.4,8

KeepingLt /Lz constant, we simulate the systems of siz
L3L3Lt563639, 838316, and 10310325. To tune
the transition, we vary the temperatureK while fixing m and
D. We further take the average over 602200 disorder real-
izations and, for each disorder realization, perform typica
4000280000 Monte Carlo sweeps for equilibration, fo
lowed by equally many sweeps for measurement. The eq
bration is checked through the use of the standard equili
tion test technique.9,14

In Fig. 3, we show the results withz52 at m50.3 and
D50.1. One can identify clearly the common crossing po
of Lzr at Kc50.25760.003 as the critical point. The inset o
Fig. 3 shows a scaling plot, which yieldsn50.560.1, the
same value as the pure model.4 On the other hand, in the
strong-disorder case (D50.3) shown in Fig. 4, the scaling
behavior yieldsn50.960.1, which agrees well with the pre

FIG. 3. Behavior of the stiffnessr for m50.3 andD50.1, with
the aspect ratio kept constant forz52. The inset shows a scalin
plot with Kc50.257 andn50.5.

FIG. 4. Behavior of the stiffnessr for m50.3 andD50.3, with
the aspect ratio kept constant forz52. The inset shows a scalin
plot with Kc50.223 andn50.9.
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vious results of the BG-SF transition.4,5,9 These demonstrate
that in the weak disorder regime a direct MI-SF transiti
takes place not only at the tip but also off the tip of the M
lobe. Figure 5 presents the critical temperatureKc as a func-
tion of the disorder strengthD for m50.3, displaying the
direct MI-SF transition occurring forD,0.16. It is of inter-
est that the point on which the value of the correlation len
exponentn changes appears to have the maximum slope
the Kc-D curve.

Figure 6 summarizes the phase diagram of the disorde
boson Hubbard model at the disorder strengthD50.2. The
phase boundary between the MI and the BG phases is
mated by means of the matrix diagonalization in the syst
of sizeL510. Here, we have used the results in Refs. 5 a
10 to scaleK as a function oft, which is valid only for small
t.

Finally, we discuss the possible origin of the direct MI-S
transition around the tip of an MI lobe. One might think th
off the tip the BG phase intervenes very slimly between
MI and SF phases and that our results supporting the di
MI-SF transition merely reflect finite-size effects. Be this t
case, the localization length would be large near the tip
the BG phase would manifest itself only on the length sc
exceeding the system size. Then, as pointed out in Ref. 6
anomalous behavior is expected to occur to change the
relation exponentn, suggesting continuous change of th
exponent with the thickness of the BG phase near the tip.
the other hand, our results in Figs. 5 and 6 indicate that
exponent changes quite abruptly, making the above scen
rather unlikely. Near the tip, the particle-hole excitations a

FIG. 5. Critical pointKc as a function of the disorder strengthD
for m50.3. The solid dots indicate the direct MI-SF transitio
points and the open dots the BG-SF transition points.

FIG. 6. Phase diagram in the (K,m) plane for D50.2. The
dotted line~without symbols! corresponds to the rescaled data fro
the matrix diagonalization method, while the solid and dashed li
~with symbols! are the results of quantum Monte Carlo simulation
The two points marked by crosses represent the results in Ref
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ubiquitous and presumably tend to suppress the disorde
fects, allowing the possibility of an extended state for t
extra boson. Thus the resulting direct MI-SF transiti
around the tip may reflect the peculiar nature of boson lo
ization.

In summary, we have studied the disordered boson H
bard model by means of the matrix diagonalization with
stricted basis states, which include those states overlap
with each other through nearest-neighbor hopping up to
third order. The finite-size scaling of the participation ratio
D50.2 gives evidence for the direct MI-SF transition at
incommensurate value of the boson density. To investig
this direct transition more clearly, we have investigated
scaling behavior of the superfluid stiffness via quant
e

ef-
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b-
-
ng
e
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te
e

Monte Carlo simulations and found that as the disor
strength is varied, the value of the correlation exponenn
changes rather abruptly from the weak disorder value 0.5
the strong disorder one 0.9. This indicates that the dir
MI-SF transition occurs for weak disorder at an incomme
surate density. The possible origin of this transition could
the abundance of the particle-hole excitations around the
of an MI lobe, which suggests the peculiar nature of bos
localization.
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