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While the emergence of a power-law degree distribution in com-
plex networks is intriguing, the degree exponent is not universal.
Here we show that the betweenness centrality displays a power-
law distribution with an exponent �, which is robust, and use it to
classify the scale-free networks. We have observed two universal-
ity classes with � � 2.2(1) and 2.0, respectively. Real-world net-
works for the former are the protein-interaction networks, the
metabolic networks for eukaryotes and bacteria, and the coau-
thorship network, and those for the latter one are the Internet, the
World Wide Web, and the metabolic networks for Archaea. Distinct
features of the mass-distance relation, generic topology of geo-
desics, and resilience under attack of the two classes are identified.
Various model networks also belong to either of the two classes,
while their degree exponents are tunable.

Emergence of a power law in the degree distribution PD(k) � k��

in complex networks is an interesting self-organized phenom-
enon in complex systems (1–3). Here, the degree k means the
number of edges incident upon a given vertex. Such a network is
called scale-free (SF; ref. 4). Real-world networks that are SF
include the author-collaboration network (5) in social systems, the
protein-interaction network (PIN; ref. 6), and the metabolic net-
work (7) in biological systems, and the Internet (8) and World Wide
Web (WWW; refs. 9 and 10) in communication systems. The
power-law behavior means that most vertices are connected
sparsely, while a few vertices are connected intensively to many
others and play an important role in functionality. While the
emergence of such a SF behavior in degree distribution itself is
surprising, the degree exponent � is not universal and depends on
the detail of network structure. As listed in Table 1, numerical
values of the exponent � for various systems are diverse, but most
of them are in the range of 2 � � � 3. From the viewpoint of
theoretical physics, it would be interesting to search a universal
quantity associated with SF networks.

Recently a physical quantity called ‘‘load’’ was introduced as
a candidate for the universal quantity in SF networks. It quan-
tifies the load of a vertex in the transport of data packet along
the shortest pathways in SF networks (11). It was shown that the
load distribution exhibits a power law, PL(�) � ���, and the
exponent � is robust as � � 2.2 for diverse SF networks with
various degree exponents in the range of 2 � � �3. Since the
universal behavior of the load exponent was obtained empiri-
cally, fundamental questions such as how the load exponent is
robust in association with network topology or the possibility of
any other universal classes existing have not been explored yet.
In this paper, we address those issues in detail.

While the load is a dynamic quantity, it is closely related to a
static quantity, the ‘‘betweenness centrality’’ (BC), commonly
used in sociology to quantify how influential a given person in
a society is (12). To be specific, BC is defined as follows. Let us
consider the set of the shortest pathways, or geodesics, between
a pair of vertices (i, j) and denote their number by C(i, j). Among
them, the number of the shortest pathways running through a
vertex k is denoted by Ck(i, j). The fraction gk(i, j) � Ck(i, j)�C(i, j)
may be interpreted as the amount of the role played by the vertex
k in social relation between two persons i and j. Then the BC of
the vertex k is defined as the accumulated sum of gk(i, j) over all
ordered pairs for which a geodesic exists, i.e.,

gk � �
i�j

gk�i, j� � �
i�j

Ck�i, j�
C�i, j�

. [1]

Because of only slight difference between load and BC, both
quantities behave very closely. In fact, the BC gk of each vertex
is exactly the same as the load for tree graphs. In general,
distributions of the two are indistinguishable within available
resolutions. The BC distribution follows a power law,

PB�g� � g��, [2]

where g means BC, and the exponent � is the same as the load
exponent �. Since the topological feature of a network can be
grasped more transparently by using BC, we deal with BC in this
work.

Based on numerical measurements of the BC exponent for a
variety of SF networks, we find that SF networks can be classified
into only two classes, say, classs I and II. For class I the BC
exponent is � � 2.2(1), and for class II it is � � 2.0(1). We
conjecture the BC exponent for class II to be exactly � � 2, since
it can be derived analytically for simple models. We show that
such different universal behaviors in the BC distribution origi-
nate from different generic topological features of networks.
Moreover, we study a physical problem, the resilience of net-
works under an attack, showing different behaviors for each
class, as a result of such difference in generic topologies. It is
found that the networks of class II are much more vulnerable to
the attack than those for class I.
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Fig. 1. The BC distributions of real-world networks. (a) Networks belonging
to class I: coauthorship network (	), core of PIN of yeast (
) by Ito et al. (16),
and metabolic network of E. nidulans (EN, �). The solid line is a fitted line with
a slope of � 2.2. (b) Networks belonging to class II: WWW of www.nd.edu (E)
and Internet AS as of October, 2001 (�). The solid line has a slope of �2.0.
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To obtain our results, we use available data for real-world
networks or existing algorithms for model networks. Once a SF
network is constructed, we select a pair of vertices (i, j) on the
network and identify the shortest pathways between them. Next, BC
is measured on each vertex along the shortest pathways by using the
modified version of the breath-first search algorithm introduced by
Newman (13, 14). We measure the BC distribution and the expo-
nent � for a variety of networks both real world and in silico.

Real-World and Artificial Networks Investigated
The networks that we find to belong to class I with � � 2.2(1)
include: (i) the coauthorship network in the field of neuro-
science, published in the period of 1991–1998 (15), where
vertices represent scientists, and they are connected if they wrote
a paper together; (ii) the PIN of the yeast Saccharomyces
cerevisiae compiled by Jeong et al. (6) (PIN1), where vertices
represent proteins, and the two proteins are connected if they
interact§; (iii) the core of the PIN of the yeast S. cerevisiae (PIN2)
obtained by Ito et al. (16, ¶); (iv) the metabolic networks for 5
species of eukaryotes and 32 species of bacteria in ref. 7, where
vertices represent substrates, and they are connected if a reaction
occurs between two substrates via enzymes (the reaction nor-
mally occurs in one direction, so that the network is directed);
(v) the Barabási–Albert (BA) model (17), when the number of
incident edges of an incoming vertex m � 2; (vi) the geometric
growth model by Huberman and Adamic (10); (vii) the copying
model (18), the degree exponent of which is in the range of 2 �
� � 3; (viii) the undirected or the directed static model (11), the
degree exponent of which is in the range of 2 � � � 3 or 2 � (�in,
�out) � 3, respectively; (ix) the accelerated-growth model pro-
posed by Dorogovtsev and Mendes (19); (x) the fitness model
(20) with a flat fitness distribution; and (xi) the stochastic model
for the PINs introduced by Solé et al. (21). All those networks
(i–xi) exhibit a power-law behavior in the BC distribution with
the exponent � � 2.2(1). Detailed properties of each network are
listed in Table 1. The representative BC distributions for real-
world networks (i, iii, and iv) are shown in Fig. 1a.

The networks that we find to belong to class II with � � 2.0
include: (xii) the Internet at the autonomous systems (ASs) level as
of October, 2001 (23); (xiii) the metabolic networks for six species
of Archaea in ref. 7; (xiv) the WWW of www.nd.edu (9); (xv) the BA
model with m � 1 (17); and (xvi) the deterministic model by Jung
et al. (24). In particular, the networks xv and xvi are of tree structure,
where the edge BC distribution can be solved analytically. The
detailed properties of each network are listed in Table 1. The BC
distributions for real-world networks xii and xiv are shown in Fig. 1b.
Since the BC exponents of each class are very close numerically, one
may wonder whether there exist really two different universal
classes apart from error bar. To make this point clear, we plot the
BC distributions for the BA model with m � 1, 2, and 3 in Fig. 2,
obtained from a large system size, n � 3 	 105. We can see clearly
different behaviors between the two BC distributions for the cases
of m � 1 (class II) and m � 2 and 3 (class I).

Topology of the Shortest Pathways
To understand the generic topological features of the networks
in each class, we particularly focus on the topology of the shortest
pathways between two vertices separated by a distance d. Along
the shortest pathways, we count the total number of vertices
M(d) lying on these roads, averaged over all pairs of vertices
separated by the same distance d. Adopting from the fractal
theory, M(d) is called the ‘‘mass-distance’’ relation. We find that
it behaves in different ways for each class: for class I M(d)
behaves nonlinearly (Fig. 3 a and b), and for class II it is roughly
linear (Fig. 3 c and d).

For the networks belonging to class I such as the PIN2 (iii) and
the metabolic network for eukaryotes (iv), M(d) exhibits a
nonmonotonic behavior (Fig. 3 a and b), namely, it exhibits a
hump at dh � 10 for iii or dh � 14 for iv. To understand why such
a hump arises, we visualize the topology of the shortest pathways
between a pair of vertices, taken from the metabolic network of
a eukaryote organism, Emericella nidulans, as a prototypical
example for class I. Fig. 4a shows such a graph with a linear size
of 26 edges (d � 26), where an edge between a substrate and an
enzyme is taken as the unit of length. From Fig. 4a, one can see
that there exists a blob structure inside which vertices are
multiply connected, while vertices outside are singly connected.
What is characteristic for class I is that the blob is localized in a
small region. To see this, we measure the mass density m(r; d),
the average number of substrates or enzymes located at position
r [¥r � 1

d m(r; d) � M(d)]. The average is taken over all possible
pairs of vertices (56 pairs), separated by the same distance d �

§The network is composed of disconnected clusters of different sizes, namely, small isolated
clusters as well as a giant cluster. For both ii and xi, the degree distribution is likely to follow
a power law, but there needs to be an exponential cutoff to describe its tail behavior for
finite systems. However, it converges to a clean power law for xi as system size increases,
but the converging rate is rather slow (22). Despite this abnormal behavior in the degree
distribution for finite systems, the BC distribution follows a pure power law with the
exponent � � 2.2(1) in ii and xi.

¶In contrast to ii, the degree distribution obeys a power law.

Table 1. Natures of diverse SF networks

Class System N �k� � � Ref.

Class I (i) Coauthorship 205,202 11.8 2.2 (1) 2.2 (1) 15
(ii) PIN1 1,846 2.39 2.4 (exp. cutoff) 2.2 (2) 6
(iii) PIN2 797 1.96 2.7 (1) 2.2 (1) 16
(iv) Metabolic (eukaryotes, bacteria) �103 2–4 2.0–2.4 2.2 (1) 7
(v) BA model (m � 2) 3	105 2m 2.0–3.0 2.2 (1) 17
(vi) Huberman–Adamic model 105 O(1) 3.0 (1) 2.2 (1) 10
(vii) Copying model 104 4 2.0–3.0 2.2 (1) 18
(viii) Static model 104 4, 6, 8 2.0–3.0 2.2 (1) 11
(ix) Accelerated-growth model 104 O(1) 3.0 (1) 2.2 (1) 19
(x) Fitness model 104 4 2.25 2.2 (1) 20
(xi) PIN model 104 �2 2–3 2.2 (1) 21

Class IIa (xii) Internet AS 12,058 4.16 2.2 2.0 (1) 23
(xiii) Metabolic (Archaea) �103 2–4 2.0–2.3 2.0 (1) 7

Class IIb (xiv) WWW 325,729 4.51 2.1�2.45 2.0 9
(xv) BA tree (m � 1)  2 �2.0 2.0 17
(xvi) Deterministic tree  2 �2.0 2.0 24

Tabulated for each network are the size N, the mean degree �k�, the degree exponent �, and the BC exponent �.
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26. Note that the metabolic network is directed such that the
position r is uniquely defined. As shown in Fig. 5, we find that
m(r; d) is sharply peaked at r � 3 and is larger than 1 only at r �
2, 4, and 6 for substrates. Thus the blob structure is present even
after taking averages and is localized in a small region of size db

� 4�5, centered at almost the same position r � 3�4 for
different pairs of vertices. The blob size db can be measured in
another way. In a given graph of the shortest pathways, we delete
singly connected substrates successively until none is left and
measure the linear size of the remaining structure. When

averaged over all pairs of vertices with separations d � 10, it
comes out to be db � 4.5, well consistent with the value obtained
previously for d � 26 only. Due to this blob structure, the
mass-distance relation increases abruptly across d � 4 as shown
in Fig. 3b.

Next, we measure the average mass of blob, that is, the number
of vertices inside a blob for a given graph of the shortest pathways
with separation d, averaged over all pairs of vertices with the
same separation. We find that the average blob mass is distrib-
uted broadly in the range of 3 � mb � 23. In particular, relatively
heavy blob masses, mb � 15�23, mainly come from the graphs
with a linear size of d � 8�14. Due to those blobs with heavy mass,
the mass-distance relation exhibits a hump and decreases at around
d � 14�16, beyond which the mass M(d) increases linearly by the
presence of singly connected vertices. In short, the anomalous
behavior in the mass-distance relation is due to the presence of a

Fig. 2. Comparison of the BC distributions for the two classes. BA models
with m � 1, 2, and 3 are simulated for a large system size, n � 3 	 105, averaged
over 10 configurations. The dotted line has a slope of �2.0, and the dashed
line has a slope of �2.2.

Fig. 3. The mass-distance relation M(d). (a) Core of PIN of yeast obtained by
Ito et al. (16). (b) Metabolic networks of eukaryotes. Data are averaged over
all five organisms in ref. 7. Note that in this case we count only substrates for
M(d). (c) Internet AS as of October, 2001. (d) WWW of www.nd.edu.

Fig. 4. Topology of the shortest pathways. (a) The metabolic network of E.
nidulans (eukaryote) of length 26. (b) The Internet AS of length 10. (c) The
metabolic network of Methanococcus jannaschii (Archaea) of length 20.
(d) WWW of www.nd.edu of length 20. In a and c, circles denote substrates,
and rectangles denote intermediate states.
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compact and localized blob structure in the topology of the shortest
pathways between a pair of vertices for the metabolic network of
eukaryotes. We have checked the mass-distance relations and the
graphs of the shortest pathways for other networks belonging to
class I such as the PIN2 and metabolic networks for other organisms
and found that such topological features are generic, generating the
anomalous behavior in the mass-distance relation. It still remains a
challenge to derive the BC exponent � � 2.2 analytically from such
structures.

For class II, the mass depends on distance linearly, M(d) � Ad
for large d (Fig. 3 c and d). Despite the linear dependence, the
shortest pathway topology for the case of A � 1 is more
complicated than that of the simple tree structure where A � 1.
Therefore, the SF networks in class II are subdivided into two
types called classes IIa and IIb, respectively. For class IIa A � 1,
and the topology of the shortest pathways includes multiply
connected vertices (Fig. 4 b and c), and for class IIb A � 1, and
the shortest pathway is almost singly connected (Fig. 4d).
Examples in real-world networks in class IIa are the Internet at
the AS level (A � 4.5) and the metabolic network for Archaea
(A � 2.0), while that in class IIb is the WWW (A � 1.0).

Let us examine the topological features of the shortest path-
ways for the networks in classes IIa and IIb more closely. First,
for class IIa, we visualize in Fig. 4b a shortest pathway in the
Internet system between a pair of vertices separated by 10 edges,
the farthest separation. It contains a blob structure, but the blob
is rather extended as db � 5, comparable to the maximum
separation d � 10. We obtain db � 5 for d � 11 for another
system. For comparison, db � 4.5 for d � 26 in class I. Moreover,
the featureless mass-position dependence m(r; d) we found
implies that while most blobs are located almost in the middle of
the shortest pathways, which seems to be caused by the geometric
effect, there are a finite number of blobs located at the verge of
the shortest pathways. Note that m(r; d) � m(d � r; d), since the
Internet is undirected. Owing to the extended structure and
scattered location of the blob, the mass-distance relation exhibits
the linear behavior, M(d) � Ad, with A � 4.5. The extended blob
structure is observed also in the metabolic network for Archaea
(Fig. 4c). Since the network in this case is directed, the symmetry
in m(r; d) does not hold. However, the blob structure extends to
almost one half of maximum separation, and the shortest
pathways are very diverse, so that their topological property such
as the mass-distance relation M(d) is similar to that of the
Internet.

The WWW is an example belonging to class IIb. For this
network, the mass-distance relation exhibits M(d) � 1.0d, sug-

gesting that the topology of the shortest pathway is almost singly
connected, which is confirmed in Fig. 4d. When a SF network is
of tree structure, one can solve the distribution of BC running
through each edge analytically and obtain the BC exponent to be
� � 2. A derivation of this exact result is presented in Appendix.

Comparison of the Resilience Under Attack
Thus far we have investigated the topological features of the
shortest pathways of SF networks of each class. Then what would
be distinct physical phenomena originated from such different
topological features? Associated with this question, we investigate
a problem of the resilience of a network under a malicious attack.
It is known that SF networks are extremely vulnerable to the
intentional attack to a few vertices with high degree, while it is very
robust to random failures (25–27). To compare how vulnerable a
network in each different class is under such attacks, we first
construct a directed network, the numbers of vertices and edges and
degree distribution of which are identical to those of the WWW
(xiv) but with a BC exponent of 2.2. It can be generated, for
example, by following the stochastic rule introduced in the directed
static model (11). For both the WWW in real-world and artificial
model network, we remove vertices in the descending order of BC
successively. As vertices are removed, both the mean distance �d�
between two vertices, known as the diameter, and the relative size
of the giant cluster S are measured as a function of the fraction of
removed vertices f. As can be seen in Fig. 6a, the diameter of the
WWW with � � 2.0 (class IIb) increases more rapidly than that with
� � 2.2 (class I) and shows discrete jumps while vertices are
removed. Also the relative size of the largest cluster decreases more
rapidly for � � 2.0 than for � � 2.2 (Fig. 6b). This behavior arises
from the fact that the shortest pathway consists of mainly singly

Fig. 5. The mass density. m(r; d) for E. nidulans with d � 26. Circles denote
substrates, and rectangles denote intermediate states.

Fig. 6. Attack vulnerability of the SF networks. The WWW (� � 2.0; ■ ) and
the artificial directed SF network with � � 2.2 (�), the Internet (� � 2.0; F), and
the artificial undirected SF network with � � 2.2 (E): changes in network
diameter (a and c) and the relative size of the largest cluster (b and d) are
shown as a function of f, the fraction of removed vertices measured in
percent (%).
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connected vertices for class IIb such that there are no alternative
pathways with the same distance when a single vertex lying on the
shortest pathway is removed. For the Internet in real-world net-
works with � � 2.0 in class IIa and an artificial network with � �
2.2 with the same numbers of vertices and edges and the identical
degree distribution, the differences in the diameter �d� and in the
relative size S of the largest cluster appear to be rather small (Fig.
6 c and d) in comparison with the case of the WWW (Fig. 6 a and
b). This is because the shortest pathways are multiply connected for
class IIa.

Conclusions
In conclusion, we have found that the BC can determine the
universal behavior of SF networks. By examining a variety of
real-world and artificial SF networks, we observed two distinct
universality classes with BC exponents of � � 2.2(1) (class I) and
2.0 (class II), respectively. The mass-distance relation is introduced
to characterize the topological features of the shortest pathways. It
shows a hump for class I networks due to compact and localized
blobs in the shortest pathway topologies, while it is roughly linear
for the class II networks, which are more or less tree-like. The class
II networks can be divided further into two types depending on
whether the shortest pathway topology contains diversified path-
ways (class IIa) or mostly singly connected ones (class IIb). Distinct
features of the resilience under attack arising from the different
topologies of the shortest pathways are identified also. Since SF
networks show the small-world property, the topology of the
shortest pathways should be of relevance for characterizing the
network geometry. Indeed the mass-distance relations for different
universality classes show different behaviors. Such a relation be-
tween the universality class and the topological features of the
shortest pathways may be understood from the perspective of the
fact that the geometric fractal structure of the magnetic domains in
equilibrium spin systems at criticality can classify the universality
classes. Further characterizations in static and dynamic properties
and possible evolutionary origin of the universality classes are
interesting questions left for future study.

Appendix
Here we present the analytic derivation of the BC distribution for
a tree structure; however, the derivation is carried out for the
edge BC rather than the vertex version.� The edge BC is defined
on edges as in Eq. 1, with the subscript k now denoting a bond.
Without any rigorous proof, we assume that the distributions of
vertex BC and edge BC behave in the same manner particularly
on tree structures, which is confirmed by numerical simulations.
We also checked the identity between the vertex BC and the edge
BC distributions for a deterministic model of SF tree introduced
by Jung et al. (24), which will be published elsewhere.

We consider a growing tree network such as the BA type
model with m � 1, where a newly introduced vertex attaches an
edge to an already existing vertex j with the probability propor-
tional to its degree as (kj 
 a)�¥�(k� 
 a). Then the network
consists of N(t) � t 
 1 vertices and L(t) � t edges at time t. The
stationary degree distribution is of a power law with � � 3 
 a
(28, 29). Each edge of a tree divides the vertices into two groups
attached to either sides of the edge. Let Ps(m, t) be the

probability that the edge born at time s bridges a cluster with m
vertices on the descendant side and another with remaining t 

1� m vertices on the ancestor side. Due to the tree structure, the
BC running through that edge born at s is given as g � 2m(t 

1 � m) independent of the birth time s. The probability Ps(m, t)
evolves as a new vertex attaches to one of the two clusters. The
rate equation for this process is written as

Ps�m, t � 1� � r1�m, t�Ps�m, t� � r2�m � 1, t�Ps�m � 1, t�,
[3]

where r1(m, t) is the probability that a new vertex attaches to the
cluster with (t 
 1 � m) vertices on the ancestor side, and
r2(m � 1, t) with (m � 1) vertices on the descendant side. They
are given explicitly as

r1�m, t� � 1 � r2�m, t� �
�2 � a��t � m� � a � 1

2t � a�t � 1�
. [4]

Since the amount of the BC on the edge s is independent of the
birth time, we introduce P(m, t),

P�m, t� �
1
t �

s�1

t

Ps�m, t�, [5]

which is the probability for a certain edge to locate between two
clusters with m and t 
 1 � m vertices averaged over its birth
time. The BC on that edge is still given by 2m(t 
 1 � m). In
terms of P(m, t), Eq. 3 can be written as

�t � 1�P�m, t � 1� � r1�m, t�tP�m, t�

� r2�m � 1, t�tP�m � 1, t�. [6]

In the limit of t3 , one may rewrite P(m, t) in a scaling form,
P(m, t) � P(m�t) and then Eq. 6 is rewritten as

�t � 1�P�x� � tP�x� � �x
dP�x�

dx
� P�x� [7]

where x � m�t and the approximation P(x � 1�t) � P(x) �
(1�t)dP(x)�dx has been used. From this we obtain that

P�x� �
1
x2 , [8]

independent of the tuning parameter a. By using g � 2(t 
 1 �
m)m � 2t2x for large t and finite m, Eq. 8 becomes

PB�g� �
1
g2 . [9]

Thus � � 2 is obtained for the tree structure, independent of
� � 2. General finite size-scaling relations for PB(g) are discussed
in ref. 30.
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