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Abstract. With a view to connecting random mutation on the molecular level to punctuated
equilibrium behaviour on the phenotype level, we propose a new model for biological evolution,
which incorporates random mutation and natural selection. In this scheme the system evolves
continuously into new configurations, yielding non-stationary behaviour of the total fitness.
Furthermore, both the waiting time distribution of species and the avalanche size distribution
display power-law behaviours with exponents close to two, which are consistent with the fossil
data. These features are rather robust, indicating the key role of entropy.

The idea of punctuated equilibrium, based on the new interpretation of the fossil record,
holds that biological evolution proceeds not at a steady pace but in an intermittent manner
[1]. Simple models attempting to describe such phenomena usually employ the extremal
dynamics, which evolves the system by sequentially updating or mutating the species
with the globally minimum value of fitness [2, 3]. This indeed drives the system into
a self-organized critical state, characterized by power-law behaviour, and such extremal
dynamics is regarded as an essential ingredient to achieve the self-organized criticality.
In reality, however, there is no reason why mutation necessarily occurs in the species
with the minimum fitness. On the contrary, on the molecular level most evolutionary
changes and most of variability within a species are believed to be caused not by selection
but by random drift of mutant genes which are selectively equivalent [4]. In contrast to
such randomness on the molecular level, the fossil data exhibit critical behaviour on the
phenotypic level: for example, it is known that the numberMt of genera with lifetimet
displays the power-law behaviourMt ∼ t−α with α ≈ 2 [5]. Here, the longer a genus exists
in the ecosystem, the more sub-genera should be generated; it is thus expected that the
number of sub-families is proportional to the length of the period of existence [6, 7]. Indeed
recent analysis of fossil records has revealed such structure in the taxonomic system that the
numberMn of taxa havingn sub-taxa follows essentially the same power-law distribution
Mn ∼ n−α

′
with α′ ≈ 1.84 to 2.41 [8]. These imply that there does not exist a relevant

time scale characterizing the length of the period during which a certain species dominates
the population. Furthermore, it is known that a few mass extinction events as well as many
background events (of smaller sizes) have occurred during the last 600 million years [9],
which also exhibit power-law behaviour. Namely, the distribution of extinction events of
size s is observed to followM̃(s) ∼ s−τ with 1 . τ . 2 [10], again manifesting scale
invariance.
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This work attempts to provide a natural link between the behaviour on the molecular
level and that on the phenotypic level. For this purpose, we propose a new model of
evolution, which is more realistic than existing models, and show how the power-law
behaviour emerges on the phenotype level. Our model incorporates therandom mutation
on the molecular level and introduces an additional step determining acceptance or rejection
of a particular mutation. The latter mimics thenatural selectionprocess, connecting the
molecular and phenotypic levels. Here the entropy of the ecosystem plays a key role:
when information is transferred from the environment to the species via mutation, the
information-theoretic entropy of the species drops. Although the subsequent (random)
mutation may restore the previous level of the entropy by re-establishing disorder, the
mutation is on the average oriented to lower the entropy during the process of evolution
[6]. This corresponds to transferring information from the environment to the species in the
viewpoint of information theory, where entropy stands for missing (negative) information.
We consider various forms of the fitness function, and measure the waiting time distributions
of the species having maximum fitness values as well as of a typical species. They all show
power-law behaviour with exponents close to two. We also investigate the size distributions
of ‘avalanches’, i.e. series of mutations triggered by single starting mutations, again to obtain
power-law behaviour, which is consistent with the observed distribution of extinction events.

Consider an ecosystem consisting ofN species, in interaction with the environment.
The configuration of the ecosystem is described byx ≡ {xi}, where xi represents the
configuration of theith species. Usually,xi is taken to be a number between zero and unity
(0 6 xi 6 1). We assume that the fitness of theith species is modelled by a real function
fi(x), which may in general depend upon the configuration of neighbouring species as well
as its own configurationxi . The total fitnessF(x) is then defined to be the sum of the
fitness values of all species in the system:

F(x) =
N∑
i=1

fi(x). (1)

Accordingly, the phase space volume (or the number of accessible states)�(F) for a given
value of the total fitnessF reads

�(F) =
N∏
j=1

∫ 1

0
dxj δ

[
F −

N∑
i=1

fi(x)

]
(2)

the logarithm of which gives the entropy of the ecosystem.
In an ecosystem, mutation is an exception to the regularity of the process of DNA

replication, which normally involves precise copying of the hereditary information encoded
in nucleotide sequences. We thus choose randomly a single species in the system and
mutate the chosen species only, since there is no obvious reason that mutations occur in
the nearest neighbouring species simultaneously [11]. The natural selection via which the
mutation is accepted or rejected is determined by the entropy in our scheme. We assume
that the change in the total entropyStot ≡ S + S0, whereS andS0 are the entropy of the
ecosystem and that of the environment, respectively, is negligible during the information
transfer from the environment to the ecosystem (i.e. the entropy flow from the ecosystem
to the environment). Namely, the information transfer is assumed to be almost reversible.
(Relaxation of the reversibility assumption will be discussed later.) The probabilityP(x)

of finding the system in configurationx in the stationary state is simply proportional to the
number�0 of accessible states for the environment:

P(x) ∝ �0 = exp[S0] = C exp[−S(F )] (3)
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whereC ≡ exp[Stot] is a constant and the entropy of the ecosystem, given by the logarithm of
the number of accessible states for the systemS(F ) = ln�(F), depends on the configuration
through the total fitnessF ≡ F(x). The probability distribution given by equation (3) can
be attained dynamically by imposing the detailed balance condition

W(x → x ′)
W(x ′ → x)

= exp[S(F )− S(F ′)] (4)

where the transition probabilityW(x→x ′) describes the mutation from configurationx to
configurationx ′ andF ′ ≡ F(x ′) denotes the total fitness of the ecosystem in configuration
x ′. We thus compute the entropy change1S ≡ S(F ′) − S(F ) during the process of
mutationx → x ′, and accept the mutation when1S < 0; for 1S > 0, the mutation is
accepted with probability exp(−1S). In consequence, the entropy of the ecosystem tends
to decrease while that of the environment tends to increase, since the total entropy remains
approximately constant (and cannot decrease in particular). Thus the entropy is directed to
flow from the ecosystem to the environment.

Interestingly, the dynamics described by equation (4) precisely corresponds to the
entropic sampling algorithm, which was successfully applied to the travelling salesman
problem [12]. In this algorithm, the entropy of the ecosystem is estimated as follows:
initially the entropyS(F ) is set equal to zero for all values of the total fitnessF . We then
obtain the histogramH(F) of the total fitness for a short run, which gives a new estimation
of S(F ):

S(F ) =
{
S(F ) for H(F) = 0

S(F )+ lnH(F) otherwise.
(5)

This yields the entropy increasing as the run proceeds. Once the stationary state is reached,
however, the increase due to more runs gives merely an additive constant (independent ofF ),
which is obviously irrelevant. Note also that this sampling has characteristics of frequency-
dependent selection [9] and yields a uniform distribution of the total fitness over the entire
space, which appears natural in a real ecosystem. It assists the system to escape from a local
maximum in the total fitness space and fall into a new local maximum, which corresponds
to a metastable phenotype of the ecosystem. In this manner, the ecosystem is allowed to
evolve into a new configuration by gathering information from the environment (i.e. by
reducing its entropy). In particular, the additional step determining the acceptance/rejection
of mutation naturally leads to correlations between the configuration before the mutation
and that after it. For the simplest Bak–Sneppen (BS)-type fitness [2]

fi = xi (6)

which allows the explicit evaluation of equation (2), the above algorithm indeed yields the
entropy in perfect coincidence with that obtained from equation (2) (up to an irrelevant
additive constant). This demonstrates the accuracy of the entropic sampling although other
forms of the fitness function in general do not allow analytic calculation to be compared.

In most of the existing models, the total fitness remains constant once the stationary
state is reached. This implies that the species in the present time and those in the past have
the same average adaptive power to the environment, which does not appear to be true
in reality [11]. In contrast, the new model, which takes into account the role of entropy,
leads to non-stationary behaviour of the total fitness. In the entropic sampling algorithm,
which is adopted in the new model, the mutation is encouraged to decrease the entropy of
the ecosystem and to transfer information from the environment to the species. Here the
entropy of the system increases if the system stays long in configurations with the same
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value ofF . Accordingly, the probability for the mutation making the system escape from
a region of the sameF is higher than that for the mutation having the system stay in that
region, producing non-stationary behaviour. In this way the system evolves continuously
into new configurations in the whole fitness landscape instead of staying at a single local
maximum, which reflects the interactions with the changing environment.

To compare with the fossil data, which give the exponentα close to two in the power-law
behaviours ofMt andMn, we have chosen a species at random and measured the distribution
of the interval between two consecutive mutations. The resulting (average) waiting time
distributionD(t) of the species, measured during the time 104 to 5×108 and averaged over
five independent runs with different initial configurations, is shown in figure 1. It indeed
exhibits a power-law behaviour [13],D ∼ t−ν for t > 3 with the exponentν = 2.07±0.02,
which is consistent with the frequency distribution of taxa observed in the fossil data; this is
significantly larger than the value 1.57 obtained in the conventional model with the extremal
dynamics [14]. In reality the contributions of various species to the fossil record are not all
equal and those species which have the maximum fitness values should dominate the record.
This implies the relative importance of the species having the maximum fitness values in the
comparison with the fossil data [6]. We have thus watched the species having maximum
fitness and measured the waiting time distribution of such species during the same time
interval, performing ten independent runs with different initial configurations. The resulting
waiting time distribution of the species having maximum fitness again exhibits a power-law
behaviour with the exponentν = 2.11± 0.04. The overall features are similar to those
of the average distribution shown in figure 1, but the power-law nature is more clear and
accurate, yielding an almost perfect fit fort > 3. The almost identical behaviour apparently
indicates the validity of the results regardless of the (unknown) relative importance in the
contributions to the fossil data.

To check whether these features are sensitive to the specific choice of the fitness function,
we have also considered other types of the fitness function, for example

fi =
∑
j

′
(xi − xj − Aij )2 (7)

where the prime restricts the summation to nearest-neighbouring species ofi on a square
lattice andAij has been introduced to accommodate the possibility of ‘frustration’ in the
interactions between species. Since the exact form of interactions between species is not
available,Aij are taken to be quenched random variables, taking the values between−5 and
5. Unlike in equation (6), the fitness in (7) is determined not only by its own configuration
but also by the configurations of neighbouring species, and can change due to the mutation in
neighbouring species, which is presumably more realistic. The fitness given by equation (7)
has been investigated in a system of 162 species arranged to form a square array with
linear sizeL = 16. The same entropic sampling algorithm again yields the waiting time
distribution of the species with maximum fitness values, which is fitted to the power-law
behaviour with exponentν = 2.08± 0.07, as shown in figure 2. The distribution has been
measured during the time 104 to 2× 107, and five independent runs have been performed
with different initial configurations and realizations ofAij [13]. The average waiting time
distribution of a typical species has also been obtained, revealing essentially the same
power-law behaviour except for the exponentν = 2.12±0.09. We have also checked other
distribution ofAij , and found that the overall behaviour still does not change qualitatively.
This apparently suggests that the general behaviour is rather insensitive to the specific form
of the fitness function, giving support to the use of a simple model without knowing the
precise dynamics of the evolution.
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Figure 1. Average waiting time distribution of a typical species, measured during the time 104

to 5× 108, in the system of 100 species, with the BS-type fitness function. The time has been
measured in units of the Monte Carlo steps per species. The dashed line corresponds to the
least-squares fit of the data fort > 8, giving the slope−2.07± 0.02.

When a mutation is accepted, the fitness of some species and consequently, the total
fitness change. This in turn leads to a new value of the entropy, which determines the
transition probability to other configurations, i.e. the mutation probability. Therefore, the
acceptance/rejection of a mutation depends on that of the previous mutation, and the resulting
correlations between the evolving configurations may be characterized by the distribution
of ‘avalanches’, which stand for the series of (accepted) mutations triggered by single
starting mutations. Since a mutation occurring on a species implies change of the species
into another, avalanches correspond to extinctions of species, for which fossil data give a
power-law behaviour in the size distribution, with the exponentτ between 1 and 2 [10].
To accommodate the large interval in the fossil analysis compared with the inverse of the
mutation rate in nature, we have regarded the mutation accepted within1 trials following a
mutation as constituting an avalanche, and measured the distributionD̃(s) of the avalanche
events with sizes for various values of the interval1. It is found thatD̃(s) indeed displays
a power-law behaviour,D̃(s) ∼ s−µ with the exponentµ ≈ 2, unless1 is too small.
Figure 3 shows the behaviour of the avalanche size distribution for1 = 10, computed up
to the time 106 in a system of 1000 species (with the BS-type fitness). The exponent is
given byµ = 1.98± 0.01, which is consistent with the analysis of the fossil data. We
have also considered larger values of the interval, up to1 = 20, and obtained almost the
same power-law behaviour withµ hardly changing; we thus believe that such power-law
behaviour is robust and persistent even for realistically large values of1.

We now consider the effects of irreversible information transfer in the natural selection
process. In this case, the total entropyStot does not remain constant but increases during the
information transfer, via which the ecosystem also increases its fitnessF . It is thus plausible
to assume thatStot is an increasing function ofF : Stot(F ) ≈ Stot(F0)+β(F −F0), for some
reference valueF0, whereβ ≡ ∂Stot/∂F |F=F0 > 0. This leads to the probability for the
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Figure 2. Waiting time distribution of the species having maximum fitness, measured during
the time 104 to 2× 107, in the system of 162 species with the Gaussian fitness function. The
dashed line represents the least-squares fit of the data fort > 3, with the slope−2.08± 0.07.

Figure 3. Avalanche size distribution measured with the interval1 = 10, in the system of 1000
species with the BS-type fitness function. The dashed line represents the least-squares fit of the
data, with the slope−1.98± 0.01.

ecosystem,P(x) ∝ exp[βF − S(F )], which can be attained by the following algorithm. In
determining acceptance or rejection of a mutation, we consider the change in the total fitness,
1F , in addition to the entropy change1S, and select the new configuration according to the
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probability min[1, e−1S+β1F ], whereβ measures the relative importance of the total fitness.
This algorithm, where the available range of the total fitness is controlled by the term eβ1F ,
yields qualitatively the same results: the system still displays the non-stationary behaviour
of the total fitness and the power-law behaviour of the waiting time distribution with a
similar value of the exponent. For example, for the fitness function given by equation (7),
we obtainν = 2.03± 0.05 unlessβ is too large. On the other hand, in the absence of
the entropy term, the generalized algorithm reduces to the standard (Metropolis) importance
sampling algorithm. This importance sampling, when used as an alternative to the entropic
sampling in the natural selection process, fails to yield the power-law behaviour; instead it in
general gives stretched exponential behaviour [15] which is rather close to the conventional
exponential behaviour, in apparent disagreement with observation.

We are grateful to S Y Park for his help in numerical works, and acknowledge the partial
support from the BSRI program, Ministry of Education, and from the KOSEF through the
SRC program.
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