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Abstract
We study the size and the lifetime distributions of scale-free random branching
trees in which k branches are generated from a node at each time step
with probability qk ∼ k−γ . In particular, we focus on finite-size trees in
a supercritical phase, where the mean branching number C = ∑

k kqk is
larger than 1. The tree-size distribution p(s) exhibits a crossover behaviour
when 2 < γ < 3. A characteristic tree size sc exists such that for
s � sc, p(s) ∼ s−γ /(γ−1) and for s � sc, p(s) ∼ s−3/2 exp(−s/sc), where
sc scales as ∼(C − 1)−(γ−1)/(γ−2). For γ > 3, it follows the conventional
mean-field solution, p(s) ∼ s−3/2 exp(−s/sc) with sc ∼ (C − 1)−2. The
lifetime distribution is also derived. It behaves as �(t) ∼ t−(γ−1)/(γ−2) for
2 < γ < 3, and ∼ t−2 for γ > 3 when branching step t � tc ∼ (C − 1)−1,
and �(t) ∼ exp(−t/tc) for all γ > 2 when t � tc. The analytic solutions are
corroborated by numerical results.

PACS numbers: 02.50.−r, 05.40.−a, 89.75.Da

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A tree is a graph with no loop within it. Owing to the simplicity of its structure and amenability
of analytic studies, tree graphs have drawn considerable attention in many disciplines of
scientific research, e.g., the Galton–Watson trees in the probability theory [1]. A scale-free
(SF) random branching tree, in which the number of branches k generated from a node is
stochastic following a power-law distribution, qk ∼ k−γ , is particularly interesting here. Such
trees can be found in various phenomena such as the trajectories of cascading failure in the
sandpile model on SF networks [2], epidemic spreading on SF networks [3, 4], aftershock
propagation in earthquakes [5, 6], random spanning tree or skeleton of SF networks [7],
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phylogenetic tree [8], etc. Here, the SF network is the network with the degree distribution
following a power law Pd(k) ∼ k−λ [9–11]. So far, several analytic studies have been
performed to understand structural properties of SF branching trees [12]. The size distribution
of the trees is the key to understanding those branching trees, which corresponds to the first-
passage time distribution in a suitably defined random walk [13]. However, most works are
focused on the critical case, where the mean branching number C ≡ ∑

k kqk is equal to 1,
motivated by universal feature of scale invariance observed in nature and society.

Recent studies have, however, shown that the structure of real-world networks may have
been designed upon supercritical trees [7]. Supercritical trees, where the mean branching
number C > 1, turn out to act as a skeleton of some fractal networks such as the world-wide
web. Here skeleton [14] is defined as a spanning tree formed by edges with highest betweenness
centrality or loads [15, 16]. A supercritical branching tree can grow indefinitely with a nonzero
probability, which is the most marked difference from critical (C = 1) or subcritical (C < 1)

tree that cannot grow infinitely. Moreover, the total number of offsprings s(t) generated from
a single root (ancestor) up to a given generation t can increase exponentially in supercritical
trees and this is reminiscent of the small-world behaviour: the mean distance between nodes
scales logarithmically as a function of the total number of nodes [12].

Due to the mean branching number being larger than 1, some supercritical trees may
be alive in a very long time limit. The tree-size distribution of those surviving trees in the
supercritical phase has been derived in the mean-field framework [17], which follows a power
law, p(s) ∼ s−2. Here, we consider finite-size trees in the supercritical phase. In spite of the
large mean branching number, some trees do not grow infinitely even in the supercritical phase.
For such finite-size trees in the supercritical phase, we derive the tree size and the lifetime
distributions using the generating function technique [18]. Distinguished from the critical
case, the generating function of the tree-size distribution exhibits two singular behaviours in
the supercritical phase and thereby a crossover behaviour of the tree-size distribution can arise
when 2 < γ < 3. We present in detail the derivation of all these analytic solutions in the
following sections. The tree-size and lifetime distributions predicted by analytic solutions are
confirmed by numerical simulations. This is important in itself for understanding the branching
trees whose structure changes drastically depending on the phase. Since the branching tree
approach can be applied to numerous systems, our results should be useful for future diverse
applications as well.

2. Tree-size distribution

Let us consider the branching process that each node generates k offsprings with probability
qk ,

qk =




1 − Cζ(γ )

ζ(γ − 1)
for k = 0,

C

ζ(γ − 1)
k−γ for k � 1,

(1)

where C is constant in the range of 0 < C < ζ(γ − 1)/ζ(γ ) with the Riemann-zeta function
ζ(x), and γ is larger than 2, ensuring that ζ(γ − 1) is finite. Then, C is automatically
identical to the mean branching number, i.e. the average number of offsprings C = ∑∞

k=0 kqk

generated from a node. When C < 1, the number of offsprings decreases on average as
branching proceeds and it vanishes eventually. Thus, the branching tree has a finite lifetime
with probability 1. When C > 1, as branching proceeds, the number of offsprings can
increase exponentially with non-zero probability. The case of C = 1 is marginal: Offsprings
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persist, neither disappear nor flourish on average. A branching tree generated through the
stochastic process (1) is a SF branching tree, because its degree distribution follows a power
law, Pd(kd) ∼ k

−γ

d asymptotically. Degree kd of each node in the tree is related to the
branching number k of that node as kd = k + 1 but for the root, kd = k.

2.1. Generating function method

A tree grows as each of the youngest nodes generates their offsprings following the probability
qk in equation (1). This evolution is regarded as a process in a unit time step. When a node
generates no offspring with probability q0, it remains inactive in further time steps. We define
pt(s) as the fraction of trees with total number of nodes s at time t. By definition, p0(s) = δs,1.
Then, pt+1(s) can be written in terms of pt(s) as

pt+1(s) =
∞∑

k=0

qk

∑
s1,s2,...,sk

pt (s1)pt (s2) · · · pt(sk)δ∑k
i=1 si ,s−1. (2)

Defining the generating functions, Q(ω) = ∑∞
k=0 qkω

k and Pt (y) = ∑∞
s=1 pt(s)y

s , and
applying them to (2), one can obtain that

Pt+1(y) = yQ(Pt (y)). (3)

Let us consider the tree-size distribution in the t → ∞ limit, i.e., p(s) = limt→∞ pt(s) and
its generating function P(y) = limt→∞ Pt (y). However, some trees may grow infinitely in
the supercritical phase, which makes P(y) = ∑

s p(s)ys ill-defined at y = 1. So we limit the
summation in P(y) over finite trees only, i.e., P(y) = ∑

finite s p(s)ys . This is equivalent to
defining P(1) = limy→1 P(y). Then, equation (3) gives the relation in the t → ∞ limit,

P(y) = yQ(P(y)). (4)

The next step is to extract a singular part of P(y) from equation (4), and then to derive the
behaviour of p(s) for s � 1.

The power-law form of qk in equation (1) results in the expansion of Q(ω) around ω = 1.
(i) For γ > 3 in equation (1), Q(ω) is expanded as

Q(ω) = 1 − C(1 − ω) +
B(γ )

2
(1 − ω)2 + · · ·

+




A(γ )(1 − ω)γ−1 (γ �= integer)

(−1)γ

�(γ )
(1 − ω)γ−1 ln(1 − ω) (γ = integer)

+ · · · , (5)

where B(γ ) = C[ζ(γ −2)/ζ(γ −1)−1], and A(γ ) = C�(1−γ )/ζ(γ −1) with the Gamma
function �(x). (ii) For γ = 3,

Q(ω) = 1 − C(1 − ω) − 1
2 (1 − ω)2 ln(1 − ω) + · · · , (6)

(iii) For 2 < γ < 3,

Q(ω) = 1 − C(1 − ω) + A(γ )(1 − ω)γ−1 + · · · . (7)

The inverse function y = P−1(ω) is then expanded (i) for γ > 3 as

y = P−1(ω) = ω

Q(ω)
= 1 + �(1 − ω) − B(γ )

2
(1 − ω)2 + · · ·

−



A(γ )(1 − ω)γ−1 (γ �= integer)

(−1)γ

�(γ )
(1 − ω)γ−1 ln(1 − ω) (γ = integer)

+ · · · , (8)
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Figure 1. Schematic plot of the function y = ω/Q(ω) in the supercritical phase. The dy/dω = 0
occurs at ω = ω∗ < 1.

where � ≡ C − 1. (ii) For γ = 3,

y = 1 + �(1 − ω) − 1
2 (1 − ω)2 ln(1 − ω) + · · · . (9)

(iii) For 2 < γ < 3,

y = 1 + �(1 − ω) − A(γ )(1 − ω)γ−1 + · · · . (10)

We recall that � is positive (negative) in the supercritical (subcritical) regime and 0 in the
critical case. Here we focus on the supercritical case of � > 0 and being very small, but the
obtained result can be naturally extended to large-� cases.

2.2. The singularity at y = y∗ > 1

Let us investigate how y behaves as ω decreases from 1 to 0. For � > 0, as ω decreases from
1 to ω∗, y increases from 1 to y∗ and then decreases to zero as shown in figure 1, where ω∗
satisfying (d/dω)[ω/Q(ω)]|ω=ω∗ = 0 locates less than 1. This feature is distinguished from
the solution ω∗ = 1 for the critical case. It is obtained that ω∗ depends on � as

1 − ω∗ ≡ ε∗ ∼




� for γ > 3,

�/ ln(1/�) for γ = 3,

�1/(γ−2) for 2 < γ < 3.

(11)

The value y∗, determined by the relation y∗ = ω∗/Q(ω∗), locates at

y∗ − 1 ≡ δ∗ ∼




�2 for γ > 3,

�2/ ln(1/�) for γ = 3,

�(γ−1)/(γ−2) for 2 < γ < 3.

(12)

The curve y = ω/Q(ω) in the region ω > ω∗ is just the analytic continuation of the inverse
function y = P−1(ω) that is analytic for ω < ω∗ [19].

The right-hand sides of equations (8)–(10) for ω < ω∗ are expanded around ω∗ as

y 	 y∗ +
∞∑

n=2

Dn(γ )

n!
(ω∗ − ω)n, (13)

when ω is close to ω∗ such that

max
n�2

Dn+1(γ )

Dn(γ )(n + 1)
(ω∗ − ω) � 1. (14)
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Here Dn(γ ) is the nth derivative of ω/Q(ω) at ω∗. For n = 2,

D2(γ ) ∼




−B(γ ) for γ > 3,

ln � for γ = 3,

−�(γ−3)/(γ−2) for 2 < γ < 3.

(15)

This result is used for future discussions. Keeping only the quadratic term (ω∗ − ω)2 in
equation (13), one obtains the leading singular behaviour of P(y) at y∗,

ω = P(y) ∼ ω∗ −
√

2(y∗ − y)

|D2(γ )| . (16)

In fact such a square-root singularity at y = y∗ is generic regardless of the form of the
branching probability when q0 + q1 < 1 [19], yielding the asymptotic behaviour of p(s) given
by

p(s) ∼ b(�)s−3/2 exp(−s/s∗), (17)

where the coefficient b(�) ∼ �−(γ−3)/[2(γ−2)] for 2 < γ < 3, 1/
√

ln(1/�) for γ = 3 and
constant for γ > 3, and s∗ = (ln y∗)−1.

2.3. The singularity at y = 1

When ω is far from ω∗ such that the linear term with the coefficient � is not comparable to the
next-order term, another singularity becomes dominant. The next-order term is the quadratic
term for γ > 3 and the non-analytic term for 2 < γ � 3. To be precise, if the condition,
1 − ω � � for γ > 3,−(1 − ω) ln(1 − ω) � � for γ = 3, and 1 − ω � �1/(γ−2) for
2 < γ < 3 holds, then the linear term is negligible compared with the next order terms, and
then equations (8)–(10) are reduced to

y ∼ 1 −




B(γ )

2
(1 − ω)2 for γ > 3,

−1

2
(1 − ω)2 ln(1 − ω) for γ = 3,

A(γ )(1 − ω)γ−1 for 2 < γ < 3.

(18)

The generating function P(y) then behaves as

ω = P(y) ∼ 1 −




√
2(1 − y)

B(γ )
for γ > 3,

√
4(1 − y)

| ln(1 − y)| for γ = 3,

(
1 − y

A(γ )

)1/(γ−1)

for 2 < γ < 3.

(19)

From this result, one can obtain the tree-size distribution as

p(s) ∼




s−3/2 for γ > 3,

s−3/2(ln s)−1/2 for γ = 3,

s−γ /(γ−1) for 2 < γ < 3.

(20)
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2.4. Crossover behaviour between the two singularities

The two singular behaviours of P(y) in the forms of equations (16) and (19) occurring at
y = y∗ and y = 1, respectively, enable us to determine the ranges of size s where the formulae
of equations (17) and (20) are valid. In particular, when 2 < γ � 3, the asymptotic behaviours
in equations (17) and (20) differ from each other and thus there should be a crossover behaviour
in the tree-size distribution.

The ranges of ω in which equations (13) and (18) are valid are closely related to those of
y for equations (16) and (19) and that of s for equations (17) and (20), respectively. Here we
find those ranges of ω, y and s, and then determine the crossover in the tree-size distribution
p(s).

First, we study valid ranges of equations (13), (16), and (17). The coefficient Dn(γ )

in equation (13) behaves as (1 − ω∗)γ−1−n for n > γ − 1 due to the non-analytic term
(1 − ω)γ−1 in equations (8) and (10) when γ is not integer. Then, it follows that
[Dn(γ )(n + 1)/Dn+1(γ )] ∼ 1/(1 − ω∗) ≡ 1/ε∗. Thus, condition (14) can be rewritten as
ω∗−ε>

c � ω < ω∗, where ε>
c ∼ � for γ > 3, ε>

c ∼ �/ ln(1/�) for γ = 3 and ε>
c ∼ �1/(γ−2)

for 2 < γ < 3 from equation (11). The corresponding range of y is y∗ − δ>
c � y < y∗, where

δ>
c is given by ∼ �2 for γ > 3,∼ �2/ ln(1/�) for γ = 3 and ∼ �(γ−1)/(γ−2) for 2 < γ < 3

by using equations (12) and (16).
To find valid range of s for p(s) in equation (17), we use the fact that the singular functional

behaviour of P(y) around y = ỹ is determined by that of p(s) around s = s̃, where ỹ and s̃

are related as ỹ s̃ ∼ 1. Then, one can find that s>
c = ∣∣ln(

y∗ − δ>
c

)∣∣−1 ∼ (δ∗ − δ>
c )−1, so that

s>
c ∼ �−2 for γ > 3,�−2 ln(1/�) for γ = 3 and �−(γ−1)/(γ−2) for 2 < γ < 3. For the range

s � s>
c , formula (17) is valid.

Second, we check the validities of equations (18), (19) and (20). Comparing the magnitude
of the linear term and the next-order term in equations (8)–(10), we find that equation (18) is
valid for ω � 1 − ε<

c , where εc behaves as � for γ > 3,�/ ln(1/�) for γ = 3 and �1/(γ−2)

for 2 < γ < 3. The corresponding range of y for equation (19) is given as y � 1 − δ<
c , where

δ<
c ∼ �2 for γ > 3, δ<

c ∼ �2/ ln(1/�) for γ = 3 and δ<
c ∼ �(γ−1)/(γ−2) for 2 < γ < 3. The

corresponding range of s for equation (20) is s � s<
c with s<

c = ∣∣ln(
1 − δ<

c

)∣∣−1 ∼ (
δ<
c

)−1

given by s<
c ∼ �−2 for γ < 3, s<

c ∼ �−2 ln(1/�) for γ = 3 and s<
c ∼ �−(γ−1)/(γ−2) for

2 < γ < 3.
As already noted, the crossover sizes s>

c , s<
c and s∗ are consistent for all values of γ within

�-dependence, and thereby, we use the notation sc for all of them. The overall behaviour of
the tree-size distribution is obtained by combining equations (17) and (20). For γ > 3, there
is no need to introduce a crossover. Thus, it leads to

p(s) ∼ s−3/2 exp(−s/sc) (γ > 3), (21)

for s large. Here sc scales as �−2 for � close to 0 and thus the exponential-decaying pattern
prevails as � increases.

When γ = 3, p(s) is given in the scaling regime s → ∞,� → 0, and s/sc finite with
sc ∼ �−2 ln(1/�) by

p(s) ∼
{

s−3/2(ln s)−1/2 for s/sc → 0,

s−3/2 exp(−s/sc) for s/sc → ∞.
(γ = 3) (22)

When 2 < γ < 3, it is given by

p(s) ∼
{

s−γ /(γ−1) for s/sc → 0,

s−3/2 exp(−s/sc) for s/sc → ∞,
(2 < γ < 3) (23)
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Figure 2. The tree-size distribution p(s) for γ = 3.3 for various values of C in the scaling form
equation (21). The dashed line is the guideline with a slope of −3/2. Inset: dependence of the
characteristic size sc on the mean branching number C.
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Figure 3. The tree-size distribution p(s) for γ = 2.5 for various values of C in the scaling
form equation (23). Dashed line is guideline with a slope of −5/3. Inset: dependence of the
characteristic size sc on the mean branching number C.

in the scaling regime s → ∞,� → 0, and s/sc finite with sc ∼ �−(γ−1)/(γ−2). The crossover
scale sc decreases with increasing � and the exponential decay dominates for s → ∞ and
� > 0 (C > 1).

We invoke numerical simulations to confirm our analytic solutions. Figures 2 and 3 show
the tree-size distributions for γ = 3.3 and γ = 2.5 in the scaling forms, equations (21) and
(23), respectively. The data are well collapsed into the predicted formulae for different C
values for both cases.
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Figure 4. Schematic plot of the function dr/dt = Q(r) − r in the supercritical phase.
(∂/∂r)(dr/dt) = 0 occurs at r∗, at which dr/dt is denoted as r ′∗.

3. Lifetime distribution

Next we solve the lifetime distribution �(t). This is defined as the probability that the branching
process stops at t. To derive �(t), we first introduce the probability that the branching process
stops at or prior to time t, denoted by r(t). Then �(t) is given as �(t) = r(t + 1) − r(t). The
probability distribution r(t) is related to r(t − 1) as

r(t) =
∞∑

k=0

qk[r(t − 1)]k = Q(r(t − 1)). (24)

Thus, we are given approximately a differential equation for r(t),

dr(t)

dt
≈ �(t) = Q(r(t)) − r(t). (25)

Expanding the right-hand side of equation (25) around r = 1, one can see its asymptotic
behaviour. Using equations (5)–(7) again, we find dr/dt in the long time limit as follows:

dr

dt
= Q(r) − r = −�(1 − r) +

B(γ )

2
(1 − r)2 + · · ·

+




A(γ )(1 − r)γ−1 (γ �= integer)

(−1)γ

�(γ )
(1 − r)γ−1 ln(1 − r) (γ = integer)

+ · · · . (26)

What we can see in this relation is that the value of r ′ is zero at r = 1. It decreases as r
decreases until it reaches r∗ where (d/dr)[Q(r) − r]|r=r∗ = 0 holds. Passing r∗, r ′ increases
as r decreases further, crossing the r ′ = 0 as shown in figure 4.

First, as in the case of ω/Q(ω), two singularities exist in Q(r) − r . For r close to r∗,
equation (26) is expanded as

r ′ 	 r ′
∗ +

∞∑
n=2

Gn(γ )

n!
(r∗ − r)n, (27)

where r ′
∗ = Q(r∗) − r∗ < 0 and Gn(γ ) is the nth derivative of Q(r) − r at r∗. When r is close

to r∗ such that

maxn�2
Gn+1(γ )

Gn(γ )(n + 1)
(r∗ − r) � 1, (28)
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one may neglect higher order terms, keeping only the quadratic term in r∗ − r as
dr

dt
≈ r ′

∗ +
G2(γ )

2
(r∗ − r)2. (29)

The solution to the above differential equation is

r(t) 	 r(∞) − 2a

et/t∗ − 1
, (30)

where r(∞) = r∗ − a and a = √
2|r ′∗|/G2(γ ), and t∗ = 1/

√
2|r ′∗|G2(γ ). The lifetime

distribution �(t) = r ′(t) is then given by

�(t) 	 2a et/t∗

t∗(et/t∗ − 1)2
∼ 2a

t∗
e−t/t∗ . (31)

Second, following the same steps taken for the singularities of P(y), we find another
approximate relation between r ′ and r in the region of r(t) where the next order term in
equation (26) is much larger than its linear term as follows:

dr

dt
∼




B(γ )

2
(1 − r)2 for γ > 3,

−1

2
(1 − r)2 ln(1 − r) for γ = 3,

A(γ )(1 − r)γ−1 for 2 < γ < 3.

(32)

Their solutions are, in long time limit, given by

1 − r(t) ∼




t−1 for γ > 3,

t−1(ln t)−1 for γ = 3,

t−1/(γ−2) for 2 < γ < 3.

(33)

From these results, the lifetime distributions are obtained as

�(t) ∼




t−2 for γ > 3,

t−2(ln t)−1 for γ = 3,

t−(γ−1)/(γ−2) for 2 < γ < 3.

(34)

Different behaviours of the lifetime distribution shown in equations (31) and (34) suggest
the presence of a crossover behaviour. The characteristic time that distinguishes the two
behaviours for given γ can be found by considering the valid ranges of t for equations (31) and
(34), respectively. When the condition of equation (28) is fulfilled, equations (30) and (31) are
valid. The condition is approximately represented in different forms of r∗ − r � 1 − r∗ since
Gn(γ ) ∼ (1 − r∗)γ−1−n. From equation (26), one can find the value of 1 − r∗ for different
γ ’s: 1 − r∗ ∼ � for γ > 3,�/ ln(1/�) for γ = 3 and �1/(γ−2) for 2 < γ < 3, respectively.
Applying these conditions to equation (30), it is found that equations (30) and (31) are valid
if t � t∗1 with t∗1 ∼ �−1 irrespective of γ as long as γ > 2.

Equations (33) and (34) are valid when the linear term is much smaller than the next order
term, which is satisfied when 1 − r � � for γ > 3, 1 − r � �/ ln(1/�) for γ = 3 and
1 − r � �1/(γ−2) for 2 < γ < 3, respectively. Applying these conditions to equation (33)
leads commonly to t � t∗2 ∼ �−1. One can find that the two characteristic times t∗1 and
t∗2, and t∗ scale in the same manner, so that they are denoted as tc commonly. Therefore, in
the scaling regime t → ∞,� → ∞, and t/tc finite with tc ∼ �−1, the lifetime distribution
behaves as

�(t) ∼




t−2 for γ > 3,

t−2(ln t)−1 for γ = 3,

t−(γ−1)/(γ−2) for 2 < γ < 3,

(35)
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Figure 5. The lifetime distribution �(t) for γ = 3.3 in the scaling form equations (35) and (36).
Dashed line is guideline with slope −2. Data for small t are deviated from the data collapse,
indicating that our solution is valid for large t only. Inset: dependence of the characteristic time tc
on the mean branching number C.
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Figure 6. The lifetime distribution �(t) for γ = 2.5 in the scaling form equations (35) and (36).
Dashed line is guideline with slope −3. Data for small t are deviated from the data collapse,
indicating that our solution is valid for large t only. Inset: dependence of the characteristic time tc
on the mean branching number C.

when t/tc → 0, and

�(t) ∼ e−t/tc for γ > 2 (36)

when t/tc → ∞. This exponential-decaying pattern dominates for t → ∞ and � > 0.
The analytic solutions for the lifetime distribution are checked by numerical simulations in
figures 5 and 6. Data in small t regime are somewhat deviated from the data-collapsed formula,
indicating that our solution is valid in the large-t regime.



Scale-free random branching trees in supercritical phase 7149

4. Conclusions and discussion

Our main results are equations (21), (22) and (23) for the tree-size distribution when trees
are finite: contrary to the case of γ > 3 for which the tree-size distribution p(s) behaves
as ∼s−3/2 exp(−s/sc) for all s with sc ∼ (C − 1)−2, a crossover behaviour occurs at
sc ∼ (C − 1)−(γ−1)/(γ−2) for 2 < γ < 3. For s � sc, p(s) ∼ s−γ /(γ−1) and for
s � sc, p(s) ∼ s−3/2 exp(−s/sc). This result is complementary to the previous mean-
field solution pinf(s) ∼ s−2 for infinite-size trees. From our solutions, it is noteworthy that the
characteristic size sc increases as the exponent γ approaches 2. This leads to an interesting
result: a larger-size tree can be generated for a smaller value of the exponent γ . However, the
probability to have such a large-size tree becomes smaller as the exponent γ approaches 2,
because the exponent γ /(γ − 1) for the tree-size distribution p(s) becomes larger.

The lifetime distribution also exhibits a crossover behaviour at tc ∼ (C − 1)−1. It follows
equation (35) for t � tc and (36) for t � tc.
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