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Abstract. We study completely asymmetric two-channel exclusion processes in one dimension.
It describes a two-way traffic flow with cars moving in opposite directions. The interchannel
interaction makes cars slow down in the vicinity of approaching cars in the other lane.
Particularly, we consider in detail the system with a finite density of cars on one lane and
a single car on the other. When the interchannel interaction reaches a critical value, a traffic jam
occurs, which turns out to be of first-order phase transition. We derive exact expressions for the
average velocities, the current, the density profile and thek-point density correlation functions.
We also obtain the exact probability of two cars being in one lane of distanceR apart, provided
there is a finite density of cars on the other lane, and show that the two cars form a weakly
bound state in the jammed phase.

1. Introduction

Low-dimensional systems out of equilibrium have attracted much attention recently [1]. An
important class of such models is the one-dimensional (1D) exclusion processes describing
particles hopping independently with hard-core repulsion along a 1D lattice. Such systems
provide a good description of growth processes, traffic flow and queueing problems [2],
etc (see [1] for the references up to 1995). The completely asymmetric exclusion process
(ASEP) describing particles hopping only to the right with equal rate 1 and hard-core
repulsion is perhaps the simplest and best studied one [3, 4]. In particular, for the periodic
boundary condition, all configurations are equally likely in the steady state, and the average
particle velocity in the infinite system is

〈v〉 = 1− n (1)

n being the density of particles. Janowsky and Lebowitz [5] showed that a fixed blockage
in the system, which reduces the rate of hopping across it from 1 tor < 1, can produce
global effects. Namely, for each fixed densityn, there is a range of 0< r 6 r0 where the
system segregates in high- and low-density regions with a sharp boundary, called shock,
between them. Although some exact results were obtained [5], many quantities of interest,
for example steady-state density profile, correlation functions, etc were computed only
numerically.

In this paper we derive all these quantities exactly, in closed form, for a slightly different
model, guided by modelling the two-way traffic-flow problem. Namely, there are two 1D
chains on a ring,N sites each. One chain, or lane is occupied by cars and another is
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occupied with trucks (we refer to them differently just for notational simplicity), hopping
in opposite directions with rates 1 andγ , respectively. Effective rate of hopping of the car
(truck) reduces to 1/β(γ /β), when there is a truck (car) in front in another lane. Physically,
1/β is determined by the narrowness of the road; it describes how much the car/truck slows
down when seeing another truck/car approaching. The1

β
= 0 case corresponds to the road

being completely blocked.
For the case where there is a single truck in one lane and finite density of carsn in the

other, we expect the similar type of behaviour with the blockage case [5]. We expect the
cars to pile up causing a traffic jam, at a certain range of interlane interaction parameter
β. So it is, as Monte Carlo (MC) simulations unambigiously show, see figure 2. Then,
to study closely the nature of traffic jam phase transition, we impose the restriction that
the car and truck cannot occupy each neighbouring sitei simultaneously. At this point,
the model becomes exactly solvable by the matrix approach of Derridaet al [6, 7]. Using
it, we compute the average velocities, the density profile, andk-point correlation functions
exactly, for the finite chain and in the thermodynamic limit. Particularly, the traffic jam
phase transition curve is given by simple formulaβcrit = 1/n, in the thermodynamic limit.

Characterictics of the traffic jam phase transition are examined in detail. Finally, we
consider the situation with two trucks/finite density of cars in the system. We observe that
a weak bound state is formed between the two trucks.

A comparison of our results with the original two-way model, the ASEP with single
fixed blockage [5], and exact Bethe ansatz solution by Schütz [8] for deterministic ASEP
with blockage concludes the paper.

2. Formulation of the two-way traffic-flow model

We consider the following hard-core exclusion process: there are two parallel 1D chains
on a ring,N sites each, the first chain containsM cars and the second chain containsK
trucks. Cars (trucks) are hopping in opposite directions with rates 1(γ ) respectively. The
state of the system is characterized by the set of occupation numbers{τi}Ni=1 of the first
lane and{σi}Ni=1 of the second lane.τi = 1 if there is a car at sitei and τi = 0 if empty,
and the same for the trucks,σi = 1(0) if occupied (empty). The system evolves under the
following stochastic dynamical rules.

At each infinitesimal time intervaldt , one pair of adjacent sitesi, i + 1 at any of the
two chains is selected at random for a possible exchange of states. The possible exchange
processes together with their rates are listed below: cars are hopping to the right

(τi, τi+1) = (1, 0)→ (0, 1) with rate


1 if σi+1 = 0

1

β
if σi+1 = 1 (truck in front)

(2)

trucks are hopping to the left

(σi, σi+1) = (0, 1)→ (1, 0) with rate


γ if τi = 0
γ

β
if τi = 1 (car in front).

(3)

One sequence of 2N (total number of sites in two chains) selections constitutes one time
step (or one MC step, see figures 1 and 2).

The interlane interaction parameterβ > 1 has a transparent physical meaning. It
describes how much a vehicle slows down when seeing another vehicle approaching, which
in turn depends on the narrowness of the road.β = 1 (no slowing down) corresponds
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Figure 1. MC simulation result of the two-lane traffic flow model. The ‘average velocities
versus interlane interactionr = 1− 1

β
’ are shown forN = 200, ncars= 0.3, ntrucks= 0.4 and

γ = 1, unless otherwise stated. Initial configuration of the system is random. We equilibriate
the system for 2000 MC step intervals, collect data at 2000 MC step intervals and average over
100 different histories.
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Figure 2. The same as in figure 1 but forNcars= M = 60 andNtrucks= 1. The pointrc ≈ 0.8
is the approximate traffic jam transition point.

to a highway with a divider, and 1/β = 0 corresponds to a narrow road being completely
blocked. If we let the system evolve for a long time, it reaches the steady state, independent
of its initial configuration. We shall be interested in the steady-state characteristics which
depend only on macroscopic parameters (number of cars, number of trucks and total number
of sites) and the rates (2), (3).

We studied the most practical characteristics of the model, the average velocities of cars
〈vcar〉 and trucks〈vtruck〉 as a function of(1− 1/β) by MC simulations. The MC results for
two different cases are shown in figures 1 and 2. Figure 1 corresponds to a system where
the density of cars and trucks are 0.3 and 0.4, respectively, and shows a monotonic decrease
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of both velocities asβ increases. Figure 2 corresponds to the system with a single truck
and many cars with densityn = 0.3. In contrast to figure 1, we see that〈vcar〉 remains
constant (equal to the average velocity (1) in the noniteracting system〈v〉 = (1− n)), until
the point 1− 1

βc
≈ 0.8 is reached. Forβ > βc, 〈vcar〉 rapidly drops. Simulations show that

for β > βc, the system segregates into two phases: the high-density one in front of the
truck (traffic jam) and the low-density one behind the truck. Piling up of cars in front of the
truck accounts for the decrease of average car velocity. The absence of a sharp transition
for a finite density of trucks (figure 1) compared with figure 2 is due to the fact that a
finite number of trucks in infinite systems produces the macroscopic jammed phase, while a
finite density of trucks produces only microscopic jams which average out to give a smooth
behaviour.

The segregated or traffic jam phase is well known as a shock phase or coexistence phase
in 1D ASEP. Scḧutz [8] showed its existence in an exactly solvable deterministic model
with a fixed blockage, and found various shock characteristics rigorously. As far as the
probabilistic ASEP are concerned, Janowsky and Lebowitz [5] showed the existence of the
segregated phase in a probabilistic ASEP with a fixed blockage. The latter model is not
solvable, and most results obtained in [5] are therefore numerical.

The characteristics of the shock are believed to be quite universal, qualitatively
independent of details of the stochastic process. That is why it is important to give exact
solutions for some system with a shock. Here in this paper we propose a two-way traffic-
flow problem (slightly modified, see below) with a single truck as an example of such a
solvable system. Roughly, the single truck plays the role of blockage and1

β
plays the role

of the transmission coefficientr in [5]. Following the traffic-flow formulation, we shall call
the shock the ‘traffic jam’ and the segregated or coexistence phase the ‘traffic jam phase’.
We shall find exactly the characteristics of the traffic jam and the traffic jam transition,
including average velocities, density profiles,k-point correlation functions, for finite chains
and in the thermodynamic limit. For this purpose, one has to modify the original model to
a solvable one.

3. Modification of the original model to an exactly solvable model

We now modify the two-way traffic problem slightly. Here, we forbid a car and a truck
to occupy two parallel sitesi in the neighbouring chains simultaneously. Then one can
actually describe the configuration by a single-lane configuration{τi}Ni=1; each sitei is
either occupied by a carτi = 1 or truck τi = 2 or emptyτi = 0. The allowed exchange
processes are then modified from equations (2) and (3) to:

(1, 0)→ (0, 1) with rate 1

(0, 2)→ (2, 0) with rateγ

(1, 2)→ (2, 1) with rate 1
β

.

(4)

Although the quantitative characteristics of the system do change after this modification, the
qualitative characteristics do not (compare for instance the graphs for average car velocities
in figures 1 and 3).

Process (4) is the two-species ASEP solvable by the approach of Derridaet al [7].
Process (4) and the one considered in [7] differ by replacement 2↔ 0 (interchange of
trucks and empty spaces).

The probability of a given steady-state configuration is shown in [7] to be proportional
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Figure 3. Average velocities of the cars computed from equation (8) in a system of 200 sites,
for different densitiesn = 0.3, 0.5, 0.7.

to the trace of a product

wconf(τ1τ2 . . . τN) = Tr(X1X2 . . . XN) (5)

where

Xi =


D if car at sitei τi = 1

E if truck at sitei τi = 2

A if site i is empty τi = 0

(6)

are noncommuting matrices satisfying the following algebra:

DE = D + E
βDA = A (7)

αAE = A; α = βγ.
Knowing the probabilistic measure, we can find the various averages of steady state.

4. Average velocities

We shall consider the system havingM number of cars and a single truck.
Analogously to [7], defineY (N,M) as the probability of having the truck at siteN , in

a system withN sites andM cars. Define thenYD(N,M) as the probability of finding a
car at siteN − 1, provided the truck occupies the positionN . Then, the average velocities
of the cars and the truck are given by:

〈vcar〉 = 1

β

YD(N,M)+ (N −M − 1)Y (N − 1,M − 1)

MY(N,M)
(8)

〈vtruck〉 = 1

β

YD(N,M)+ α(Y (N,M)− YD(N,M))
Y (N,M)

. (9)
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Figure 4. The same as in figure 3 for the the truck velocities equation (9).

The quantitiesY (N,M) andYD(N,M) are computed in the appendix and found to be†

YD(N,M) = 1

αβM

( −α
β − 1

CM−1
N−2 +

α + β − 1

β − 1
I (N,M)

)
(10)

Y (N,M) = YD(N,M)+ 1

αβM
CMN−2 (11)

where

I (N,M) =
M∑
k=1

βkCM−kN−2−k (12)

andCji is the binomial coefficient. In figures 3 and 4 we plot〈vcar〉 and〈vtruck〉, respectively,
computed from an exact formula, as a function of 1− 1/β, for three densitiesn = 0.3, 0.5
and 0.7 atγ = 1, in a system withN = 200 sites. Naturally the traffic jam transition point
decreases as the average densityn increases. The behaviour of〈vcar〉 is similar to the one
for the original two-way traffic model in figure 2. However, now we can evaluate the exact
thermodynamic limitN,M →∞, n = M/N fixed, and find the exact transition point. We
used the steepest descent method for computing the thermodynamic limits. The average
velocities in the thermodynamic limit are given by (see figure 5):

〈vcar〉 =


1− n if nβ 6 1

1

β

1− n
n

if nβ > 1
(13)

〈vtruck〉 =


1

β

α(1− n)(1− nβ)+ n(α + β − nβ)
(1− n)(1− nβ)+ n(α + β − nβ) if nβ 6 1

1

β
if nβ > 1.

(14)

Thus, the transition point to the jammed state is given by a simple formula

nβcrit = 1. (15)

† More precisely,Y (N,M) andYD(N,M) are probabilities up to a normalization factor which is equal for all
the terms entering equations (8) and (9), see the appendix.
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Figure 5. Exact car and truck velocities in the thermodynamic limit equations (13) and (14),
for n = 0.3. 〈vtruck〉 is given forγ = 1 andγ = 1.5 (light curve).

Note that the transition point does not depend onγ—the free velocity of the truck. The
average car velocity has a cusp at the transition point. The average velocity of cars before
the transitionnβ < 1 is equal to the one in a system without a truck (1). Forn = 1,
〈vcar〉 ≡ 0 independently ofβ, because all sites are filled and cars cannot move. 1/β = 0
is the case of complete blockage: both velocities are identically zero.

To examine closely the nature of the traffic jam transition, we find the exact density
profile andk-point correlation functions in the next two sections.

5. The density profile

In this section, we obtain the exact density profile〈n(x)〉 in a system with one truck and
arbitraryM number of cars, in a chain of lengthN . We choose a reference frame in which
the truck is always at the positionN . It can be done because the weights of the steady-state
configurations (5) depend only on the positions of the cars relative to the truck location,
due to cyclic invariance of (5). The average density〈n(x)〉 at distancex from the truck is
equal to the probability of finding a car at siteN − 1− x;

〈n(x)〉 =
∑

conf τN−1−xwM(τ1τ2 . . . τN−12)∑
confwM(τ1τ2 . . . τN−12)

. (16)

Sums run over all possible configurations havingM cars,N −M − 1 empty spaces, with
a truck at the positionN , so

wM = Tr

(( N−1∏
i=1

Xi

)
E

)
(17)

whereXi = D(A) if site i is occupied by a car (empty). The quantity (16) is readily
obtained using algebra (7) and found to be

〈n(x)〉 =
{
CM−1
N−3 −

α

β − 1
CM−2
N−3 +

α + β − 1

β − 1
[I (N − 1,M − 1)

+βx−1(β − 1)I (N − x,M − x)2(M > x)]
}
/(Y (N,M)αβM) (18)
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Figure 6. Density profile before traffic jam, in a chain of 400 sites computed from formula
(18). n = M

N
= 0.3, β = 3(βcrit = 3.3333). The single truck is located at the right end.

whereY (N,M) andI (N,M) are given by equations (11) and (12), respectively, and

2(y > x) =
{

1 if y > x
0 otherwise.

(19)

Expression (18) determines the average density for any value ofβ. Below we shall consider
the cases before and after the traffic jam phase transition separately.

5.1. Low-density phase;nβ < 1

Before the transition, the presence of a truck affects the system only locally as is seen from
figure 6, where the density profile is shown forN = 400. The density, otherwise constant,
locally increases only in a close vicinity of the truck.

Evaluating formula (18) for largeM,N � 1; with M
N
= n fixed, we find

〈n(x)〉 = n
(

1+ (α + β − 1)(1− n)
1− n+ αn (nβ)x

)
. (20)

One sees that the local density disturbance decays exponentially at a finite-length scale

ξ = | ln(nβ)|−1. (21)

Therefore, the relative size of the disturbed region vanishes as1
N

. In principle, by common
sense one would expect the existence of the low-density region right behind the truck.
However, it is absent in the exact solution, as seen from figure 6. We do not have a
simple explanation for this fact. Analogous behaviour was observed in an exactly solvable
deterministic exclusion process with a fixed blockage [8].

5.2. Traffic jam phase;nβ > 1

In this region, cars pile up before the truck as seen from figure 7. Increasing interlane
interactionβ leads to increase of traffic jam length

l = Ljam

N
≈ nβ − 1

β − 1
. (22)
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Figure 7. Density profile in the traffic jam phase, in a chain of 400 sites computed from formula
(18) for n = M

N
= 0.3, and forβ = 5(a) andβ = 15(b). (βcrit = 3.3333). The total length of

traffic jam isLjam ≈ nβ−1
β−1 N . Asymptotic values of densities in a high- (low-)density region are

nhigh = 1, nlow = 1
β

. The truck is located at the right end.

In the thermodynamic limitM,N →∞, M
N
= n, the latter formula becomes exact, and the

density profile becomes a step function:

〈n(x)〉 =


1 x

N
6 nβ−1

β−1

1

β
otherwise.

(23)

Note that the density in the low-density region is equal to the critical densityncrit = 1/β,
independently of the average densityn. The same behaviour is observed in [8].

In fact, in the jammed phase, the only way the truck can move is by the process
(1, 2) → (2, 1) (because the contribution of the processes(0, 2) → (2, 0) becomes
exponentially small in the largeN limit). In the slow truck/many cars problem treated
in [9], the same is true when the rate for the(2, 0)→ (0, 2) process as denoted byα in [9]
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is zero. Thus our model in the jammed case is a special case of [9], up to exponentially
small corrections. However, only simple characteristics were investigated in [9]; correlation
functions, as well as largeN � 1 limits were not studied.

More precisely, for largeN,M � 1, we find up to corrections of orderN−
1
2 ,

〈n(x)〉 = 1− 1

2

(
1− 1

β

){
1+ erf

(
x −Nl
1
√
N

)}
+O(N−

1
2 ) (24)

with l = nβ−1
β−1 , 1 =

√
2β(1−n)
β−1 and erf(y) = 2√

π

∫ y
0 e−t

2
dt .

This shows that the shock interface extends over a region of width
√
N . More

careful considerations, however, show that the real shock interface is sharp and extends
over only two consecutive sites, and the apparent width of

√
N is due to shock-position

fluctuations. (The shock-position fluctuations of order
√
N were also observed in the

probabilistic exclusion process with a fixed blockage [5].) Indeed, the discrete version of
the density gradient correlation,〈1n(x1)1n(x2)〉 where1n(x) = n(x+1)− n(x) vanishes
if |x1 − x2| > 1. (It follows directly from equations (31) and (32).) This shows that the
jammed phase is indeed segregated into two macroscopic regions—the low-density one on
the left withnlow = 1

β
and the high-density one on the rightnhigh = 1. The fact thatnhigh = 1

is due to the nature of the process we consider (see (4)): once cars pile up before the truck,
the car–truck exchange processes do not create empty spaces.

Finally, note that one can choose the difference between the average densities in the
macroscopic regions in front and behind the truckδn = nhigh− nlow as an order parameter,
characterizing the traffic jam phase transition. With respect to this order parameter, the
transition to the jammed phase is of the first order, as seen from equation (23);

δn =


0 if nβ < 1

1− 1

β
if nβ > 1.

(25)

5.3. The hydrodynamic approach

The thermodynamic limit results equation (23) can also be obtained from simple
hydrodynamic arguments. Supposing that the segregated phase contains two macroscopic
regions of lengthlN and (1− l)N , with average car velocities in these regions 1− nhigh

and 1− nlow, respectively (see equation (1)), one can write down a set of equations. First,
from the car conservation,

nlow(1− l)+ nhighl = n
and next, from the current conservation in the reference frame of the fixed truck,

j = nlow(1− nlow + 〈vtruck〉) = nhigh(1− nhigh+ 〈vtruck〉) (26)

finally from the definition of the average car velocity

n〈vcar〉 = nlow(1− l)(1− nlow)+ nhighl(1− nhigh).

Substituting the values〈vcar〉 and〈vtruck〉 from equations (13) and (14), and solving the
above system of three equations, we obtain exactly the result equation (23).

The correctness of the hydrodynamic arguments in the thermodynamic limit is due to
the fact that indeed cars behave like an ideal gas of interacting particles; correlations vanish
in the thermodynamic limit as shown in the next section.
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One can easily compute the current flowing through the truck. The phase diagram
‘current versus1

β
’ (narrowness of the road) is given in figure 8. With fixedβ, the current

j increases with the densityn, as

j = n(〈vtruck〉 + 〈vcar〉) = n
(

1

β

α(1− n)(1− nβ)+ n(α + β − nβ)
(1− n)(1− nβ)+ n(α + β − nβ) + (1− n)

)
(27)

until the critical density

ncrit = 1

β
(28)

is reached. After that, in the jammed phase, the current remains constant (see equation (26)),

jmax= nhigh(1− nhigh+ 〈vtruck〉) = 1

β
(29)

for all densitiesncrit 6 n 6 1.
Note that there is a single critical density value equation (28), in constrast to the models

with fixed blockage [5, 8], where two critical densities exist,ρcrit and ρ̃crit = 1− ρcrit. The
reason is as follows. The models considered in [5, 8] have the particle-hole symmetry which
is broken in the model we consider.

6. The k-point correlation functions

Here we obtain thek-point equal time correlation functions in the steady state, in exact and
asymptotic forms, for a system with one truck andM cars. Analogously to equation (16),
one defines

〈n(x1)n(x2) . . . n(xk)〉 =
∑

conf τp1τp2 . . . τpk wM(τ1τ2 . . . τN−12)∑
confwM(τ1τ2 . . . τN−12)

(30)
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with pj = N − 1− xj .
Here we takex1 < x2 < . . . < xk†. Sums run over all possible configurations having

M cars,N −M − 1 empty spaces, with the truck at the positionN .
Calculation of equation (30) leads to the following surprising result:

〈n(x1)n(x2) . . . n(xk)〉 = 〈n(xk)〉 −
k∑

j=2

fj (xk+1−j ). (31)

The k-point correlation function actually splits into a sum ofk terms, each one depending
on a single argument! The exact form offj (x) is given by

fj (x) =
[
C
M+1−j
N−2−j +

{
− α

β − 1
C
M−j
N−j−2+

α + β − 1

β − 1
[(β − 1)J (N − j,M − j, x − 1)

×2(x > 2)+ βCM−jN−j−2]

}
2(x > 1)

]
/(Y (N,M)αβM) (32)

where2(x > y) andY (N,M) are given by equations (19) and (11), respectively, and

J (N,M, x) =
min(M,x)∑
i=1

βiCM−iN−2−i .

We shall show that in the limit of largeN,M � 1, fj (x) is given by a remarkably
simple formula

fj (x) = κj−1(1− 〈n(x)〉) with κ = min

(
n,

1

β

)
. (33)

Indeed let us consider the connected two-point correlation function,

〈n(x1)n(x2)〉C = 〈n(x1)n(x2)〉 − 〈n(x1)〉〈n(x2)〉 = 〈n(x2)〉(1− 〈n(x1)〉)− f2(x1) (34)

according to equation (31). Asf2(x1) does not depend onx2, one can choose any convenient
x2. Take the pointx2 infinitely far apart fromx1; x2� x1, so that the correlations between
them vanish〈n(x1)n(x2)〉C = 0. Then:

(a) before the transitionnβ 6 1, we have forN,M � 1, using equations (20) and (34),

f2(x1) = n(1− 〈n(x1)〉).
(b) After the transitionnβ > 1 , using equation (24) and imposing in additionx2� Nl

we obtain〈n(x2)〉 = 1
β

, and

f2(x1) = 1

β
(1− 〈n(x1)〉)

which proves formula (33) forj = 2. Recursively, one obtains the asymptotic behaviour
of other functionsf3(x), . . . , fk(x) from (31). Formula (33) can also be obtained directly
from (32).

Finally, thek-point correlation function, connected part, is given from equations (31)
and (33) as

〈n(x1) . . . n(xk)〉C = 〈n(xk)〉 −
k∑

j=2

κj−1(1− 〈n(xk+1−j )〉)− 〈n(x1)〉 . . . 〈n(xk)〉

whereκ = min

(
n,

1

β

)
(35)

† Equality of some argument values, say,x1 = x2 simply lowers the order of the correlation function by 1 as seen
from equation (30);〈n(x1)n(x1)n(x3) . . . n(xk)〉 = 〈n(x1)n(x3) . . . n(xk)〉.
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for N,M � 1, x1 < x2 < . . . < xk and 〈n(x)〉 is given by (20) and (24) fornβ < 1 and
nβ > 1 respectively. Thus, thek-point correlation function forN,M � 1 is determined
completely by the one-point correlation functions.

As an example, consider the two-point correlation function,

〈n(x1)n(x2)〉C = (〈n(x2)〉 − κ)(1− 〈n(x1)〉).
Before the transition, at the low-density phasenβ < 1, κ = n, 〈n(x2)〉 is given by (20), and
〈n(x2)〉 − κ ∼ (nβ)x2. So the correlation function decays exponentially with a length scale

ξ = | ln(nβ)|−1.

Thus, in the low-density phase, the two-point correlation function is nonzero only in a close
vicinity of truck x1 < x2 ∼ ξ . For x2 � ξ , 〈n(x1)n(x2)〉C ≡ 0. Thus, in the whole region
ξ � x2 < N , cars do not feel any correlations between each other and behave like an ideal
gas of particles.

In the traffic jam phase,nβ > 1, the two-point correlation function

〈n(x1)n(x2)〉C =
(
〈n(x2)〉 − 1

β

)
(1− 〈n(x1)〉) (36)

remains nonzero, only if bothx1 andx2(x1 < x2) are in the regionx1, x2 ∈ [Nl−1√N,Nl+
1
√
N ] as is seen from (24). Otherwise, either〈n(x2)〉 ≈ 1

β
, or 〈n(x1)〉 ≈ 1 and the

correlation function〈n(x1)n(x2)〉C vanishes.
Again, one can say that the jammed phase indeed has a phase separation: (a) solid-like

phase with density 1; (b) ideal gas phase (no correlations between the particles-cars) of
density 1

β
. This explains why the simple hydrodynamic approach (see section 5.3) leads to

the correct results in the thermodynamic limit.

7. The bound state between two trucks

Here we shall consider the system having two trucks, andM cars, and determine the
probability�(R) of two trucks being at distanceR apart. This probability is proportional
to

�(R) ∼
∑
conf

wM(τ1τ2 . . . τN−R−22τN−R . . . τN−12) (37)

with the sum running over all possible configurations havingM cars and two trucks at
positions(N−R−1) andN . SoR = 0 corresponds to two trucks being next to each other.
Due to the periodic boundary condition, 06 R 6 N−1

2 .
The exact expression for�(R) at finiteN is unwieldy and we shall not present it here

(typical behaviours of�(R) are shown in figure 9 forN = 200, n = 0.3, andβ = 3, 5).
Instead we shall write down its asymptotics in each phase.

(i) nβ < 1 :In the thermodynamic limit,�(R) reduces to the following

�(R) ∼ 1+ n(1− n)(α + β − 1)(α − 1)

(1− n+ αn)2 (nβ)R. (38)

It is maximal forR = 0 and decays exponentially with the same length scaleξ = | ln(nβ)|−1,
as before. Asξ does not depend onN , the fraction of space with nonzero correlations
between the trucks vanishes as 1/N . Thus, two trucks are asymptotically free. The
asymptotic freedom of trucks accounts for the fact that the phase transition to the jammed
phase takes place at the same critical density,ncritβ = 1. These arguments can be extended
to any finite number of trucks in the infinite systemN →∞.
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Figure 9. Probability�(R) of finding two trucks at a distanceR apart, (a) before and (b)
after the phase transition, computed from the exact formula, forN = 200, n = 0.3. The light
curve in (b) corresponds to the thermodynamic limit. The value ofβ is 3 and 5 for (a) and (b),
respectively.

(ii) Jammed phasenβ > 1: In the thermodynamic limit, we find the following result
for �(R) from the exact formula:

�(R) linearly drops with the distanceR in the region

06 R 6 Nr0 r0 = min(l, 1− l) < 1
2 l = nβ − 1

β − 1

and then stays constant�(R) ≡ constant,Nr0 6 R 6 N−1
2 , see figure 9(b). The relative

ratios are

for r0 = l �(Nr0)

�(0)
= 1− (α − 1)(β − 1)

αβ
(39)

for r0 = 1− l �(Nr0)

�(0)
= 1− (α − 1)(β − 1)

αβ

r0

1− r0 . (40)
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One can interprete this as the two trucks forming a weak bound state in the traffic jam
phase. The probability�(R) was also studied in [7], for a system with two second-
class/many first-class particles, both hopping in the same direction, where it shows a power
law decay�(R) ∼ R−3/2 in the uniform background of the first-class particles. This is in
marked contrast to our result equation (38) showing exponential decay in the uniform low-
density phase. Note, however, that the asymptotic equation (38) was obtained in supposition
α 6= 1, β 6= 1, while the results of [7] are derived for theα = 1, β = 1 case.

It is interesting to analyse the average distance between the two trucks. Consider the
casen < 0.5 first. Analysis of (38) and (39) shows that in the thermodynamic limit the
relative distance between the trucks〈r〉

N
= 1

4 in the low-density phasenβ < 1 and then
drops monotonically as a function ofβ from 〈r〉

N
= 1

4 to 〈r〉
N
= n/3 at β = ∞ (complete

blockage). At the same time the lengthl = (nβ − 1)/(β − 1) increases froml = 0 at the
transition pointβcrit = 1/n to l = n at β = ∞. We remind the reader thatl = nβ−1

β−1 is the
total length of traffic jam in a system with one truck in the thermodynamic limit, see (22).
One can argue in a different way that the total length of the traffic jam is independent of
the number of trucks, as long as it remainsfinite (e.g. by using the hydrodynamic approach,
see section 5.3). That means that in the early stage of traffic jam phase (smallβ) 〈r〉

N
> l

and two separate traffic jams in front of the two trucks are formed, of lengthsl1 and l2,
l1 + l2 = l separated by the low-density regions. Asβ increases, eventually〈r〉

N
< l, and

the two separate jams merge into a single one of lengthl.

8. Summary

We have formulated the two-lane traffic model and showed that it has the transition from
the low-density phase to the segregated (traffic jam) phase. Modifying the model to an
exactly solvable one, we studied in detail the characteristics of the solvable model, which
we believe to be qualitatively correct for the original one. The solvable model in the traffic
jam phase in theN � 1 limit is a special case of the two-species model considered by
Derrida [9], see the discussion after equation (23). However, our angle of view is different
and most results obtained in sections 4–7 are new. We have obtained exact expressions of
the currentj , the average density profile, and thek-point correlation functions, for the finite
chain, and in the largeN limit, for a single truck. We have also studied the two-trucks case
and observed that a weakly bound state is formed between them in the traffic jam phase.
Generally, the truck slowing down the car movement, can be thought of as a sort of moving
blockage. Qualitatively our results for the density profile, the currentj phase diagram,
two-point correlation functions agree with those obtained in [8] and in part with those in
[5], describing a fixed blockage. However, the last two systems possess the particle-hole
symmetry and therefore the uniform high-density phase, related to the low-density one by
this symmetry. In our case, the particle-hole symmetry is broken for both our original two-
lane model and the modified solvable one. This accounts for the absence of the uniform
high-density phase in our model, see the phase diagram in figure 8.
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Appendix. Computation of Y (N ,M ) and YD(N ,M )

The probability of finding the truck at the siteN is given up to normalization by

Y (N,M) =
∑
conf

wM(τ1τ2 . . . τN−12) (A1)

where this sum is over all possible configurations havingM cars,N −M−1 empty spaces,
with the truck at the positionN . Split the above sum into two terms as

Y (N,M) =
∑
conf

wDM(τ1τ2 . . . τN−212)+
∑
conf

wAM(τ1τ2 . . . τN−202). (A2)

The first (second) term corresponds to a car (empty space) being at site(N−1). The second
term can be written as

wAM(τ1τ2 . . . τN−202) = Tr(CAE) = 1

α
Tr(CA) (A3)

using the algebra (7). Here,C corresponds to an arbitrary configuration of lengthN − 2
havingM cars andQ = N −M − 2 empty spaces. Generally,

CA = Dm1Aq1Dm2Aq2 . . . DmkAqk

with m1+m2+ . . .+mk = M, q1+ q2+ . . .+ qk = Q, qk > 1.
According to (7),

Tr(CA) = Tr

(
1

βm1+m2+···+mk A
q1+q2+...+qk

)
= 1

βM
Tr(AQ) (A4)

and

wAM(τ1τ2 . . . τN−202) = 1

αβM
Tr(AQ). (A5)

The first term in (A2) for some specific configuration is

wDM(τ1τ2 . . . τN−212) = Tr(Dm1Aq1Dm2Aq2 . . . Dmk−1Aqk−1DmkE) (A6)

wherem1+m2+ . . .+mk = M, q1+ q2+ . . .+ qk−1 = Q, mk > 1. We have the following
recursive relation:

fm = ADmE = ADm−1(DE) = ADm−1(D + E) = ADm + fm−1. (A7)

Using the last expression recursively, one finds

fm = A
m∑
i=1

Di + f0 f0 = AE = 1

α
A. (A8)

Substituting the value offm into (A6), using (7), we obtain

wDM =
1

αβM
γmk Tr(AQ) (A9)

where

γm = α
m∑
i=1

βm−i + βm = − α

β − 1
+ α + β − 1

β − 1
βm. (A10)

The same common factor Tr(AQ) cancels from all formulae for averages starting from
(8), (9) etc, as it enters to both the denominator and numerator. Below we shall set
Tr(AQ) = 1 for simplicity.
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Using (A5) and (A9) and some combinatorics to count the number of configurations,
the sum (A2) then reads

Y (N,M) = 1

αβM

M∑
m=1

γmC
M−m
N−m−2+

1

αβM
CMN−2. (A11)

Finally, substituting (A10) and performing the summation
∑M

m=1C
M−m
N−m−2 = CM−1

N−2 , one
obtains equations (11) and (10).
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