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Abstract. The Bethe ansatz equation is solved to obtain analytically the leading finite-size
correction of the spectra of the asymmetricXXZ chain and the accompanying isotropic 6-
vertex model near the antiferromagnetic phase boundary at zero vertical field. The energy gaps
scale with sizeN asN−1/2 and their amplitudes are obtained in terms of level-dependent scaling
functions. Exactly on the phase boundary, the amplitudes are proportional to a sum of square-
root of integers and an anomaly term. By summing over all low-lying levels, the partition
functions are obtained explicitly. A similar analysis is performed also at the phase boundary
of zero horizontal field in which case the energy gaps scale asN−2. The partition functions
for this case are found to be that of a non-relativistic free fermion system. From the symmetry
of the lattice model underπ/2 rotation, several identities between the partition functions are
found. TheN−1/2 scaling at zero vertical field is interpreted as a feature arising from viewing
the Pokrovsky–Talapov transition with the space and time coordinates interchanged.

1. Introduction

Spectral properties of the asymmetricXXZ chain and its associated lattice model, the
asymmetric 6-vertex model, have recently been of much interest [1–6]. The Hamiltonian
of the asymmetricXXZ chain is displayed as equation (1) in the next section. It is a
non-Hermitian generalization of the standard spin1

2 XXZ chain [7] and is the anisotropic
limit of the row-to-row transfer matrix of the asymmetric 6-vertex model, i.e. the general
6-vertex model in horizontal and vertical fields [8–10]. Both models are solvable by the
Bethe ansatz for arbitrary interaction parameter1, horizontal fieldH and vertical fieldV ,
and for the lattice model, also for the arbitrary anisotropy parameter.

When the interaction parameter1 is less than−1, the asymmetricXXZ chain and the
asymmetric 6-vertex model are antiferromagnetically ordered for small values ofH andV .
(We use the term antiferromagnetic phase to denote the antiferroelectric phase of the lattice
model.) Typical phase diagrams in theH–V plane are shown in figure 1. The ordered phase
in theH–V plane is bounded by the antiferromagnetic phase boundary, shown in figure 1
as the full curve, beyond which the systems are disordered. The disordered phase is critical
in that excitations are massless and correlation lengths decay algebraically. For still larger
values of fields, complete ferromagnetic ordering sets in. The free energy of the 6-vertex
model as a function of the two fields can be interpreted as the equilibrium crystal shape
[11-13] and the antiferromagnetically ordered region of fields corresponds to the flat facet,
and the antiferromagnetic phase boundary to the facet boundary. On the facet boundary,
the curvature of the free energy surface is universal [14, 3]. The nature of phase transitions
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Figure 1. (a) Phase diagram in fields of the asymmetricXXZ chain for λ = 2.5. The full
curve is the antiferromagnetic phase boundary and the broken ones are the ferromagnetic phase
boundary. The region between the curves is the critical phase. The point A (B) is theH = Hc,
V = 0 (H = 0, V = Vc) phase boundary discussed in section 5 (6). (b) The same as in (a) for
the isotropic 6-vertex model (F model).

at the facet boundary can be understood from the viewpoint of domain wall excitations and
is that of the Pokrovsky–Talapov (PT) transition [15, 16].

Within the critical phase and on the phase boundaries, an infinite number of massless
excitations exists in the thermodynamic limit. When the system size, i.e. the number of
spins in the chainN , is finite, the degeneracies are lifted producing energy gaps. Finite-size
scaling of these energy gaps gives valuable information on the properties of the system
[17]. Throughout the critical phase of the asymmetricXXZ chain and the asymmetric
6-vertex model, the energy gaps scale asN−1 and, as shown in [3], the finite-size scaling
amplitudes can be accounted for by the central chargec = 1 conformal field theory [18],
with suitable modifications to account for incommensurate arrow densities. All finite-size
scaling information is encoded in the O(1) part of the partition function which is covariant
under the modular transformations and, for the case of the asymmetric 6-vertex model, is
given by the modified Coulombic partition function.

When1 > 1 andV = 0, the critical phase is bounded by the so-called stochastic line
where the asymmetricXXZ chain Hamiltonian describes the time evolution of the single-
step model [19] which is one of the simplest realizations of the Kardar–Parisi–Zhang (KPZ)
universality class of non-equilibrium growth models [20] and also of the driven lattice gas
[21, 22]. On the stochastic line, theN−1 scaling crossovers to the KPZ-typeN−3/2 scaling
where the exponent32 is the dynamic exponent for the(1+1)-dimensional KPZ class. This
was first shown in [4] for a special limit (see also [23]), and numerically in [5] for other
cases. More recently, it was shown in [6], which will be denoted as I in this work, that the
energy gaps for general cases can be systematically expanded in power series ofN−1/2 and
the scaling amplitudes are given by level-dependent, but universal, scaling functions.

Recently, the finite-size scaling on the antiferromagnetic phase boundary ofV = 0
was discussed by Albertiniet al [1, 2]. In their work, it was shown analytically that the
low-lying excitations satisfy the energy–momentum relationε ∼ √ik in the thermodynamic
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limit which in turn indicates theN−1/2 scaling of energy gaps. It was then confirmed by
numerical solutions of the Bethe ansatz equations for finiteN that the energy gaps scale as
N−1/2.

In this work, we present analytic solutions for the finite-size scaling at the
antiferromagnetic phase boundary using the method developed in I. It is seen that the
N−1/2 scaling of energy gaps forV = 0 phase boundary arises from the same mathematical
origin as in the case of the stochastic line. The scaling amplitudes for general levels are
given in terms of a scaling variableu ∼ (H −Hc)N whereHc is the position of the phase
boundary atV = 0. Their crossover behaviours enable one to identify the class of levels
which become degenerate at the phase boundary of|H | < Hc. At H = Hc, the energy gap
amplitudes are found to be proportional to a sum of square-root of integers and an anomaly
term. Furthermore, the O(1) part of the partition function in the scaling limit, which is
simply called the partition function in this work, is also obtained for both the chain and the
lattice model in terms of several infinite products involving non-integer powers of nome.
A similar analysis is also carried out at the phase boundary ofH = 0. Here, the energy
gaps scale asN−2 which is a characteristic of the PT transition. Also the corresponding
partition functions are evaluated and shown to be those of the non-relativistic free fermion
system with dispersion relationε ∼ k2. Using the physical requirement of invariance of the
partition function of the lattice model under exchange of rows and columns, i.e. underπ/2
rotation of the lattice, we find interesting mathematical identities between infinite products.
We also argue that theN−1/2 scaling at theV = 0 phase boundary is a feature arising from
viewing the standard PT transition of theH = 0 phase boundary afterπ/2 rotation.

This paper is organized as follows. In section 2, we set notations and review the Bethe
ansatz method for bulk properties. Then we discuss classifications of low-lying excitations.
In section 3, the formalism for calculating finite-size corrections in energy is developed in
line with I and the leading order solution is expressed in terms of level-dependent scaling
functions with the scaling variableu. In section 4, the crossover behaviours of the energy
gaps forH > Hc andH < Hc are discussed. From this, the class of excitations which
remain massless at the facet boundary of|H | < Hc is identified. In section 5, the spectra and
the partition functions atH = Hc are derived. We discuss in section 6, the spectra and the
partition functions at the antiferromagnetic phase boundary ofH = 0. From this, we obtain
several identities between infinite products. Finally, we summarize and discuss our results
in section 7. Some mathematical details are relegated to appendices. Appendix A proves
some properties of the scaling function, appendix B contains derivations of the partition
function at theV = 0 phase boundary, while appendices C and D derive the spectra and
the partition function, respectively, at theH = 0 phase boundary.

2. Bethe ansatz and energy levels

We consider the asymmetricXXZ chain ofN sites whose Hamiltonian is given by

H = (2 sinhλ)−1
N∑
i=1

{
coshλ

2
(σ zi σ

z
i+1− 1)− e2Hσ+i σ

−
i+1− e−2Hσ−i σ

+
i+1

}
− V

N∑
i=1

σ zi (1)

whereσai are the Pauli spin operators,σaN+1 = σa1 , andH andV are the horizontal and
vertical fields, respectively. The standard interaction parameter1 has been parametrized as
1 = − coshλ with λ > 0 since we are interested in the region1 < −1. The front factor is
included for later convenience. Below we use the short notationα ≡ exp(−2λ). We also
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use the notation for the magnetization as

N∑
i=1

σ zi = N − 2Q = 2r (2)

whereQ is the number of down spins and useq = Q/N = 1
2 − r

N
so that 06 q 6 1 and

r takes the integer (half-integer) values forN even (odd). We work in sectors of general
but finite r asN →∞. Since the spectra of (1) forV = 0 is symmetric with respect toH
andr, we work in the region ofH > 0 andr > 0.

The eigenvaluesE of H in the sectorr are given by

E = −2rV −
Q∑
j=1

(
xj

xj − 1
+ αxj

1− αxj

)
(3)

where{xj } are the solutions of the Bethe ansatz equation(
e2H−λ xi − 1

1− αxi

)N
= (−1)Q−1

Q∏
j=1

xi − αxj
xj − αxi (i = 1, 2, . . . ,Q). (4)

(The roots{xj } are related to the standard{αj } notation byxj = exp(λ− iαj ).)
The asymmetricXXZ Hamiltonian is the logarithmic derivative of the asymmetric

6-vertex model row-to-row transfer matrix at the extreme anisotropic limit [6]. The
eigenvalues3 of the latter are also expressed in terms of{xj }. In this work, we consider the
isotropic 6-vertex model, or the F model, in external fields whose six Boltzmann weights
are given asω1,2 = exp(±(H + V )), ω3,4 = exp(±(H − V )) and ω5,6 = 2 cosh(λ/2),
respectively. The transfer matrix eigenvalues of the F model are given as

− ln3 = −HN − 2rV −
Q∑
j=1

ln
xj − exp(−λ)

1− exp(−λ)xj (5)

for H > 0. The following discussions can be easily extended to the anisotropic 6-vertex
model but we consider only the isotropic case for simplicity. We define the phase function
or the counting functionZN(x) by

iZN(x) = 2H − λ+ (1− q) ln x + ln
1− x−1

1− αx +
1

N

Q∑
j=1

fZ(x, xj ) (6)

with

fZ(x, x
′) = ln x ′ − ln

1− αx ′/x
1− αx/x ′ = ln x ′ +

∑
n6=0

α|n|

n

(
x ′

x

)n
(7)

and the root density functionRN(x) by the derivative ofZN as

RN(x) = ixZ′N(x)

= −q + x

x − 1
+ αx

1− αx −
1

N

Q∑
j=1

[∑
n6=0

α|n|
(xj
x

)n ]
(8)

with
∑

n6=0 denoting the sum over all integers except 0 and 1< |x| < 1/α. In terms ofZN ,
the Bethe ansatz equation can be rewritten as

ZN(xj ) = 2π

N
Ij (9)



AsymmetricXXZ chain 3821

where Ij are half-integers (integers) forQ even (odd). The ground state for eachQ is
obtained if one choosesIj as

2π

N
Ij = 2π

N

(
−Q+ 1

2
+ j

)
≡ φj (10)

for j = 1, 2, . . . ,Q. In the thermodynamic limit,{xj } for the ground state form a continuous
curve given by the locusx = Z−1

∞ (φ) for −πq 6 φ 6 πq whereZ−1
N (φ) denotes the inverse

function ofZN(x).
The simplifying feature for the case ofq = 1

2 and |H | 6 Hc is that the root contour
becomes closed in thex-plane, as for the case of the stochastic line. Here,Hc is the
antiferromagnetic transition point to be given in (14). To find the actual form ofZ∞(x) for
q = 1

2 and |H | 6 Hc, one may evaluate the sum in (6) by a contour integration over the
circle |x| = exp(λ − b) with −λ < b < λ using the known expression ofR∞(x) which is
R∞(x) =

∑
n α

nxn/(1+ αn) in our notation. The result is

iZ∞(x) = 2H − λ+ 1

2
ln x + 1

2
ln |x0| +

∑
n6=0

αn

n(1+ αn) (x
n + xn0) (11)

wherex0 ≡ exp(λ − b + π i) is the endpoint of the contour. The conditionsZ∞(exp(λ −
b ± π i)) = ±π/2 are met ifH is related tox0 or b by

H = 4(b) (12)

where the real function4(b) defined by [8, 10]

4(b) = b

2
+
∞∑
n=1

(−1)n sinhnb

n coshnλ

= ln
cosh(λ+ b)/2
cosh(λ− b)/2 −

b

2
−
∞∑
n=1

(−1)nαn sinhnb

n coshnλ
. (13)

The entire antiferromagnetic phase boundary of the lattice model is described by the
H -dependent critical vertical fieldVc given by [24, 9]Vc = 4(λ− b) with −2λ < b < 2λ
while that of the asymmetricXXZ chain with normalization as given in (1) is given by
(see appendix C)Vc = 4′(b). These are shown in figure 1 as a full curve forλ = 2.5. In
both cases,Vc = 0 whenb = ±λ. Thus the critical valueHc of theV = 0 phase boundary
is given by

Hc = 4(λ). (14)

The bulk ground-state energy per site of the chain within the antiferromagnetically ordered
region is given ase∞ ≡ limN→∞ E/N = −e0 where

e0 = 1

2
+ 2

∞∑
n=1

αn

1+ αn (15)

and the bulk free energy of the F model isf∞ ≡ limN→∞(− ln3)/N = −λ/2 −∑∞
n=1 n

−1αn/2 tanhnλ.
In the antiferromagnetic phase, finite mass gaps appear in the energy spectra. But these

mass gaps are offset by fields and at the antiferromagnetic phase boundary, an infinite
number of other levels become degenerate with the ground state in the thermodynamic
limit. These degeneracies are lifted for finite but largeN . Our aim here is to find these
finite-size corrections for arbitrary energy levels. We denote these energy gaps as1E and
1F , respectively:1E = E − e∞N and1F = − ln3− f∞N .
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Figure 2. Examples of energy levels forN = 20 andQ = 10 (r = 0). Full circles denote
integers included in{Ij }. (a) The ground state(0, 0, 0). (b) The 1-shifted level(0, 1, 0). (c)
An excited level from (b) which has two particle–hole pairs at the right end of the Fermi sea
(with positionsp1 = 2, p2 = 3, h1 = 1 andh2 = 2) and one particle–hole pair at the left end
(with p̄1 = 1 andh̄1 = 1).

The ground state characterized by (10) corresponds to a Fermi sea as depicted in
figure 2(a) for r=0. Other energy levels are obtained if other sets of{Ij } are chosen.
An important class of levels is them-shifted levels where{Ij } are shifted by an integer
m from that of the ground state, i.e. 2πIj/N = φj+m. These states are denoted as
(r,m,0). figure 2(b) shows the 1-shifted level(0, 1, 0). Further excitations are obtained
by creating from them-shifted states an equal numbers of particles and holes near the
two ends of the Fermi sea. Excited levels are then characterized by their particle and
hole positions. The particle (hole) positions near the right-hand side of the Fermi sea can
be specified by a set of integers{pk}, ({hk}) which are related to the indexj in φj as
j = Q+m+ pk(Q+m+ 1− hk), for k = 1, 2, . . . , n+, n+ being the number of particle-
hole pairs, and 16 p1 < p2 < · · · < pn+ (16 h1 < h2 < · · · < hn+ ). Particles (holes) near
the left-hand side may be labelled similarly by{p̄k}({h̄k}) with j = 1+ m − p̄k(m + h̄k),
for k = 1, 2, . . . , n− and 16 p̄1 < p̄2 < · · · < p̄n−(1 6 h̄1 < h̄2 < · · · < h̄n−). Such
excitation configurations are denoted collectively byP. General levels are then labelled as
(r,m,P). Figure 2(c) shows an example of particle–hole excitations. In [3], it was shown
for the critical region that levels obtained in this way account for all the low-lying excitations
which are expected to appear from the central chargec = 1 conformal field theory. Here,
we also assume that all the low-lying excitations are generated in this manner.

When the particle–hole configurations differ from the ground state only at finite distances
away from the two ends of the Fermi sea, finite-size corrections in energies are determined
by the analytic property ofZ∞(x) near x = x0. However, the root density vanishes at
x = x0

c ≡ eπ i which is the endpoint of the root contour forH = Hc. ThereforeZ−1
∞ (φ)

exhibits a square-root singularity atφ = ±π/2. The same phenomenon was the origin of
the unusualN−3/2 scaling of the energy gaps along the stochastic line and one can expect
that a similar mechanism producesN−1/2 scaling in the present case. On the other hand, for
|H | < Hc, O(N−1) variations inφ nearφ = ±π/2 cause, viaZ−1

∞ (φ), O(N−1) variations
in the x-plane and hence the finite-size corrections take the form of power series inN−1.
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What is special at the antiferromagnetic phase boundary is that the real parts of the energy
gaps scale asN−2 which is the characteristic of the PT transition. These features are born
out explicitly below.

3. Energy gaps forH near Hc

In this section, we derive the leading-order finite-size correction of the energy gaps1E and
1F for general levels with(H − Hc)N as a scaling variable. To find the energy gaps for
H nearHc, we employ the method of I. Thus, for finite but largeN and for levels whose
energies are close to that of the ground state, we assume, following I, that there exists in
the complexx-plane a pointxc nearx0

c = eπ i such thatZ′N(xc) = 0, ZN(x) itself having a
branch cut passing throughxc, and that nearxc, ZN(x) has the expansion of the form

iZN(x) = ±iπq + y± π
N
+ 1

a2
1

(x − xc)2+O((x − xc)3) (16)

where the upper (lower) sign refers to the assumed value of iZN(x) at x = xc (x = xce−2π i ).
This amounts to assuming

Z−1
N

(
±πq + π

N
ξ
)
= x±c ± ia1

√
y± − iξ

√
π

N
+O(N−1) (17)

for ξ ∼ O(1) with x+c = xc andx−c = xce−2π i .
The constantsxc, a1, y±, etc are all level dependent and should be determined self-

consistently. But, first we assume they are known and evaluate the finite sums of the
form

S[f ] =
Q∑
j=1

f (xj ) =
Q∑
j=1

f

(
Z−1
N

(
2π

N
Ij

))
(18)

to O(1/
√
N) for arbitraryf (x ′). Following the same steps as in I, but generalizing to levels

with m 6= 0, we find

S[f ] = N

2π i

∮
f (x)RN(x)

dx

x
+
(
m+ i

2
y+

)
f (xc)−

(
m+ i

2
y−

)
f (xce

−2π i)

+a1f
′(xc)Y1(y+, y−)

√
π

N
+O(N−1) (19)

where the integral is over a closed contour in the annulus 1< |x| < 1/α andY1(y+, y−) is
defined below. To defineY1, we first introduce two functionsJ+(y) andJ−(y) of complex
variable defined for=y > 0 and=y < 0, respectively, as

J±(y) = 1

2

∫ ∞
0

√
y + t −√y − t

eπt − 1
dt ± i

2
y1/2− 1

3
y3/2 (20)

with the branch cut of the square roots at the negative real axis. As shown in appendix A,
J±(y) satisfy the recursion relations

J±(y ± 2i) = J±(y)∓ i
√
y. (21)

Thus, we may extend the definition ofJ+(y) (J−(y)) into the half plane=y 6 0 (=y > 0)
using relation (21) recursively. Having definedJ±(y), we then give the expression ofY1
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for the general level(r,m,P):
Y1(y+, y−) = J+(y+ + i − 2im)+ J−(y− − i − 2im)

+i
n+∑
k=1

(√
y+ + i(1− 2m− 2pk)−

√
y+ − i(1+ 2m− 2hk)

)
−i

n−∑
k=1

(√
y− − i(1+ 2m− 2p̄k)−

√
y− + i(1− 2m− 2h̄k)

)
. (22)

The first two terms in (22) are contributions for them-shifted levels and the sums in the
second (third) line account for particle–hole pairs created at the right (left) end of the Fermi
sea. Whenm = 0 andy+ = y−, Y1(y, y) reduces to−Y1(y) defined in I.

Applying (19) to (8), we then obtain the solution forRN as

RN(x) = R∞(x)+ r

N
+ 1

N

∑
n6=0

α|n|

1+ α|n|
(
x

xc

)n
×
(
y+ − y−

2i
+ n

xc
a1Y1(y+, y−)

√
π

N

)
+O(N−2). (23)

Having obtainedRN(x) to O(N−3/2), we can evaluateS[f ] to O(N−1/2) for any f (x ′).
In particular, applying the general sum formula tof (x ′) = fZ(x, x ′) given in (7),ZN(x)
can be evaluated to O(N−3/2). Evaluating the latter and its two derivatives atx = x±c ,
one obtains four self-consistency equations fory±, xc and a1 from (16). Solving them
perturbatively, we find

y± = (±2r +m)i + u+O(N−1/2) (24)

xc = eπ i + 2re0

e2
1

1

N
+O(N−2) (25)

a1 =
√

2

e1
+O(N−1) (26)

wheree0 is given in (15),e1 is a positive real constant defined as

e1 ≡ (−R′∞(−1))1/2 = (−4′′(λ))1/2 =
(

1

4
+ 2

∞∑
n=1

n(−1)n
αn

1+ αn
)1/2

(27)

andu is the scaling variable

u = (H −Hc)N/π (28)

which is assumed fixed asN →∞. Having determinedy±, xc anda1 to necessary orders,
we are now in a position to evaluate1E and1F . Applying (19) together with (23) to (3)
and using the perturbative solutions, we find

1E ≡ E − e∞N = −2rV + e1Y (r,m,P)1

√
2π

N
+O(N−1) (29)

wheree∞ = −e0 andY (r,m,P)1 is the value ofY1(y+, y−) at y± = u+ (±2r +m)i:
Y (r,m,P)1 = J+(u+ i(2r −m+ 1))+ J−(u− i(2r +m+ 1))

+i
n+∑
k=1

(√
u+ i(2r −m+ 1− 2pk)−

√
u+ i(2r −m− 1+ 2hk)

)
−i

n−∑
k=1

(√
u− i(2r +m+ 1− 2p̄k)−

√
u− i(2r +m− 1+ 2h̄k)

)
. (30)
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Here,J±(y) andu are given in (20) and (28), respectively.Y (r,m,P)1 , regarded as a function
of the scaling variableu, is then the scaling function. A similar calculation for the F model
leads to

1F ≡ − ln3− f∞N = −iπm− 2rV + e2

e1
Y (r,m,P)1

√
2π

N
+O(N−1) (31)

where the constante2 is given as

e2 ≡ 4′(0) = 1

2
+
∞∑
n=1

(−1)n

coshnλ
. (32)

Note that1F has an imaginary term due to3 being negative form odd. Apart from this,
all energy gaps atV = 0 scale asN−1/2 and all the level dependences are encoded in the
scaling functionY (r,m,P)1 . Higher-order corrections which come as a power series inN−1/2

can be calculated perturbatively using the method similar to that of I.

4. Crossover behaviours forH 6=Hc

Equations (29) and (31) are obtained with the scaling variableu fixed. By considering
the limits u → ±∞, we can derive how the spectra crossover to those of the critical and
massive phases. First consider the caseH > Hc whereu → ∞ asN → ∞. From (20),
one can show that, asu→∞,

J±(u± ia) = −1

3
u3/2∓ i

2
(a − 1)u1/2+

(
a2

8
− a

4
+ 1

12

)
u−1/2+O(u−3/2). (33)

Using this in (30),Y (r,m,P)1 becomes

Y (r,m,P)1 = −2

3
u3/2+ imu1/2+

(
m2

4
+ r2− 1

12
+N +N

)
u−1/2+O(u−3/2) (34)

with N = ∑n+
k=1(pk + hk − 1) andN = ∑n−

k=1(p̄k + h̄k − 1). The first term in (34)
contributes a bulk energy term proportional to(H − Hc)3/2N to 1E and1F , the second
an O(1) imaginary term and the third a real one proportional to(H −Hc)−1/2N−1. These
are exactly those which appear in the critical phase as shown in [3] and show the complete
operator content of the Gaussian model. In the Coulomb gas picture,m and r are the
spin wave and vortex quantum numbers, respectively, characterizing primary operators of
the c = 1 conformal field theory whose Gaussian coupling constantg is 2, andN and
N account for the conformal towers generated from the primary operators. Higher-order
corrections in (29) and (31) not discussed here would give terms which are higher orders
in (H −Hc).

Next consider the caseH < Hc. Now u→−∞ asN →∞ and one has to be careful
about the branch cut of the square root. We find

J±(u± ia) = ± i

3
|u|3/2+G±|u|1/2+O(|u|−1/2) (35)

with G± = |a − 1|/2 for a > 0 or for a negative odd integers but, fora 6 0 and even
integers,G+ = (|a| − 1)/2 while G− = (|a| + 3)/2. Using this, we find the leading
order ofY (r,m,P)1 for levels (r,m,0) asY (r,m,0)1 = max(2r, |m|)|u|1/2 if (2r + m) is even
andY (r,m,0)1 = max(2r, |m − 1|)|u|1/2 if (2r + m) is odd. Thus, whenm is in the range
−(2r + 1) < m 6 (2r + 1), Y (r,m,0)1 = 2r|u|1/2 + O(|u|−1/2). In view of the contributions
from particle–hole excitations in (30), we note that, for−(2r+1) < m 6 (2r+1), particles
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at positions satisfying the condition 2r−m+1−2pk > 0 or 2r+m+1−2p̄k > 0 contribute
−|u|1/2 but those violating the condition and each hole contribute|u|1/2. Thus, when all
particle positions satisfy the condition, or equivalently, when the last positions satisfy the
condition

− (2r + 1) < m 6 (2r + 1) 2pn+ 6 2r −m+ 1 2p̄n− < 2r +m+ 1 (36)

then all particle contributions are cancelled by holes. Thus, for such levels,Y (r,m,P)1 =
2r|u|1/2+O(|u|−1/2) and1E becomes

1E = −2rV + 2
√

2e1(Hc −H)1/2r (37)

asH → Hc in the thermodynamic limit. The second term in (37) is the mass gap of the
antiferromagnetic phase of the asymmetricXXZ chain whose general expression is given
in (C.11) and also in [1]. A corresponding expression for the lattice model is

1F = −iπm− 2rV + 2
√

2e2e
−1
1 (Hc −H)1/2r. (38)

For levels which do not satisfy (36), the mass gap becomes higher by O(1). Equations (37)
and (38) are derived forr > 0; for generalr, the factorr in their last terms should be
replaced by|r| due to the spin reversal symmetry. When 2rV is equal to the mass gap,
all levels (r,m,P) satisfying (36) become degenerate with the ground-state energy in the
thermodynamic limit. ForV > 0, this level crossing happens only forr > 0. Finite-size
corrections of these degenerate energies will be discussed in section 6.

A special mention is needed forr = 0 which is the half-filled sector forN even. Here,
only two levels(0, 0, 0) and (0, 1, 0) satisfy (36). The latter which has momentumπ is
the exponentially degenerate second-largest eigenvalue of the transfer matrix as discussed in
[25]. Such an exponential degeneracy is reflected in the largeu behaviour ofY (r,m,P)1 . When
expanded as a power series in|u|−1, bothY (0,0,0)1 andY (0,1,0)1 have vanishing coefficients
to all orders in the series.

5. Spectra and partition functions atH =Hc and V = 0

Now we consider the caseH = Hc with V = 0 (the points A in figure 1). Sinceu = 0 in
this case, one needs to evaluateJ±(ia) for integer values ofa. Successive application of
the recursion relation (21) yields,

J+(ia) =



√−i
(a−3)/2∑
j=0

√
1+ 2j −√−ic1 if a > 0 and odd

√
i
(|a|−1)/2∑
j=0

√
1+ 2j −√−ic1 if a < 0 and odd

√−i
(a−2)/2∑
j=0

√
2j +√−ic2 if a > 0 and even

√
i
|a|/2∑
j=0

√
2j +√−ic2 if a 6 0 and even

(39)

andJ−(−ia) = J+(ia)∗ where the positive numbersc1 andc2, called anomaly, are given as

c1 ≡ −J+(i)/
√−i = 1

6
− 1

2i

∫ ∞
0

√
1+ it −√1− it

eπt − 1
dt (40)

c2 ≡ J+(0)/
√−i = ζ ( 3

2

)
/
(

2
√

2π
)
= 0.293 995 52 (41)
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with ζ(z) the Riemann zeta function. We will see later in an indirect way thatc1 =
(
√

2− 1)ζ( 3
2)/(4π) = 0.086 109 29 (equation (66)).

Using (39) in (30) withu = 0, one can read offY (r,m,P)1 for arbitrary levels. It is a sum
of square-root of integers and the anomaly term. We give a few examples:

(i) m-shifted levels with−(2r + 1) < m 6 (2r + 1):

Y (r,m,0)1 = −
√

2c1+
√−i

r−m/2−1∑
j=0

√
1+ 2j +

√
i
r+m/2−1∑
j=0

√
1+ 2j (42)

for (2r +m) even and

Y (r,m,0)1 =
√

2c2+
√−i

r−(m+1)/2∑
j=0

√
2j +

√
i
r+(m−1)/2∑

j=0

√
2j (43)

for (2r +m) odd.
(ii) m-shifted levels in sectorr = 0:

Y (0,m,0)1 =


2
√

i
m/2−1∑
j=0

√
1+ 2j −

√
2c1 for m > 0 even

2
√

i
(m−1)/2∑
j=0

√
2j +

√
2c2 for m > 0 odd.

(44)

Form < 0, Y (0,m,0)1 is the complex conjugate ofY (0,|m|,0)1 .
(iii) One particle–hole pair excitation from(0, 0, 0):

Y (0,0,P)1 = −
√

2c1+
√

i
√

2p1− 1+√−i
√

2h1− 1 (45)

with the positive integersp1 (h1) being the position of the particle (hole).
We have compared the above predictions with existing numerical data of1E obtained

by solving the Bethe ansatz equation for finiteN [26, 2]. Extrapolations of available data
(N 6 80 for levels(0, 0, 0) and (1, 0, 0), N 6 68 for (0, 2, 0), N 6 56 for (2, 0, 0)) all
show excellent convergence to the expected exact values with 4–6 digit accuracies.

Having obtained the leading finite-size corrections for arbitrary levels, one can go further
to evaluate the partition functions in the scaling limit. We consider the partition function
of the asymmetricXXZ chain at temperatureT (in units of the Boltzmann constant)
and the lattice model on aN × M lattice with periodic boundary conditions defined by
ZE =

∑
exp(−1E/T ) andZF =

∑
exp(−M1F), respectively, where the sums are over

all states and the bulk part exp(−Ne∞/T ) for the chain and exp(−MNf∞) for the lattice
model has been taken out. To obtain a non-trivial limit, we take the thermodynamic limit
with
√
NT or MN−1/2 fixed. In this scaling limit, the O(N−1/2) part of the energy gaps

produces finite contributions while those levels which are not degenerate with the ground
state in the thermodynamic limit need not be considered.

ConsideringZF first, we can write from (31),

ZF =
∑
(r,m,P)

(−1)mM exp

(
−e2M

e1

√
2π

N
Y (r,m,P)1

)
. (46)

The sum is conveniently expressed in terms of a complex parameterq which we call nome:

q = exp
(
−π
√

iτ
)

(47)
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where

τ = 2e2
2M

2/(πe2
1N). (48)

Derivation of the partition function is relegated to appendix B. Our final result forZF is

ZF =
{
Z1(q)± Z2(q)+ Z3(q) for M even

±Z1(q)+ Z2(q)∓ Z3(q) for M odd
(49)

where the upper (lower) sign is forN even (odd) andZi (q) are defined as

Z1(q) = 1
2(qq̄)

−c1

∞∏
j=−∞

(
1+ q

√
1+2j

) (
1+ q̄

√
1+2j

)
(50)

Z2(q) = 1
2(qq̄)

−c1

∞∏
j=−∞

(
1− q

√
1+2j

) (
1− q̄

√
1+2j

)
(51)

Z3(q) = 1
2(qq̄)

c2

∞∏
j=−∞

(
1+ q

√
2j
) (

1+ q̄
√

2j
)

(52)

with c1 andc2 given in (40) and (41), respectively, andq̄ denoting the complex conjugate
of q.

For the asymmetricXXZ chain, we have

ZE =
∑
(r,m,P)

exp

(
−e1

T

√
2π

N
Y (r,m,P)1

)
. (53)

In this case, we can simply use the result ofZF for M even by redefining the nome as
q′ = exp(−e1

√
2π i/N/T ). Using this, we then have

ZE = Z1(q
′)± Z2(q

′)+ Z3(q
′) (54)

where the+ (−) sign is forN even (odd).

6. Spectra and partition functions atH = 0 and V = Vc
The partition function of the isotropic lattice model on aN ×M lattice should be invariant
under rotation of the lattice by 90◦. After the rotation, roles ofH and V are also
interchanged. Thus, we expect an invariance of the partition functions underN ↔ M

andH ↔ V . When the system is in the critical phase, this symmetry is manifest by the
modular covariance of the partition function. Modular invariance plays an important role in
classifying the conformal invariant theories and in revealing their mathematical structures.
The present system is in a way a non-relativistic limit of the CFT and it is of interest to find
the analogue of the modular transformation. For this purpose, we have also calculated the
energy spectra of the two models at|H | 6 Hc for those which are low-lying nearV = Vc
whereVc is theH -dependent critical vertical field. The method employed is similar to the
case ofH = Hc except that the ansatz forZ−1

N (φ) takes a different form and that only those
levels satisfying the condition given in equation (36) andr > 0 come into the working.
More details are given in appendix C. To compare the result with that of theV = 0 phase
boundary (the points A in figure 1), we consider only theH = 0 phase boundary (the points
B in figure 1). The result for the F model atH = 0 is

1F = −π im+ 2r(Hc − V )+ e2
1

2e2
2

Y (r,m,P)4 (π/N)2+O(N−3) (55)
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whereHc, e1 ande2 are given in (14), (27) and (32), respectively, andY (r,m,P)4 is given by

Y (r,m,P)4 = 8

3
r3− 2

3
r + 2rm2−

n+∑
k=1

[(2r −m+ 1− 2pk)
2− (2r −m− 1+ 2hk)

2]

−
n−∑
k=1

[(2r +m+ 1− 2p̄k)
2− (2r +m− 1+ 2h̄k)

2] (56)

while that for the chain atH = 0 is

1E = 2r(e2− V )+ e4

2e2
2

Y (r,m,P)4 (π/N)2+O(N−3) (57)

wheree4 ≡ −4′′′(0) =
∑∞

n=1(−1)n+1n2/ coshnλ. Note thatVc atH = 0 is the same asHc
for the lattice due to isotropy, but it ise2 = 4′(0) for the chain. ForH not equal to zero,
imaginary O(N−1) terms appear in1E and1F . However, the real parts are O(N−2) for
all |H | < Hc.

From the result of the energy gaps, we are able to calculate the partition functions as in
the previous section. We consider the lattice case first since it is more general. To compare
it with (49), we interchangeM andN in (55) and offset the mass gap by settingV = Hc.
Then the partition function of anM ×N lattice at theH = 0 phase boundary is

ZF =
∑
(r,m,P)

(−1)mN exp
(
−π
τ
Y (r,m,P)4

)
(58)

with τ = 2e2
2M

2/(πe2
1N) as was given previously in (48).ZF evaluated in this way should

be the same as that obtained in section 5 by symmetry. To express the partition function in
a compact way, we define the new nome as

p = exp(−π/τ). (59)

This is analogous to the nome corresponding to the conjugate modulus in elliptic functions
[7]. After performing the sums over the levels, we findZF as

ZF =
{
Z̃1(p)± Z̃2(p)+ Z̃3(p) for M even

±Z̃1(p)+ Z̃2(p)∓ Z̃3(p) for M odd
(60)

where the upper (lower) sign is forN even (odd) andZ̃i are defined as

Z̃1(p) = 1
2

∞∏
j=−∞

(1+ p(1+2j)2) (61)

Z̃2(p) = 1
2

∞∏
j=−∞

(1+ p4j2
) (62)

Z̃3(p) = 1
2

∞∏
j=−∞

(1− p(1+2j)2). (63)

Derivation of (60) is sketched in appendix D. The corresponding partition functionZ̃E for
the asymmetricXXZ chain withM sites at temperatureT can be obtained from theN
even result of (60) withp replaced byp′ = exp(−e4π

2/(2e2
2M

2T ));

Z̃E = Z̃1(p
′)± Z̃3(p

′)+ Z̃2(p
′) (64)

with the+ (−) sign forM even (odd).
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Equating (49) and (60) for the four cases of parity ofM andN , we find

Zi (q) = Z̃i (p) (65)

for all i = 1, 2, 3, and for anyτ where q and p are related toτ by (47) and (59),
respectively. This is an analogue of the conjugate modulus transformation of the elliptic
functions. These identities are obtained by calculating the physically same quantity in
two independent ways and are confirmed numerically. However, we are not able to prove
them directly. A byproduct of the identities is the analytic expression ofc1 mentioned
below equation (41). Taking theτ → ∞ limit in ln Z̃1(exp(−π/τ)), and evaluating
the leading-order contributions using (A.3), one easily obtains lnZ̃1(exp(−π/τ)) −→
1
2(
√

2 − 1)ζ( 3
2)
√
τ/2. Comparing this withZ1(exp(−π√iτ)), one obtains the alternate

result forc1 as

c1 = (
√

2− 1)ζ( 3
2)/(4π). (66)

Similar steps usingZ̃3(exp(−π/τ)) confirm the leading-order behaviour ofZ3(q) for small
q.

7. Discussion

In this paper, we have presented Bethe ansatz solutions for the finite-size corrections of the
energy gaps at the antiferromagnetic phase transition for both the asymmetricXXZ chain
and the isotropic 6-vertex model or the F model. Furthermore, all the low-lying levels are
summed to obtain explicit expressions for partition functions. As a byproduct, interesting
identities between several infinite products were found. Main results of this paper are (29)
and (31) for energy gaps at theV = 0 phase boundary, (57) and (55) for the same at the
H = 0 phase boundary, (49) and (60) for the partition functions and the three identities
(65).

The finite-size corrections of the energy gaps are calculated using the method developed
in I [6]. Here, the phase function appearing in the Bethe ansatz solution is assumed to take
a certain form and is determined self-consistently. AtH = Hc andV = 0, the finite-size
corrections take the form of power series inN−1/2 because of the fact that the density of
roots for the ground state vanishes at the endpoints of the root contour. The same is true
on the stochastic line treated in I but, in the latter case, the leading O(N−1/2) term is absent
resulting in theN−3/2 scaling of energy gaps. For|H | < Hc andV = Vc, the finite-size
corrections come out as a power series inN−1. The leading O(N−1) term is imaginary and
the real contribution appears from O(N−2). ThisN−2 scaling is the characteristic of the PT
transition and is more generic. The pointsH = ±Hc andV = 0 of the phase boundary are
special in that the direction of the ‘time’ of the Hamiltonian (1) and the row-to-row transfer
matrix of the lattice model is orthogonal to the direction of the field and tangential to the
phase boundary in theH–V plane.

The partition function atH = 0 andV = Vc given in (60) is actually that of one-
dimensional non-relativistic free fermions with dispersion relationε = Ak2, A being a
constant. To make exact correspondence with (60), we simply require that the momentak

be an even or odd integer multiple ofπ/L, L being the length of the system, depending
on the parity of the total number of fermions. Thus, the effective theory on theH = 0
antiferromagnetic phase boundary is that of non-relativistic free fermions with the inverse
temperature or the number of rows playing the role of imaginary time. This is also true at
q = 0 or q = 1 (the broken curves in figure 1) where the transition can be viewed as the
PT-type commensurate–incommensurate transition [16, 27]. For such an effective theory,
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the single particle wavefunction is exp(ikx − εt) where t is the imaginary time. Now we
consider the effect of rotation in thex–t plane. Such a transformation is not covered in
the Schr̈odinger group [28] but makes sense in the context of lattice models. When the
coordinates are rotated by an angleθ , in order for the wavefunction to remain invariant, the
dispersion relation of the rotated system must change toε′ = ik′ tanθ+A(cosθ)−3k′2+O(k′3)
whenθ 6= ±π/2 but toε′ = √±ik′/A whenθ = ±π/2. Since the lattice model atH = Hc
andV = 0 is obtained by rotating that atH = 0 andV = Vc by π/2, one naturally has
excitations with

√
ik′ dispersion at theV = 0 phase boundary. From this, we can interpret

theN−1/2 scaling atH = Hc andV = 0 as the feature arising from viewing the ordinary
PT transition with the spacetime coordinate interchanged. However, the anomaliesc1 and
c2 in the rotated system are not explained by such a simple effective theory.
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Appendix A. Resursion relation ofJ±

To show the recursion relation (21), we introduce an auxiliary function defined for<y > 0
as

J̃ (y) = 1

2i

∫ ∞
0

√
y + it −√y − it

eπt − 1
dt − 1

2
y1/2+ 1

3
y3/2. (A.1)

J̃ (y) is related toJ±(y) by J+(y) =
√−iJ̃ (−iy) for =y > 0 andJ−(y) =

√
iJ̃ (iy) for

=y < 0. Equation (21) follows from the recursion relation forJ̃ (y) which is

J̃ (y + 2) = J̃ (y)+√y (A.2)

for <y > 0. To show (A.2), we employ the general sum formula [29]
n∑
j=0

f (j) =
∫ n

0
f (x)dx + f (n)+ f (0)

2
+ 2

∫ ∞
0

f̃ (n, t)− f̃ (0, t)
e2πt − 1

dt (A.3)

wheref̃ (x, t) = (f (x + it)− f (x − it))/2i. This formula is valid iff (x) is analytic and
satisfies limt→±∞ e−2π |t |f (x + it) = 0 in the strip−δ < <x < n + δ for someδ > 0.
Applying (A.3) to a trivial sum

∑1
j=0

√
y + 2j , one then obtains (A.2).

Appendix B. Partition function at H =Hc and V = 0

In this appendix, we evaluate the partition function of the lattice model at theV = 0 phase
boundary. That of the asymmetricXXZ chain follows simply redefining the nome and
using the result of the lattice model forM even. For simplicity, we consider the case ofM

even and mention the other case at the end. SinceM is even, from (46), we evaluate

ZF =
∑
(r,m,P)

exp(−π√τY (r,m,P)1 ) (B.1)
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whereτ is given in (48).
First consider the case(2r +m) even. Further, ifm is in the range−(2r + 1) < m 6

(2r + 1), Y (r,m,0)1 is given in (42) and we have

exp(−π√τY (r,m,0)1 ) = (qq̄)−c1

r−m/2−1∏
j=0

q̄
√

1+2j
r+m/2−1∏
j=0

q
√

1+2j (B.2)

where q = exp(−π√iτ) and q̄ = exp(−π√−iτ). From (30), one notes that
exp(−π√τY (r,m,P)1 ) is a product of exp(−π√τY (r,m,0)1 ) and factors coming from particle
and hole excitations. A particle at positionpk with 2pk < (2r − m + 1) contributes a
factor of q̄−

√
1+2j where j = r − m/2− pk = 0, 1, . . . , (r − m/2− 1), while that with

2pk > (2r − m + 1) a factor ofq
√

1+2j wherej = pk − r + m/2− 1 = 0, 1, . . . ,∞. A
hole athk gives q̄

√
1+2j wherej = hk + r − m/2− 1 = r − m/2, r − m/2+ 1, . . . ,∞.

Summing over all particle–hole configurations at the right end of the Fermi sea corresponds
to evaluating a free fermion grand-canonical partition function under the constraint that the
total number of particles should be the same as that of holes. If we denote the fugacity of
each particle (hole) byz (z−1), the desired sum is obtained by projecting out thez0 term of
the free fermion grand-canonical partition function which is

41(z) =
r−m/2−1∏
j=0

(1+ zq̄−
√

1+2j )

∞∏
j=0

(1+ zq
√

1+2j )

∞∏
j=r−m/2

(1+ z−1q̄
√

1+2j ). (B.3)

4n(z) of this appendix and appendix D are not to be confused with4(b) defined in (13).
We introduce a functionA(z) by

A(z) =
∞∏
j=0

(1+ zq
√

1+2j )

∞∏
j=0

(1+ z−1q̄
√

1+2j ) (B.4)

and denote its Fourier coefficients byAn; A(z) =
∑

n Anz
n. Then multiplying and dividing

by a factor of
∏r−m/2−1
j=0 (1+ z−1q̄

√
1+2j ) on the right-hand side of (B.3), we can put41 in

the form

41(z) = zr−m/2A(z)
r−m/2−1∏
j=0

q̄−
√

1+2j . (B.5)

Thus the coefficient ofz0 of 41(z) is A−r+m/2
∏r−m/2−1
j=0 q̄−

√
1+2j . Note that the product

over j in (B.5) is cancelled by that in (B.2). Summation over particle–hole configurations
at the left end of the Fermi sea proceeds in exactly the same way withm replaced by−m
and q by q̄. Thus, the partition function after summation over all excitations from each
m-shifted state is given as∑

P
exp(−π√τY (r,m,P)1 ) = (qq̄)−c1A−r+m/2Ā−r−m/2 (B.6)

for −(2r + 1) < m 6 (2r + 1) whereĀn stands for the complex conjugate ofAn. Similar
calculations for each case ofm > (2r + 1) andm 6 −(2r + 1) show that (B.6) holds
for all m, provided (2r + m) is even. We then sum the right-hand side of (B.6) over
all even (odd)m’s for 2r even (odd). However, we note that

∑
m A−r+m/2Ā−r−m/2 is

simply the coefficient ofz−2r in |A(z)|2. To obtain the partition function in the(2r + m)
even sector, we finally sum over all integer (half-integer) values ofr if N is even (odd).
Even though the above derivations assumedr > 0, we may sum over negativer ’s by the
symmetry,|A(z)|2 = |A(z−1)|2. Since the sum overr is equivalent to summing over all
coefficients of even (odd) powers ofz in |A(z)|2, it can be written as(A(1)2+A(−1)2)/2



AsymmetricXXZ chain 3833

((A(1)2 − A(−1)2)/2) for N even (odd). Noting that(qq̄)−c1A(1)2/2 = Z1(q) and
(qq̄)−c1A(−1)2/2 = Z2(q), we have the partition function in the(2r + m) even sector
asZ1(q)± Z2(q) with + (−) sign forN even (odd).

Next consider the case of(2r+m) odd. Ifm is in the range−(2r+1) < m 6 (2r+1),
Y (r,m,0)1 is given in (43). Using the same method as above, we find the intermediate partition
function as ∑

P
exp(−π√τY (r,m,P)1 ) = (qq̄)c2B−r+(m−1)/2B̄−r−(m+1)/2 (B.7)

whereBn is defined through

B(z) =
∞∏
j=1

(1+ zq
√

2j )

∞∏
j=0

(1+ z−1q̄
√

2j ) =
∑
n

Bnz
n (B.8)

and B̄n is its complex conjugate. Similar calculations for each case ofm > (2r + 1) and
m 6 −(2r+1) again show that (B.7) holds for allm, provided(2r+m) is odd. Proceeding
as above, we sum overm andr in (B.7) using the symmetryz|B(z)|2 = z−1|B(z−1)|2 and
finally find the partition function in(2r +m) odd sector as(qq̄)c2(B(1)2 + B(−1)2)/2 for
2r odd and(qq̄)c2(B(1)2 − B(−1)2)/2 for 2r even. ButB(−1) = 0 so that it becomes
(qq̄)c2B(1)2/2= Z3(q) for both parities ofN . Adding this to that of(2r+m) even sector,
we have (49) forM even.

WhenM is odd, we need to insert a factor of(−1)m into (B.6) and (B.7). This does
not complicate the sums since the sums overm in each sector are in steps of 2 and the
sign factor is equivalent to(−1)2r for the case of (B.6) and(−1)2r+1 for the case of (B.7).
These extra sign factors then give the full partition function as given in (49) forM odd.

Appendix C. Spectra atH = 0 and V = Vc
In this section, we derive1E and1F at the phase boundary ofH = 0. Although our main
interest is forH = 0, discussions up to (C.11) and (C.12) hold for general 06 H < Hc.

When |H | < Hc, Z∞ given by (11) has non-vanishing first derivative atx0 ≡
exp(π i + λ − b), the endpoint of the root distribution in bulk limit, which is related to
H by (12). Thus, our starting ansatz forZ−1

N (x) is, instead of (17),

Z−1
N (±πq + πξ/N) = x±0 + a2π(y± − iξ)/N + a4π

2(y± − iξ)2/N2+ · · · (C.1)

wherex+0 = x0 andx−0 = x0e−2π i . Here,y±, a2 anda4 are to be determined self-consistently.
We then follow the same steps as in section 3. However, as we have seen in section 4, the
levels not satisfying condition (36) become higher in energy by O(1) than those which do.
This is because the roots of the Bethe ansatz equation,xj or xQ−j , for j finite, may not
remain close tox±0 . So, (C.1) is useful only to the levels which do satisfy (36). With the
ansatz (C.1), the sum (18) is found to take the form

S[f ] = N

2π i

∮
f (x)RN(x)

dx

x
+ (m+ iy+/2)f (x+0 )− (m+ iy−/2)f (x−0 )

+f ′(x0)8+ f ′′(x0)9 +O(N−3) (C.2)

where8 and9 are short notations for

8 = a2πY2(y+, y−)/N + a4π
2Y4(y+, y−)/N2 (C.3)

9 = 1
2a

2
2π

2Y4(y+, y−)/N2 (C.4)
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with

Y2n(y+, y−) = −iJ (n)+ (y+ + i − 2mi)+ iJ (n)− (y− − i − 2mi)

+
n+∑
k=1

{[y+ + i(1− 2m− 2pk)]
n − [y+ − i(1+ 2m− 2hk)]

n}

+
n−∑
k=1

{[y− − i(1+ 2m− 2p̄k)]
n − [y− + i(1− 2m− 2h̄k)]

n}. (C.5)

Here,J (n)± (y) are a generalization of (20):

J
(n)
± (y) = 1

2

∫ ∞
0

(y + t)n − (y − t)n
eπt − 1

dt ± i

2
yn − 1

2(n+ 1)
yn+1. (C.6)

Wheny+ = y− andm = 0, (−1)nY2n(y, y) reduces toY2n(y) of I.
Using this general sum formula, we obtain the solution forRN as

RN(x) = R∞(x)+ r

N
+ 1

N

∑
n6=0

α|n|

1+ α|n|
(
x

x0

)n
×
(
y+ − y−

2i
+ n

x0
8− n(n+ 1)

x2
0

9

)
+O(N−4) (C.7)

and the self-consistency equations fory±, a2 anda4 as

y± = (±2r +m)i + π−1e0(8/x0−9/x2
0)+O(N−3) (C.8)

−a−1
2 = iZ′∞(x0)+ 2re0x

−1
0 N−1+O(N−3) (C.9)

2a4a
−3
2 = iZ′′∞(x0)+O(N−1) (C.10)

whereZ∞(x) is given in (11). Next, applying (C.2) with (C.7) and (C.8) to (3) and (5), we
obtain after some algebra,

1E = 2r(4′(b)− V )+4′′(b)(x−1
0 8− x−2

0 9)−4′′′(b)x−2
0 9 +O(N−3) (C.11)

for the chain and

1F = −π im+ 2r(4(λ− b)− V )−4′(λ− b)(x−1
0 8− x−2

0 9)

−4′′(λ− b)x−2
0 9 +O(N−3) (C.12)

for the lattice model where4(b) is defined in (13). The O(1) terms in (C.11) and (C.12)
imply that the critical fieldVc as a function ofH is given by4′(b) for the chain and by
4(λ − b) for the lattice. These O(1) terms vanish whenV = Vc. Equations (C.11) and
(C.12) contain, through8, an O(N−1) term proportional toY2(y± = ±2r i + mi) which
is purely imaginary. Thus the real parts of the energy gaps at the antiferromagnetic phase
boundary are O(N−2).

Up to hereH has been general. For simplicity, we now specialize toH = 0 at
corresponding values of the critical vertical field. WhenH = 0, x0 = −eλ, b = 0 and
a2 = eλ/e2 + O(N−1). Settingb = 0 in (C.11) and (C.12), one notes that the imaginary
O(N−1) terms all vanish simplifying the results considerably. A final expression for1E

and1F then becomes as given in (57) and (55), respectively, whereY (r,m,P)4 is the value
of Y4(y+, y−) evaluated at the zeroth-order solution fory±, i.e. Y4(y± = i(±2r +m)).



AsymmetricXXZ chain 3835

Appendix D. Partition functions at H = 0 and V = Vc
In this appendix, we derive (60). Consider the lattice model on theM ×N lattice withM
andN even. Then from (58) and (59), we have

ZF =
∑
(r,m,P)

pY
(r,m,P)
4 (D.1)

with Y (r,m,P)4 given in (56) and the sum is forr = 0, 1, . . . under restriction (36). Considering
first (2r + m) even sector, from (56), one sees that a particle (hole) at positionpk (hk)
contributesp−(1+2j)2 (p(1+2j)2) with 0 6 j 6 r − m/2− 1 (j > r − m/2). Thus, the free
fermion grand-canonical partition function for the right-hand side excitation is

43(z) =
r−m/2−1∏
j=0

(1+ zp−(1+2j)2)

∞∏
j=r−m/2

(1+ z−1p(1+2j)2) = zr−m/2C(z)
r−m/2−1∏
j=0

p−(1+2j)2

(D.2)

where

C(z) =
∞∏
j=0

(1+ z−1p(1+2j)2) =
∞∑
n=0

Cnz
−n. (D.3)

Thus the coefficient ofz0 in 43(z) can be written asCr−m/2
∏r−m/2−1
j=0 p−(1+2j)2. The

left-hand side excitations give the same result withm → −m. Using the fact that∑r−m/2−1
j=0 (1+2j)2+∑r+m/2−1

j=0 (1+2j)2 = 8r3/3−2r/3+2rm2, we note that the product

in the second line of (D.2) is cancelled by that coming from the first terms ofY (r,m,P)4 . Thus
we have ∑

P
pY

(r,m,P)
4 = Cr−m/2Cr+m/2. (D.4)

Summing (D.4) overm from−2r to+2r in steps of 2 and overr > 0, we find the partition
function in the(2r +m) even sector as(C(1)2+ C(−1)2)/2= Z̃1(p)+ Z̃3(p).

Next consider the(2r + m) odd sector. In this case the free fermion grand-canonical
partition function for the right-hand side excitations is

44(z) =
r−(m+1)/2∏

j=0

(1+ zp−4j2
)

∞∏
j=r−(m−1)/2

(1+ z−1p4j2
) (D.5)

while that for the left-hand side is

4̃4(z) =
r+(m−1)/2∏

j=1

(1+ zp−4j2
)

∞∏
j=r+(m+1)/2

(1+ z−1p4j2
). (D.6)

Note that thej = 0 term is excluded in (D.6) due to the strict inequality in (36). Defining

D(z) =
∞∏
j=0

(1+ z−1p4j2
) =

∞∑
n=0

Dnz
−n (D.7)

D̃(z) =
∞∏
j=1

(1+ z−1p4j2
) =

∞∑
n=0

D̃nz
−n (D.8)

we can write ∑
P
pY

(r,m,P)
4 = Dr−(m−1)/2D̃r+(m−1)/2 (D.9)
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where
∑r−m/2−1/2
j=0 (2j)2+∑r+m/2−1/2

j=1 (2j)2 = 8r3/3−2r/3+2rm2 has been used. We then
sum (D.9) overm from −2r +1 to 2r +1 in steps of 2 and finally overr > 0 to obtain the
remaining piece of the partition function as(D(1)D̃(1) + D(−1)D̃(−1))/2 = Z̃2(p). We
thus arrive at (60) forM andN even. For other parities ofM andN , we repeat the above
steps with only minor changes and find (60).
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