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Abstract. We calculate the mean neighboring degree function k̄nn(k) and the mean clustering function C(k)
of vertices with degree k as a function of k in finite scale-free random networks through the static model.
While both are independent of k when the degree exponent γ ≥ 3, they show the crossover behavior for
2 < γ < 3 from k-independent behavior for small k to k-dependent behavior for large k. The k-dependent
behavior is analytically derived. Such a behavior arises from the prevention of self-loops and multiple edges
between each pair of vertices. The analytic results are confirmed by numerical simulations. We also compare
our results with those obtained from a growing network model, finding that they behave differently from
each other.

PACS. 89.75.Da Systems obeying scaling laws – 89.75.Fb Structure and organization in complex systems
– 05.65.+b Self-organized systems

1 Introduction

Structural properties of complex networks have drawn
much attentions recently [1–3]. Degree, the number of
edges connected to a given vertex, is a primary quantity
to characterize the network structure. In many real-world
networks, degrees are inhomogeneous and their distribu-
tion follows a power law Pd(k) ∼ k−γ . Such networks are
called scale-free (SF) networks [4]. The degree-degree cor-
relation is also important to characterize network struc-
ture. The correlation between two degrees of vertices con-
nected via an edge is measured by the mean neighboring
degree function k̄nn(k), which is defined as the mean de-
gree of neighboring vertices of vertices with degree k [5].
The correlation among three vertices centered at a vertex
i is measured through the local clustering coefficient Ci,
defined as Ci = 2ei/ki(ki − 1), where ei is the number of
connections among the ki neighbors of a vertex i. ki is the
degree of the vertex i. The clustering function C(k) is the
averaged one of Ci over the vertices with degree k [6,7].

While Barabási and Albert (BA) introduced a model
to generate SF networks, the model is applied to grow-
ing systems where the number of vertices increases with
time [4]. As an extension of the Erdős-Rényi (ER) model
of random graph to SF networks [8], where the number of
vertices in the system is fixed, Goh et al. introduced the
so-called static model [9]. The term ‘static’ originates from
the fact that the number of vertices N is fixed. The static
model was followed by other similar-type models such as
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the hidden variable model [10–12]. In the static model,
each vertex i(i = 1, · · · , N) has a prescribed weight pi

summed to 1, which is given as

pi =
i−µ

∑N
j=1 j−µ

≈ 1 − µ

N1−µ
i−µ, (1)

where the Zipf exponent µ is in the range 0 < µ < 1.
To construct the network, in each time step, two vertices
i and j are selected with the probability pi and pj , re-
spectively. If i = j or an edge connecting i and j al-
ready exists, do nothing, implying that self-loops and mul-
tiple edges are not allowed, respectively. This condition is
called the fermionic constraint hereafter. Otherwise, an
edge is added between i and j. This process is repeated
NK times. The resulting network is a scale-free one with
the degree exponent given as [9,13]

γ = 1 +
1
µ

. (2)

Since a pair of vertices is selected with rate 2pipj, where
the factor 2 comes from the two cases of (i, j) and (j, i),
one may think that there is no degree correlation, which
is the case we can observe when γ > 3. However, when
2 < γ < 3, due to the fermionic constraint, the degree-
degree correlation arises intrinsically. In this case, the de-
gree correlation occurs for vertices with large degree, while
it is still absent for vertices with small degree. In this pa-
per, we investigate such degree correlations in terms of the
functions k̄nn(k) and C(k) in the static model and their
crossover behavior in terms of system size N .
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Many SF networks in the real-world and artificial net-
works include degree correlations within them. For exam-
ple, the mean neighboring degree function k̄nn(k) behaves
∼k−ν with ν > 0 for the Internet [5] and the protein inter-
action network [14], while ν < 0 for social networks such
as the coauthorship network. The case with ν > 0 (ν < 0)
is called disassortative (assortative) mixing [15]. When
a network contains hierarchical and modular structure
within it, it is suggested that the mean clustering func-
tion C(k) behaves as C(k) ∼ k−β for large k as observed
in metabolic networks and the hierarchy model [6,16]. Oc-
currence of such degree correlations in real-world networks
may be related to their own functional details. For exam-
ple, the assortativity of the social network arises from the
social relationship between bosses, while the disassortativ-
ity of the Internet comes from the network design to allow
data packets flow efficiently. The three-degree correlation
may be related to the control system in biological network
such as the feed-back or feed-forward loop structure [17].
Such degree correlations in real world networks appear
in the combination of those due to the fermionic con-
straint and their functionalities. On the other hand, the
static model is frequently used to study various dynami-
cal properties of complex networks. Therefore, the knowl-
edge of the intrinsic degree correlations we study here
would be helpful in understanding the degree-correlation
a SF network has for functional activity. For the purpose,
Catanzaro and Pastor-Satorras [18] studied the degree-
correlation function k̄nn(k) for the static model, but their
study relies on numerics in the end. Here we present an-
alytic solutions for k̄nn(k) as well as clustering function
C(k). We mention that k̄nn(k) for a related model was an-
alyzed by Park and Newman [19] while k̄nn(k) and C(k)
for the BA-type growing network models are studied by
Barrat and Pastor-Satorras [20] using the rate equation
approach [21]. On the other hand, it was desirable to in-
troduce uncorrelated SF network as a null model to check
the correctness of analytic solutions in various problems
on SF networks. For the purpose, Boguñá et al. [22] and
Catanzaro et al. [23] introduced a way to construct un-
correlated SF network by restricting degree of each vertex
to be less than the cutoff value kc, beyond which the in-
trinsic correlation arises in 2 < γ < 3. The cutoff value
they used scales as ∼N1/2, independent of γ, which was
based on the configuration model introduced by Molloy
and Reed [24]. Such cutoff is also implicit in the model
introduced by Chung and Lu [25]. However, we show that
while the natural cutoff of the static model is ∼N1/(γ−1),
the vertex correlations appear for degrees larger than a
crossover value, kc1 ∼N (γ−2)/(γ−1), which is smaller than
N1/2 for 2 < γ < 3. We mention that kc1 ∼ const.
(∼N1/2) as γ → 2(γ → 3) so that for γ → 2 all the
nodes have nontrivial vertex correlations and for γ → 3,
there are no correlations.

In Section 2, we derive the mean neighboring degree
function k̄nn(k) and the mean clustering function C(k)
analytically. Comparisons between the results of our an-
alytic derivations and numerical simulations are given in
Section 3. Section 4 summarizes our results.

Fig. 1. The connection probability fij of an edge has two dis-
tinct regions where fij ≈ 1 or ≈2KNpipj due to the fermionic
constraint when 2 < γ < 3.

2 Analytic results

In the static model, the notion of the grand canonical
ensemble is applied [13], where the number of edges is
a fluctuating variable while keeping the SF nature of the
degree distribution. Each pair of vertices (i, j) is connected
independently with the probability fij , given by

fij = 1 − e−2NKpipj , (3)

because the probability that vertices i and j (i �= j) are
not connected after NK trials is given by (1−2pipj)NK �
e−2NKpipj . That is, if we denote the adjacency matrix el-
ement by aij (=0, 1) then its ensemble average is given
by fij ; i.e., 〈aij〉 = fij , 〈· · · 〉 denoting the grand canon-
ical ensemble average. For i = j, fij = 0 because of the
prevention of self-loops. Since 2NKpipj ∼ KN2µ−1/(ij)µ

for finite K, when 0 < µ < 1/2, corresponding to the case
γ > 3, 2KNpipj is small in the thermodynamic limit,
therefore,

fij ≈ 2KNpipj . (4)

This is called the bosonic limit. On the other hand, when
1/2 < µ < 1, corresponding to the case 2 < γ < 3,
2KNpipj may diverge in the thermodynamic limit, there-
fore, fij is not necessarily of the form of equation (4), but
it reduces to

fij ≈
{

1 when ij � N2− 1
µ

2KNpipj when ij 	 N2− 1
µ .

(5)

This is the manifestation of the fermionic constraint, the
prevention of multiple edges. Thus, for 2 < γ < 3, fij has
two distinct regions in the (i,j) plane as shown in Figure 1.

2.1 Degree and degree distribution:

The degree ki of a vertex i is given in terms of the adja-
cency matrix as ki =

∑
j aij . For completeness, we present
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here known results for the mean degree 〈ki〉 [13]. It is ob-
tained through the formula 〈ki〉 =

∑
j �=i fij which can be

evaluated by using its integral form as

〈ki〉 =
∑

j �=i

fij ≈
∫ N

1

djfij

=
1
µ

a
1
µ N1− 1

2µ

∫ aNµ− 1
2

aN− 1
2

dy
1 − e−xy

yγ
, (6)

where γ = 1+ 1
µ , x = aNµ− 1

2 i−µ and y = aNµ− 1
2 j−µ with

a =
√

2K(1 − µ)2. (7)

The integral in equation (6) denoted as I(x) is evaluated
as

I(x) =
∫ aNµ− 1

2

aN− 1
2

dy
1 − e−xy

yγ

≈
⎧
⎨

⎩

a2−γN
γ−2
2

γ−2 (1 − Nµ−1)x for x < 1/aNµ− 1
2

a2−γN
γ−2
2

γ−2 x + q0(γ)xγ−1 for x > 1/aNµ− 1
2 ,
(8)

with q0(γ) ≡ ∫ ∞
0

dr(1 − e−r − r)/rγ , which is a negative
constant. Therefore, we obtain that

〈ki〉 ≈ 2K(1 − µ)
(N

i

)µ

+ A, (9)

where A is the correction, of which the leading term is

A ≈
{
−2K(1 − µ)N2µ−1/iµ for i > a

2
µ N2− 1

µ

(
2K(1 − µ)2

) 1
µ N2− 1

µ q0(γ)/(iµ) for i < a
2
µ N2− 1

µ .
(10)

This is negligible compared with the first term on the right
hand side of equation (9) in the thermodynamic limit,
N → ∞. The average degree is then

k̄ ≡ 2〈L〉
N

=
1
N

∑

i

〈ki〉 = 2K, (11)

where 〈L〉 is the mean number of edges in the grand canon-
ical ensemble. From equation (9), one can easily obtain
that the degree exponent is related to the Zipf exponent
µ as γ = 1 + 1/µ given in equation (2)

2.2 Mean neighboring degree function k̄nn(k):

We pay attention to the case 2 < γ < 3. To evaluate the
mean neighboring degree function k̄nn(k), we first calcu-
late the mean neighboring degree in terms of i, i.e., k̄nn(i)
and convert it to k̄nn(k) by using the relation of 〈ki〉 ver-
sus i. To proceed, we use the expression,

k̄nn(i) =
〈∑

j ∈ nn of i kj

ki

〉
=

〈∑
j,k aijajk
∑

j aij

〉
≈ 〈∑j,k aijajk〉

〈ki〉 ,

(12)

where the ensemble average is applied to the numerator
and the denominator separately. Its validity is checked nu-
merically, which is shown in Section 3. The denominator
was already derived, and the numerator is evaluated as
follows:
〈∑

j,k

aijajk

〉
=

∑

j,k �=i

fijfjk +
∑

j

fij ≈
∫ ∞

1

dj

∫ ∞

1

dk fijfjk + 〈ki〉,

(13)

where a2
ij = aij is used and the double sum is approxi-

mated by the double integral. The validity of the trans-
formation from the discrete double sum to the double in-
tegration is discussed in Appendix A where 2 < γ < 3.
Such an approximation introduces at most an O(1) factor
on the amplitude of the leading order terms for large N ,
as will be mentioned below. Applying the similar method
used in equation (6), we evaluate the integration in equa-
tion (13) as

∫ ∞

1

dj

∫ ∞

1

dkfijfjk =
a

2
µ N (2− 1

µ )

µ2

×
∫ aNµ− 1

2

aN− 1
2

dy
1 − e−xy

yγ

∫ aNµ− 1
2

aN− 1
2

dz
1 − e−yz

zγ
, (14)

where x ≡ aNµ−1/2i−µ is in the range aN−1/2 < x <
aNµ−1/2 (see the definition of a in Eq. (7)). The last
part of the integral in equation (14) is I(y) defined in
equation (8). Therefore, we substitute the leading term of
equations (8) into (14) and obtain
∫ ∞

1

dj

∫ ∞

1

dkfijfjk ≈

a1+ 1
µ N

3
2− 1

2µ

µ(1 − µ)
xγ−2

∫ axNµ− 1
2

axN− 1
2

dq
1 − e−q

qγ−1
, (15)

in which we change the variable of integration as q = xy.
The integral in the right hand side of equation (15) is
evaluated in three parts as

∫ axNµ− 1
2

axN− 1
2

dq
1 − e−q

qγ−1
=

∫ ∞

0

dq
1 − e−q

qγ−1

−
∫ axN− 1

2

0

dq
1 − e−q

qγ−1
−

∫ ∞

axNµ− 1
2

dq
1 − e−q

qγ−1
. (16)

The first term is denoted as

q1(γ) ≡
∫ ∞

0

dq
1 − e−q

qγ−1
, (17)

which is a positive constant for 2 < γ < 3. The second
term is, since axN−1/2 � 1,

∫ axN− 1
2

0

dq
1 − e−q

qγ−1
≈ a3−γN−(3−γ)/2

3 − γ
x3−γ . (18)
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The last term is calculated as, when x � 1/aNµ− 1
2 (i 	

a
2
µ N2− 1

µ ),

∫ ∞

axNµ− 1
2

dq
1 − e−q

qγ−1
=

∫ ∞

0

dq
1 − e−q

qγ−1
−

∫ xaNµ− 1
2

0

dq
1 − e−q

qγ−1

≈ q1(γ) − a3−γN (3−γ)(µ− 1
2 )

3−γ
x3−γ ,(19)

and, when x 	 1/aNµ− 1
2 (i � a

2
µ N2− 1

µ ),
∫ ∞

axNµ− 1
2

dq
1 − e−q

qγ−1
≈ a1− 1

µ N (1− 1
µ )(µ− 1

2 )

1
µ − 1

x2−γ . (20)

Combining all the contributions, when x � 1/aNµ− 1
2 , the

second term on the right hand side of equation (16) be-
comes the leading order term, while when x 	 1/aNµ− 1

2 ,
the first one does. Thus,
∫ ∞

1

dj

∫ ∞

1

dk fijfjk ≈
⎧
⎨

⎩

a4N3µ−1

(1−µ)(2µ−1) i
−µ for i > a

2
µ N2− 1

µ

q1(γ)a
2
µ N

3−µ− 1
µ

µ(1−µ) i−1+µ for i < a
2
µ N2− 1

µ .
(21)

The second term 〈ki〉 on the right-hand-side of equa-
tion (13) can be neglected compared with equation (21)
for all range of 2 < γ < 3 and i. Therefore,

k̄nn(i) ≈
{

a2

2µ−1N2µ−1 when i > a
2
µ N2− 1

µ

q1(γ)a
2
µ−2N3−2µ− 1

µ i2µ−1/µ when i < a
2
µ N2− 1

µ ,

(22)

and using equation (9) for k = 〈ki〉,
k̄nn(k) ≈
{

a2

2µ−1N2µ−1 when k < N1−µ

q1(γ)2K(1 − µ)
1
µ N2− 1

µ k−2+ 1
µ /µ when k > N1−µ.

(23)

Here we note that the coefficient of N2µ−1 when i >
a

2
µ N2− 1

µ (or when k < N1−µ) is not exact but is in be-
tween a2/(2µ − 1) and 2µa2/(2µ − 1) as explained in Ap-
pendix A (see Eq. (44)). In terms of the degree exponent γ
we rewrite equation (23) as

k̄nn(k) ∼
{

N (3−γ)/(γ−1) when k > kc1

N3−γk−(3−γ) when k < kc1,
(24)

where the crossover degree kc1 scales as kc1 ∼
N (γ−2)/(γ−1).

2.3 Clustering function C(k):

The clustering function C(k) is the mean of the local clus-
tering coefficient Ci over the vertices with degree k. To cal-
culate C(k), we first calculate Ci and convert it to C(k) by

using the relation equation (9). As we introduced before,
Ci is defined as Ci = 2ei/ki(ki − 1), where ei is the num-
ber of connections among the ki neighbors. In the grand
canonical ensemble, Ci is calculated as

Ci =
〈 ei

ki(ki − 1)/2

〉
. (25)

However, we approximate it as

Ci ≈ 〈ei〉
〈ki(ki − 1)/2〉 , (26)

which enables us to calculate it analytically. The validity
of this approximation is checked numerically in Section 3.
We evaluate the denominator and numerator separately.

The denominator is evaluated as

〈ki(ki − 1)
2

〉
=

1
2

∑

j �=k( �=i)

fijfik

≈ 1
2

∑

j,k( �=i)

fijfik ≈ 2K2(1 − µ)2N2µ/i2µ.

(27)

The numerator is evaluated as

〈ei〉 =
1
2

∑

j �=k( �=i)

fijfjkfki

≈ 1
2

∑

j,k

fijfjkfki ≈ 1
2

∫ N

1

dj

∫ N

1

dkfijfjkfki =
a

2
µ N2− 1

µ

2µ2

×
∫ aNµ− 1

2

aN− 1
2

dy

∫ aNµ− 1
2

aN− 1
2

dz
(1 − e−xy)(1 − e−yz)(1 − e−zx)

yγzγ
.

(28)

Possible errors involved in using the integral form for
the double sum is discussed in Appendix A and will be
mentioned below. The evaluation of the integrals of equa-
tion (28) is carried out depending on the magnitude of x.
When x 	 1/aNµ− 1

2 , we obtain

∫ aNµ− 1
2

aN− 1
2

dz
(1 − e−yz)(1 − e−zx)

zγ

≈
{

q0(γ)
(
xγ−1−(x+y)γ−1

)
when y < 1/aNµ− 1

2

q0(γ)
(
xγ−1+yγ−1 − (x+y)γ−1

)
when y > 1/aNµ− 1

2 .

(29)

Thus 〈ei〉 is written as

〈ei〉 = −a
2
µ N2− 1

µ

2µ2
q0(γ)(B + C), (30)
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where B and C are expressed in the integral forms as

B =
∫ aNµ− 1

2

aN− 1
2

dy
1 − e−xy

yγ

[
(x + y)γ−1 − xγ−1 − yγ−1

]

=
∫ 1

aN− 1
2 /x

dq
(γ − 1)(1 − e−x2q)

qγ−1

−
∫ 1

aN− 1
2 /x

dq
1 − e−x2q

q

+
∫ aNµ− 1

2 /x

1

dq

(
γ − 1

q2
− 1

qγ

)

(1 − e−x2q) (31)

and

C = −q0(γ)
∫ 1/aNµ− 1

2

aN− 1
2

dy
1 − e−xy

yγ
yγ−1. (32)

Even in the region of x > 1/aNµ− 1
2 , the leading term

is determined depending on the magnitude of x. When
x > 1 > 1/aNµ−1

2 , the first term of the integral B is
the most dominant one compared with the other terms
of B and C, which is evaluated as ≈(γ − 1)q1(γ)x2(γ−2).
When 1 > x > 1/aNµ− 1

2 , however, the third term is most
dominant and evaluated as ≈2(γ−1) ln(1/x)x2. Therefore,
the numerator is evaluated as

〈ei〉 ≈
⎧
⎨

⎩

a
2
µ N

2− 1
µ

2µ2 [−q0(γ)q1(γ)(γ − 1)x2(γ−2)], when x > 1
a

2
µ N

2− 1
µ

2µ2 2(γ − 1) ln(1/x)x2, when 1 > x > 1/aNµ−1
2 .

(33)

Thus, we get Ci in the region of x > 1/aNµ− 1
2 to the

leading order as

Ci ≈
{

N1− 1
µ ln(iµ/Nµ− 1

2 ), when N1− 1
2µ < i < N2− 1

µ

N5−4µ− 2
µ i2(2µ−1), when i < N1− 1

2µ .

(34)

Equivalently,

C(k) ≈
{

N1− 1
µ ln(N

1
2 /k), when N1−µ < k < N

1
2

N3− 2
µ k−2(3−γ), when N

1
2 < k.

(35)

Let us consider the case of x � 1/aNµ− 1
2 (i 	 N2− 1

µ ).
In this case,

∫ aNµ− 1
2

aN− 1
2

dz
(1 − e−yz)(1 − e−zx)

zγ
≈

− q0(γ)
(
(x + y)γ−1 − yγ−1

)
, (36)

for y > 1/aNµ− 1
2 and is almost negligible for y <

1/aNµ− 1
2 . Thus

〈ei〉=−q0(γ)a
2
µ N2− 1

µ

2µ2

∫ aNµ− 1
2

1/aNµ− 1
2

[(x+y)γ−1−yγ−1]
1−e−xy

yγ

≈ −q0(γ)a
1
µ (γ−1)N2− 1

µ

2µ2
x2 ln(a2N2µ−1). (37)

Fig. 2. Plot of k̄nn(i) versus i. To check the validity of the

approximation equation (12), we plot
∑

j ∈ nn of i

〈
kj

ki

〉
(+)

and
∑

j ∈ nn of i〈kj〉
〈ki〉 =

∑
j,k fijfjk∑

j fij
+1 (◦) for N = 106. We can

see that the approximation is valid. We compare them with∫ ∫
djdkfijfjk∫

djfij
+ 1 (solid line). They agree with each other for

small i, however, it is in disagreement in the plateau region as
expected in Appendix A. We also plot with the first leading
term presented in the text in the asymptotic regions with dot-
dashed line and dashed line, respectively.

Therefore we get when x � 1/aNµ− 1
2 (i.e., i 	 a

2
µ N2− 1

µ ,
or k � N1−µ),

Ci = C(k) ∼ AN1− 1
µ ln N, (38)

with A = −q0(γ)a
2
µ−2(γ − 2)2(3 − γ), when k < N1−µ.

In Appendix A, the error introduced in equation (28) is
estimated and is found not to change equation (35). For
equation (38), however, we find C(k) ∼ AN1− 1

µ (ln N +D)
with an undetermined constant D. Equations (35) and
(38) are the main results of this subsection.

3 Numerical simulations

We now discuss numerical check of the analytic results de-
rived in Section 2. For the purpose, the static model net-
work is generated with K = 2 and µ = 2/3 (γ = 2.5) and
with varying system size N . All data below are averaged
over 104 network configurations. For the case of k̄nn(k), we
first check the approximation, equation (12). To proceed,
we measure

∑
j∈ nn of i〈kj/ki〉 and

∑
j∈ nn of i〈kj〉/〈ki〉

separately in Figure 2, finding that the data overlap and
the approximation is valid. Next we directly enumerate
the function,

∫ N

1
dj

∫ N

1
dkfijfjk/

∫ N

1
djfij + 1 (solid line)

and compare it with the evaluation (dashed line) within
leading order, equation (23). The extra term of ‘1’ comes
from the 2nd term 〈ki〉 of equation (13). For small i, the
two lines seem to be consistent, however, for large i, they
somewhat deviate in the intermediate region of i. How-
ever, we confirm that our analytic solution is valid within
leading order by the finite size scaling plot. In Figure 3, we
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Fig. 3. Plot of size-dependent behavior of k̄nn(i). Data of dif-
ferent network sizes N = 103(�), 104(∗), 105(�) and 106(�)
collapse into a single curve in the scaling plot. Inset: plot of the
difference between the leading order analytic expression and
the simulation value of i = 1, divided by the simulation value.
As N increases, the relative difference decreases, showing that
the analytic solution converges to the numerical result.

Fig. 4. Plot of k̄nn(k) versus k for different system sizes N =
103(�), 104(∗), 105(�) and 106(�). Data for different system
sizes collapse in the scaling plot. Solid and dot-dashed lines
indicate the analytic results of leading order for large and small
k, respectively.

plot k̄nn(i) for different N = 103, 104, 105 and 106 finding
that the data collapse into a single curve by the rescalings
of i → i/N2−1/µ and k̄nn(i) → k̄nn(i)/N2µ−1. Moreover,
we find as we increase the system size that the numeri-
cal simulation data approaches our analytic solution for
small i (inset of Fig. 3). We also check the behavior of
k̄nn(k) numerically. Under the rescaling of k → k/N1−µ

and k̄nn(k) → k̄nn(k)/N2µ−1, the data for different system
sizes collapse well, confirming the validity of our analytic
result.

Next, the local clustering coefficient function Ci is
measured. We first check the approximation introduced in
equation (26) in Figure 5, finding that they overlap each
other except for large i. This discrepancy originates from
the fact that the vertices with large i are mostly those

Fig. 5. Plot of Ci. We can see that the approximation,
〈 2ei

ki(ki−1)
〉 ≈ 2〈ei〉

〈ki(ki−1)〉 is valid for the large i limit. The dot-

dashed line indicates the analytic result. In the plateau region,
the discrepancy between the analytic and the numerical results
decrease as system size N increases. The dashed line indicates
the analytic results, equations (34) and (38).

Fig. 6. Size-dependence of local clustering coefficient Ci. Data
of various network sizes N = 103(�), 104(∗), 105(�) and
106(�) are collapsed in the rescaling plot. Inset: plot of the
difference between the analytic solution within the leading or-
der and the simulation value for i = 1, divided by the simu-
lation value as a function of N . The decreasing behavior with
increasing N indicates that the analytic solution is asymptot-
ically valid.

located at dangling ends with degree 1. Thus, the forma-
tion of triangles or wedge shapes is rare and their numbers
fluctuate highly. Next, we also check the validity of the ap-
proximation from the discrete summation and the contin-
uous integration, equation (28). For small i, the approxi-
mation is reasonably valid as shown in Figure 5, which can
be expected in Appendix A. However, for large i in the flat
region, the approximation shows some discrepancy, but it
is likely that the discrepancy decreases as system size N
increases. To check the size-dependent behavior of Ci, we
plot Ci versus i with rescalings of Ci → Ci/N

1− 1
µ ln N

and i → i/
(
N (4µ−4+ 1

µ )/(4µ−2) ln1/(4µ−2) N
)

for different
system sizes N = 103, 104, 105 and 106. We find that
the data collapse reasonably well as shown in Figure 6.
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Table 1. Degree and system-size dependence of k̄nn(i), k̄nn(k), Ci and C(k).

2 < γ < 3

Range knn(i) knn(k) Ci C(k)

i > N3−γ

∼N
3−γ
γ−1 ∼N−(γ−2) ln Nk < N

γ−2
γ−1

N3−γ > i > N
1
2 (3−γ)

∼N
(3−γ)(γ−2)

γ−1 i
3−γ
γ−1 ∼N3−γk−(3−γ)

∼N−(γ−2) ln
(

i1/(γ−1)

N(3−γ)/(2γ−2)

)
∼N−(γ−2) ln

(
N1/2

k

)

N
γ−2
γ−1 < k < N

1
2

N
1
2 (3−γ) > i ∼N− 2γ2+9γ+11

γ−1 i
2(3−γ)

γ−1 ∼N5−2γk−2(3−γ)

N
1
2 < k

γ = 3

whole range ∼lnN ∼(ln N)2/N
γ > 3

whole range ∼O(1) ∼1/N

Fig. 7. Plot of C(k) for different system size N = 103(�),
104(∗), 105(�) and 106(�). The data are well collapsed in the
rescaling plot.

And we also check the behavior of C(k). By rescaling of
C(k) → C(k)/N1− 1

µ ln N and k → k ln1/2(2− 1
µ ) /N1/2, the

data of C(k) for different system sizes also collapse into a
single curve reasonably well as shown in Figure 7. Thus,
our numerical simulation results show that, although sev-
eral approximations are involved in deriving the analytic
results of Section 2, they are valid to the leading orders in
N as N → ∞.

4 Conclusions and discussion

We have studied analytically the mean neighboring de-
gree function k̄nn(k) and the clustering function C(k) in
the static model for the case of 2 < γ < 3 and checked
the results by numerical simulations. Due to the preven-
tion of self-loop and multiple edges, there occur intrinsic
degree correlations, which appear for 2 < γ < 3 in the k-
dependent form of k̄nn(k) and C(k) for large k. Our results
are summarized in Table 1 together with those for the case
of γ ≥ 3. It would be interesting to compare our results
with those obtained in the generalized BA-type growth
model [20]. In this model, k̄nn(k) ∼ N (3−γ)/(γ−1)k−(3−γ)

when γ < 3, ∼ln N when γ = 3, and ∼ln k when γ > 3.
On the other hand, C(k) ∼ N (4−2γ)/(γ−1)k−(3−γ) for

k > (ln N)1/(3−γ) and ∼(ln N)N (4−2γ)/(γ−1)k−2(3−γ) for
k < (ln N)1/(3−γ) when γ < 3, ∼(ln N)2/N when γ = 3
and ∼N−1kγ−3 in the range k < N1/(γ−3) when γ > 3.
Therefore, it appears that the degree correlation functions
k̄nn(k) and C(k) behave differently for the cases of the
static model and the BA-type growth model.

This work is supported by the KRF Grant No. R14-2002-059-
010000-0 in the ABRL program funded by the Korean govern-
ment MOEHRD.

Appendix A: Transformation from discrete
summation to continuous integration

In several parts of this paper, we use the transformation
from the discrete summation to the continuous integration
such as

N∑

j,k=1

F (i, j, k) ≈
∫ N

1

dj

∫ N

1

dk F (i, j, k). (39)

Here we discuss its validity. For a monotone decreasing
function F (x), one has the well known relation:

∫ N

1

dxF (x) + F (N) ≤
N∑

n=1

F (n) ≤
∫ N

1

dxF (x) + F (1).

(40)
When F (i, j, k) is positive, monotonously decreasing and
bounded in both j and k, we can apply equation (40) twice
to obtain the error in equation (39) as

∑

k

F (i, N, k)+
∑

j

F (i, j, N)−F (i, N, N) ≤
∑

j,k

F (i, j, k)

−
∫ N

1

dj

∫ N

1

dkF (i, j, k) ≤
∑

k

F (i, 1, k)

+
∑

j

F (i, j, 1) − F (i, 1, 1). (41)

Thus equation (39) is valid when the “surface terms”
in equation (41) are negligible compared with the “bulk
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term”,
∫ N

1
dj

∫ N

1
dkF (i, j, k). When we consider k̄nn(i),

F (i, j, k) is given as fijfjk and one of the surface terms
that require special attention is

∑

k

F (i, 1, k) =
∑

k

fi1f1k ≈ a4N3µ−1

1 − µ
i−µ, (42)

with a =
√

2K(1 − µ)2. It turns out that this surface term
is of the same order as the bulk term when i > a

2
µ N2− 1

µ .
Other surface terms are, however, negligible. Thus, the
contribution of the surface term to 〈knn〉(i) is ∼ a2N2µ−1.
Then equation (22) for the case i > a

2
µ N2− 1

µ has to be
changed as

∫ N

1
dj

∫ N

1
dkfijfjk

〈ki〉 ≤

k̄nn(i) ≤
∫ N

1
dj

∫ N

1
dkfijfjk

〈ki〉 +
∑

k f(i, 1, k)
〈ki〉 . (43)

This leads to

a2N2µ−1

2µ − 1
≤ k̄nn(i) ≤ a2N2µ−1

2µ − 1
· 2µ (44)

to the leading order in N . Thus, the leading order of
〈knn〉(i) is given only in the form of the bounds when
i > a

2
µ N2− 1

µ .
When Ci is considered, F (i, j, k) = fijfjkfki. The most

relevant terms are
∑

k F (i, 1, k) and
∑

j F (i, j, 1):

∑

k

F (i, 1, k) =
∑

j

F (i, j, 1)

=
∑

k

fi1f1kfki ≈ −q0(γ)(γ − 1)a
2
µ N2− 1

µ x2/µ, (45)

when i > a
2
µ N2− 1

µ . These are of the same order of magni-
tude as the bulk term in equation (33) up to the lnN fac-
tor. Other boundary terms are smaller in order of magni-
tude compared with these terms. Thus when i > a

2
µ N2− 1

µ ,
Ci is bounded as

− q0(γ)a
2
µ−2(γ − 1)(γ − 2)2N1− 1

µ ln(a2N2µ−1) ≤ Ci

≤ −q0(γ)a
2
µ−2(γ − 1)(γ − 2)2N1− 1

µ
[
ln(a2N2µ−1) + 4µ

]
.

(46)

The boundary term is important when lnN is not large
enough compared with 4 µ.
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12. M. Boguñá, R. Pastor-Satorras, Phys. Rev. E 68, 036112

(2003)
13. D.-S. Lee, K.-I. Goh, B. Kahng, D. Kim, Nucl. Phys. B

696, 351 (2004)
14. S. Maslov, K. Sneppen, Science 296, 910 (2002)
15. M.E.J. Newman, Phys. Rev. Lett. 80, 208701 (2002)
16. E. Ravasz, A.-L. Barabási, Phys. Rev. E 67, 026112 (2003)
17. R. Milo et al., Science 298, 824 (2002)
18. M. Catanzaro, R. Pastor-Satorras, Eur. Phys. J. B 44, 241

(2005)
19. J. Park, M.E.J. Newman, Phys. Rev. E 68, 026112 (2003)
20. A. Barrat, R. Pastor-Satorras, Phys. Rev. E 71, 036127

(2005)
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