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A box-covering algorithm for fractal scaling in scale-free networks
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A random sequential box-covering algorithm recently introduced to measure the fractal dimension
in scale-free (SF) networks is investigated. The algorithm contains Monte Carlo sequential steps of
choosing the position of the center of each box; thereby, vertices in preassigned boxes can divide
subsequent boxes into more than one piece, but divided boxes are counted once. We find that such
box-split allowance in the algorithm is a crucial ingredient necessary to obtain the fractal scaling for
fractal networks; however, it is inessential for regular lattice and conventional fractal objects em-
bedded in the Euclidean space. Next, the algorithm is viewed from the cluster-growing perspective
that boxes are allowed to overlap; thereby, vertices can belong to more than one box. The number
of distinct boxes a vertex belongs to is, then, distributed in a heterogeneous manner for SF fractal
networks, while it is of Poisson-type for the conventional fractal objects. © 2007 American Insti-

tute of Physics. [DOI: 10.1063/1.2737827]

A box-covering method is a basic tool to measure the
fractal dimension of conventional fractal objects embed-
ded in the Euclidean space. Such a method, however, can-
not be applied to scale-free (SF) networks that exhibit an
inhomogeneous degree distribution and the small-
worldness. The Euclidean metric is not well defined in
such networks. To check the fractality, a random sequen-
tial box-covering algorithm was recently introduced. In
the algorithm, vertices within a box can be disconnected,
but connected via a different box or boxes. Here we show
that such box-split allowance is an essential ingredient to
obtain the fractal scaling in scale-free networks, while it
is inessential for the conventional fractal objects. More-
over, the algorithm is viewed from a different perspective
that boxes are allowed to overlap instead of being split;
thereby, vertices can belong to more than one box. The
number of distinct boxes a vertex belongs to is, then, dis-
tributed in a heterogeneous manner for scale-free fractal
networks, while it is of Poisson-type for the conventional
fractal objects.

I. INTRODUCTION

Fractal objects that are embedded in the Euclidean space
have been observed in diverse phenomena.1 They contain
self-similar structures within them, which are characterized
in terms of noninteger dimension, i.e., the fractal dimension
dp, defined in the fractal scaling relation
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Ny(€g) ~ €55 (1)

Here, Ng(€p) is the minimum number of boxes needed to tile
a given fractal object with boxes of lateral size €. This
counting method is called the box-covering method.

Fractal scaling (1) was also observed 1recently2 in real-
world scale-free (SF) networks such as the World-Wide
Web,3 metabolic network of Escherichia coli and other
microorganisms,4 and protein interaction network of Homo
sapiens.5 SF networks® are those that exhibit a power-law
degree distribution P (k) ~k~". Degree k is the number of
edges connected to a given vertex. For such fractal networks,
since their embedded space is not Euclidean, the Euclidean
metric is replaced by the chemical distance.

One may define the fractal dimension in another manner
through the mass-radius relation. The average number of ver-
tices (M (€ )) within a box of lateral size €, called average
box mass, scales in a power-law form

<Mc(fc)> -~ f‘éB, (2)

with the fractal dimension dg. This counting method is called
the cluster-growing method below. Hereafter, the subscripts
B and C represent the box-covering and the cluster-growing
methods, respectively. Formulas (1) and (2) are equivalent
when the relation N~ Ng(€g){M(€.)) holds for €z=~€.
Such a case can be seen when fractal objects are embedded
in the Euclidean space. However, for SF fractal networks,
relation (2) is replaced with the small-world behavior
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(M(Le)y ~ etco, (3)

where € is a constant. Thus, the fractal scaling can be found
in the box-covering method, but not in the cluster-growing
method for SF fractal networks.

To understand these seemingly contradictory relations,
here we investigate generic nature of the box-covering
method in SF networks in comparison of the cluster-growing
method. Owing to the inhomogeneity of degrees in SF fractal
networks, the way of covering a network can depend on
detailed rules of box-covering methods. Recently, a new box-
covering algorithm was introduced by the current authors.”®
In fact, this algorithm shares a common spirit with the one
previously introduced by Song et al.;* however, details differ
from one another in the following perspective: Our algo-
rithm, called random sequential (RS) box-covering method,
contains a random process of selecting the position of the
center of each box. A new box can overlap preceding boxes.
In this case, vertices in preassigned boxes are excluded in the
new box; thereby, vertices in the new box can be discon-
nected within the box, but connected through a vertex (or
vertices) in a preceding box (or boxes). Nevertheless, such a
divided box is counted as a single one. A detailed rule is
described in the next section. Such a counting method is an
essential ingredient to obtain the fractal scaling in fractal
networks, whereas it is inessential for regular lattice and con-
ventional fractal objects embedded in the Euclidean space.

Next, we count how many boxes a vertex belongs to in
the cluster-growing algorithm, where boxes are allowed to
overlap. For the SF fractal network, the fraction of vertices
counted f times decays with respect to f in a nontrivial man-
ner, while for the square lattice and a conventional fractal
object, it decays in a Poisson-type manner. We note that the
Sierpinski gasket is used here as a fractal object embedded in
the Euclidean space. Such distinct features arising in the SF
fractal networks enable the coexistence of the two contradic-
tory notions of the fractality and small-worldness.

Il. RANDOM SEQUENTIAL BOX-COVERING

Here we describe a new box-covering method, which
takes steps as follows:

(1) Label all vertices as “not burned” (NB).

(ii)  Select a vertex randomly at each step; this vertex
serves as a seed.

(iii)  Search the network by a distance €z from the seed and
burned all NB vertices that are within the distance €
from the seed by using the breadth-first or depth-first
algorithm.9 Assign newly burned vertices to the new
box. If no newly burned vertex is found, the box is
discarded.

(iv)  Repeat (ii) and (iii) until all vertices are burned and
assigned to their respective boxes.

The above method is schematically illustrated in Fig. 1.
A different Monte Carlo realization of this procedure [(i)—
(iii)] may yield a different number of boxes for covering the
network. In this study, for simplicity, we choose the smallest
number of boxes among all the trials. To obtain the power-
law behavior of the fractal scaling, we needed at most O(10)
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FIG. 1. (Color online) Schematic illustration of the RS box-covering algo-
rithm introduced (Refs. 7 and 8). Vertices are selected randomly, for ex-
ample, from vertex 1 to 4 successively. Vertices within distance €z=1 from
vertex 1 are assigned to a box represented by solid (red) circle. Vertices from
vertex 2, not yet assigned to their respective box are represented by dashed-
dotted-dotted (black) closed curve, vertices from vertex 3 are represented by
dashed-dotted (green) circle and vertices from vertex 4 are represented by
dashed (blue) ellipse.

Monte Carlo trials for all fractal networks we study. It should
be noted that the box number Ny we employ is not the mini-
mum number among all the possible tiling configurations.
Finding the actual minimum number over all configurations
is a challenging task, which could not be reached by the
Monte Carlo method.

To check the validity of our algorithm, we first apply our
method to the two-dimensional regular lattice in Fig. 2.
While our method may perform inefficiently in the highly
regular structure due to the step in which already box-
assigned vertices can be selected as seeds, taking about a few
hours of CPU time for system size N=500X 500, we find
that our method can still yield the correct dimension =2.0
for the two-dimensional square lattice, as shown in Fig. 2.

Ny(lg)/N
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FIG. 2. (Color online) Fractal scaling analysis for the two-dimensional
square lattice with the box-covering algorithm. Shown are the result of one
Monte Carlo trial (O) and that obtained from 20 Monte Carlo trials ([J).
From the least-squares fit of the data (straight line), the fractal dimension is
measured to be =2.0, as expected.
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(a) ®)

FIG. 3. (Color online) A fractal object, the Sierpinski gasket with the second
generation (a). Conventional box covering based on the Euclidean metric
with size €z=2 (b) and €;=1 (c). Box covering based on chemical distance
€g=1 by using the RS box-covering method (d). Seed vertices 1 —35 are
selected successively.

We also show that the number of Monte Carlo trials is not
crucial to obtain the fractal scaling.

Figure 3 shows the box-covering method applied to the
Sierpinski gasket with the third generation (a). One can find
easily that Ng(€=2)=3 in (b) and Ng(£5z=1)=9 in (c) when
lateral size € is taken as the conventional Euclidean metric.
The obtained Ngz(€g) are the minimum numbers of boxes
needed to tile the object for each case. In Fig. 3(d), we show
a configuration in box-covering ensemble obtained from our
current algorithm with distance €z=1. One can see that
Ny(€g) can vary depending on Monte Carlo trials. We show,
however, that the fractal dimension is obtained by using the
conventional method in (b) and (c); i.e., dg=—In3/1In 2. Nu-
merical value is obtained from the Sierpinski gasket with the
12th generation, composed of 265 721 vertices, and the frac-
tal scaling is shown in Fig. 4.

Figure 5 shows the fractal scalings for a random branch-
ing tree structure and the Erdés and Rényi random tree
graph. The branching tree is constructed as follows: From a
single seed vertex, m offspring are generated with probability
b,,, where b,,=m~"/{(y—1) for m=1 with the Riemann zeta
function {(x), and by=1-2_,b, for m=0. The y>2 case is
considered only. Such a branching process is repeated at each
offspring. The constructed tree structure is fractal with the
fractal dimension dgy=(y—1)/(y-2) for 2<y<3 and dz=2
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FIG. 4. (Color online) Fractal dimension of the Sierpinski gasket with the
12th generation measured by using the RS box-covering method. The solid
line is a guideline with slope —In 3/In 2. Shown are the result of one Monte
Carlo trial (O) and that obtained from 20 Monte Carlo trials ([J).

for y> 3.1912 The Erdés and Rényi random tree graph is the
y— e limit of the branching tree. Thus, its fractal dimension
is dg=2. We generate a branching tree with y=2.6 and obtain
the fractal dimension dg=2.7. In addition, the fractal dimen-
sion of the ER graph is obtained as dz=?2. The numerical
results are consistent with the theoretical values, confirming
the validity of our algorithm.

Our algorithm also generates the same fractal dimen-
sions for SF fractal networks such as the World-Wide Web,
the metabolic network of E. coli, and the protein interaction
networks of H. sapiens and S. cerevisiae, as obtained by
Song et al? Figure 6 shows the fractal scaling for the World-
Wide web, displaying the same fractal dimension dz=4.1. In
comparison with the method of Song et al., ours is easier to
implement, because it does not contain the procedure for
constraining the maximum separation within a box and is
carried out in random sequential manner in box covering.

The particular definition of box size has proved to be
inessential for fractal scaling. It is rather inappropriate to
compare the length scale €z with that €5 used in Ref. 2,
because the two methods involve different definitions of the
boxes. What is interesting, however, is that there exists a
linear relationship; for example, €5/1.5— €5 in the case of
the World-Wide Web, as shown in Fig. 7. This linear rela-

FIG. 5. (Color online) The degree dis-
tribution (a) and the fractal scaling (b)
of the branching tree (O) and the ER
random graph ([J). The straight lines
indicate y=2.6 in (a), and dz=2.7
(O) and 2.0 (OJ) in (b).
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FIG. 6. (Color online) Comparison of the box-covering methods introduced
by Song e al.> (O) and in this paper (O) for the World-Wide Web. The
results obtained from the two box-covering methods applied to the World-
Wide Web are plotted here. The two methods yield the same fractal dimen-
sion dz=4.1. The method introduced by Song et al. is more optimal than
ours from the viewpoint that Ng(€g) <Np(2€z+1).

tionship indicates that despite the difference in the two algo-
rithms, such a difference does not lead to qualitatively dif-
ferent fractal-scaling behaviors.

lll. OVERLAP OF BOX COVERING AND VERTICES
DISCONNECTEDNESS

It is interesting to note that in our algorithm vertices can
be disconnected within a box, but connected through a vertex
(or vertices) in a different box (or boxes) as in the case of
box 2 shown in Fig. 1. On the other hand, if we construct a
box with only connected vertices, for example, box 2 is re-
garded as two separate boxes, then the power-law behavior
Eq. (1) is not observed for the World-Wide Web, as shown in
Fig. 8. We check if such difference appears even for a regular
lattice and a fractal object embedded in the Euclidean space.
Figure 9 shows that such different behavior does not occur
for the square lattice in two dimensions and the Sierpinski
gasket. We show that such fact originates from the inhomo-
geneity of degrees in SF networks as follows: Owing to their
large degree, hub vertices can be assigned to boxes earlier
than other vertices when their neighbors are selected as seeds
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FIG. 7. (Color online) Fractal scaling analysis for the World-Wide Web by
the two box-covering algorithms: that of Song ef al. () and of ours (O).
For comparison, the horizontal scale for that of Song et al. is rescaled as
€4/1.5— €, by which we get the overlap of two curves obtained from the
different algorithms.
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Ny(lg)N

FIG. 8. (Color online) Fractal scaling analysis for the World-Wide Web with
the RS box-covering algorithm (O) and its variant that disallows discon-
nected boxes (CJ).

of boxes. Once hub vertices are assigned to one of the boxes,
they can make subsequent boxes disconnected when vertices
in those boxes are connected via hub vertices. Box 2 in Fig.
1 is such a case. In SF networks, such cases occur at a non-
negligible rate.
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FIG. 9. (Color online) Fractal scaling analysis for the square lattice (a) and
the Sierpinski gasket (b) with the RS box-covering algorithm (O) and its
variant that disallows disconnected boxes (CJ). Solid lines are guidelines
with slopes of =2 in (a) and —In3/In2 in (b).
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FIG. 10. (Color online) Cumulative fraction F.(f) of the vertices counted f
times in the cluster-growing algorithm. F,(f) follows a power law in the
small f region, where the slope depends on box size .. However, for large
values of f, the data largely deviate from the value extrapolated from the
power-law behavior. Data are presented for ¢-=2 (@), €-=3 (M), and ¢,
=5 (A).

To study the fraction of disconnected boxes quantita-
tively, we invoke the cluster-growing approach. In this ap-
proach, boxes are allowed to overlap; thereby, a vertex can
belong to more than one box. Thus, the extent of overlap of
the boxes during the tiling can provide important information
on the fraction of disconnected boxes in the box-covering
method. In this regard, we reported the cumulative fraction
F.(f) of vertices counted f times or more in the cluster-
growing method for the World-Wide Web in Ref. 8 and is
reproduced in Fig. 10. The cumulative fraction F.(f) is likely
to follow a power law for small f, thereby indicating that the
overlaps occur in a non-negligible frequency even for a small
distance €. The associated exponent decreases with increase
in box size € as the chances of overlaps increase. However,
for large values of f, the large fraction of vertices counted
exceed the frequency extrapolated from the power-law be-
havior. For the square lattice and the Sierpinski gasket, how-
ever, the fraction F(f) follows a bounded distribution with a
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FIG. 11. (Color online) Fraction F(f) of the vertices counted f times in the
cluster-growing algorithm for the Sierpinski gasket with the 12th generation
composed of 265 721 vertices. F(f) follows a Poisson-type distribution.
Data are presented for £-=2 (@), =3 (M), and €-=5 (A).
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FIG. 12. (Color online) Fractal scaling analysis with the rules that allow (O)
or disallow (OJ) the already box-burned vertices to be chosen as the roots of
new boxes for the World-Wide Web (a), and the fractal model (b).

peak at small f, as shown in Fig. 11. Thus, for the fractal
networks like the World-Wide Web, there are a significant
number of vertices that are counted quite a few times in the
cluster-growing method, but such vertices are extremely rare
in the conventional fractal objects such as the Sierpinski gas-
ket. Such multiple counting due to overlap is excluded in the
box-covering method. This exclusion effect makes the aver-
age mass of a box in the box-covering method significantly
lower than that in the cluster-growing method.

Next, one may wonder if the RS box-covering algorithm
can be improved in efficiency by excluding already-burned
vertices from the list of the root candidates of new boxes. In
Fig. 12, we compare the fractal scaling behaviors obtained
from the two cases of keeping or excluding already-burned
vertices from the list for two networks: the World-Wide Web
(a) and the fractal model introduced in Ref. 7. We find that
the two cases exhibit somewhat different behaviors. If the
already burned vertices are excluded from the next selection,
the power-law behavior is not obtained for the World-Wide
Web. However, they exhibit similar power-law behaviors for
the fractal model, even though the two data sets show some-
what of deviations.

IV. CONCLUSIONS AND DISCUSSION

We have studied various features of the random sequen-
tial box-covering algorithm by applying it to a SF fractal
network, the World-Wide Web, and a regular and a conven-
tional fractal object, the square lattice and the Sierpinski gas-
ket, respectively. Results obtained from the two classes of
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networks exhibit distinct feature. The condition that vertices
in a box can be disconnected in the box-covering method
turns out to be an essential ingredient to have the fractal
scaling for a SF fractal network, however, it is irrelevant for
a regular lattice and a conventional fractal object embedded
in the Euclidean space. We also found that the fraction of
vertices counted f times in the cluster-growing method ex-
hibits a nontrivial behavior for the former, while it does a
trivial behavior for the latter. The two results are comple-
mentary; thereby, the SF fractal network exhibits the fractal
scaling (1) in the box-covering and the small-world behavior
(3) in the cluster-growing method. Finally, it is noteworthy
that our box-covering algorithm is a modification of the al-
gorithm used in the random sequential packing problem.13
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